Water Balance of Pit Lake Development in the Equatorial Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.1.1. Location
2.1.2. Geology and Morphology
2.2. Calculation of Water Balance
2.2.1. Overland/Subsurface Zone
- Moisture Storage = Initial moisture storage valueThis value was entered by trial and error and was re-checked so that the value in January approaches the value in December. If there was a difference greater than 200 mm, it was repeated. The value of Moisture storage is 1000.
- Nominal = Index of moisture holding capacityNominal = 100 + (C ∗ Average Annual Rainfall), C value = 0.2 for areas with year-round rainfall, C value = 0.25 for areas with seasonal rainfall. The average annual rainfall was 2062 mm, and so the value of Nominal was 616.
- PSUB = percentage of surface runoff that enters the groundwater reservoirPSUB = 0.5, for watersheds with normal/ordinary rain.PSUB = 0.5 < PSUB < 0.9, for areas with large permeable aquifers.PSUB < 0.5, for areas with limited aquifers and thin soil layers.
- Begin Store GW = Initial storage of groundwaterPerformed manually and starting with an initial value of 300.
- Ground Water Flow (GWF) = groundwater flow rate.GWF = 0.5; for areas with normal/normal rain.GWF = 0.5 < GWF < 0.8; for areas that have a continuous flow with a small size.GWF = 0.2 < GWF < 0.5; for areas that have reliable continuous flow.
- Kc = crop coefficient, with a value 0.36.
2.2.2. Pit Lake Zone
2.3. Data Collection
2.3.1. Rainfall Measurement
2.3.2. Potential Evapotranspiration and Evaporation Calculation
2.3.3. Overburden Backfilling and Water Inflow
3. Results
3.1. Geometry of Void
3.2. Backfilling
3.3. Rainfall
3.4. Evaporation
3.5. Pumping Water
3.6. Water Level
3.7. Water Balance
3.8. Comparison, Validation, and Sensitivitas Analysis of Model
4. Discussion
4.1. Hydrological Characteristics
4.2. Pit Lake Development
4.3. Implication of Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Søndergaard, M.; Lauridsen, T.L.; Johansson, L.S.; Jeppesen, E. Gravel pit lakes in Denmark: Chemical and biological state. Sci. Total Environ. 2018, 612, 9–17. [Google Scholar] [CrossRef]
- Schultze, M.; Pokrandt, K.-H.; Hille, W. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica 2010, 40, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S. Modeling and management of pit lake water chemistry 1: Theory. Appl. Geochem. 2015, 57, 267–288. [Google Scholar] [CrossRef]
- McCullough, C.D.; Vandenberg, J. Studying Mine Pit Lake Systems across Multiple Scales. Mine Water Environ. 2020, 39, 173–194. [Google Scholar] [CrossRef]
- Castendyk, D.N. Lessons Learned from Pit Lake Planning and Development. In Mine Pit Lake: Closure and Management; Australian Centre for Geomechanics: Perth, Australia, 2011; pp. 15–28. [Google Scholar]
- Blanchette, M.L.; Lund, M.A. Pit lakes are a global legacy of mining: An integrated approach to achieving sustainable ecosystems and value for communities. Curr. Opin. Environ. Sustain. 2016, 23, 28–34. [Google Scholar] [CrossRef]
- McCullough, C.; Schultze, M.; Vandenberg, J. Realizing Beneficial End Uses from Abandoned Pit Lakes. Minerals 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- McJannet, D.; Hawdon, A.; Van Niel, T.; Boadle, D.; Baker, B.; Trefry, M.; Rea, I. Measurements of evaporation from a mine void lake and testing of modelling approaches. J. Hydrol. 2017, 555, 631–647. [Google Scholar] [CrossRef]
- Sienkiewicz, E.; Gąsiorowski, M. The evolution of a mining lake—From acidity to natural neutralization. Sci. Total Environ. 2016, 557–558, 343–354. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Peiffer, S.; Macías, F.; Olías, M.; Nieto, J.M. Geochemical processes in a highly acidic pit lake of the Iberian Pyrite Belt (SW Spain). Chem. Geol. 2015, 395, 144–153. [Google Scholar] [CrossRef]
- Vandenberg, J.; McCullough, C.; Castendyk, D. Key issues in Mine Closure Planning Related to Pit Lakes. In Proceedings of the 10th ICARD-IMWA 2015, Santiago, Chile, 21–24 April 2015; IMWA: Santiago, Cile, 2015; p. 10. [Google Scholar]
- McCullough, C.D.; Marchand, G.; Unseld, J. Mine Closure of Pit Lakes as Terminal Sinks: Best Available Practice When Options are Limited? Mine Water Environ. 2013, 32, 302–313. [Google Scholar] [CrossRef] [Green Version]
- McCullough, C.D.; Schultze, M. Engineered river flow-through to improve mine pit lake and river values. Sci. Total Environ. 2018, 640–641, 217–231. [Google Scholar] [CrossRef]
- Geller, W.; Schultze, M. Introduction. In Acidic Pit Lakes; Geller, W., Schultze, M., Kleinmann, R., Wolkersdorfer, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Oldham, C.E. Environmental Sampling and Modelling for the Prediction of Long-Term Water Quality of Mine Pit Lakes; UWA Publishing: Crawley, Australia, 2014. [Google Scholar]
- El-Zehairy, A.A.; Lubczynski, M.W.; Gurwin, J. Interactions of artificial lakes with groundwater applying an integrated MODFLOW solution. Hydrogeol. J. 2018, 26, 109–132. [Google Scholar] [CrossRef]
- Castendyk, D.N.; Mauk, J.L.; Webster, J.G. A mineral quantification method for wall rocks at open pit mines, and application to the Martha Au–Ag mine, Waihi, New Zealand. Appl. Geochem. 2005, 20, 135–156. [Google Scholar] [CrossRef]
- Biemelt, D.; Schapp, A.; Grünewald, U. Hydrological observation and modelling relationship for the determination of water budget in Lusatian post-mining landscape. Phys. Chem. Earth Parts ABC 2011, 36, 3–18. [Google Scholar] [CrossRef]
- Maest, A.; Prucha, R.; Wobus, C. Hydrologic and Water Quality Modeling of the Pebble Mine Project Pit Lake and Downstream Environment after Mine Closure. Minerals 2020, 10, 727. [Google Scholar] [CrossRef]
- González, R.M.; Olías, M.; Macías, F.; Cánovas, C.R.; de Villarán, R.F. Hydrological characterization and prediction of flood levels of acidic pit lakes in the Tharsis mines, Iberian Pyrite Belt. J. Hydrol. 2018, 566, 807–817. [Google Scholar] [CrossRef]
- Abfertiawan, M.S.; Gautama, R.S.; Kusuma, S.B.; Notosiswoyo, S. Hydrology Simulation of Ukud River in Lati Coal Mine. Evergreen 2016, 3, 21–31. [Google Scholar] [CrossRef]
- Aditama, G.; Pudjihardjo, H.; Hidayatillah, A.S. Relasi Kualitas Batubara dengan Lingkungan Pengendapan pada Pit South Pinang dan Sekitarnya, PT. Kaltim Prima Coal, Sangatta Utara, Kutai Timur, Kalimantan Timur. J. Geosains Dan Teknol. 2018, 1, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Marwanza, I.; Nas, C. Electrofacies and sedimentary structure analysis for the determinating coal depositional in pit J, sangatta coalfield using geophysical well logs. Int. J. Res. Appl. 2017, 5, 91–102. [Google Scholar]
- Sánchez-España, J.; Diez Ercilla, M.; Pérez Cerdán, F.; Yusta, I.; Boyce, A.J. Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. J. Hydrol. 2014, 511, 494–508. [Google Scholar] [CrossRef]
- Crawford, N.H.; Thurin, S.H. Hydrologic Estimates for Small Hydroelectric Projects; NRECA Small Decentralized Hydropower (SDH) Program; National Rural Electric Cooperative Association: Washington, DC, USA, 1981; p. 54. [Google Scholar]
- Hendrasto, F.; Hutasoit, L.; Kusuma, S.B.; Sapiie, B. Penerapan model nreca pada daerah resapan lapangan panasbumi wayang windu, jawa barat. Ris. Geol. Dan Pertamb. 2018, 28, 61. [Google Scholar] [CrossRef]
- Dlouhá, D.; Dubovský, V.; Pospíšil, L. Optimal Calibration of Evaporation Models against Penman–Monteith Equation. Water 2021, 13, 1484. [Google Scholar] [CrossRef]
- Apostu, I.-M.; Lazar, M.; Faur, F. A Model to Evaluate the Flooding Opportunity and Sustainable Use of Former Open-Pits. Sustainability 2020, 12, 9275. [Google Scholar] [CrossRef]
- Davie, T. Fundamentals of Hydrology, 2nd ed.; Routledge: New York, NY, USA, 2008. [Google Scholar]
- Subramanya, K. Enginnering Hydrology, 3rd ed.; Tata McGraw-Hill Publishing Company Limited: Kanpur, India, 2008. [Google Scholar]
- BPS-Statistics of Kalimantan Timur Province. Kalimantan Timur in Figures 2014; BPS-Statistics of Kalimantan Timur Province: Samarinda, Indonesia, 2014. [Google Scholar]
- BPS-Statistics of Kalimantan Timur Province. Kalimantan Timur Dalam Angka 2015; BPS-Statistics of Kalimantan Timur Province: Samarinda, Indonesia, 2015. [Google Scholar]
- BPS-Statistics of Kalimantan Timur Province. Provinsi Kalimantan Timur Dalam Angka 2016; BPS-Statistics of Kalimantan Timur Province: Samarinda, Indonesia, 2016. [Google Scholar]
- BPS-Statistics of Kalimantan Timur Province. Provinsi Kalimantan Timur Dalam Angka 2017; BPS-Statistics of Kalimantan Timur Province: Samarinda, Indonesia, 2017. [Google Scholar]
- Álvarez, R.; Ordóñez, A.; De Miguel, E.; Loredo, C. Prediction of the flooding of a mining reservoir in NW Spain. J. Environ. Manag. 2016, 184, 219–228. [Google Scholar] [CrossRef] [PubMed]
- McCullough, D.C.D.; Lund, M.A.; Newport, M. Mine Voids Management Strategy (III): A Monitoring Strategy for Pit Lakes and Connected Waters. 2010, p. 103. Available online: https://www.researchgate.net/profile/Cherie-Mccullough/publication/262224557_Mine_Voids_Management_Strategy_III_A_Monitoring_Strategy_for_Pit_Lakes_and_Connected_Waters/links/545c751d0cf249070a7aa353/Mine-Voids-Management-Strategy-III-A-Monitoring-Strategy-for-Pit-Lakes-and-Connected-Waters.pdf (accessed on 27 October 2021).
- Westenburg, C.L.; DeMeo, G.A.; Tanko, D.J. Evaporation from Lake Mead, Arizona and Nevada, 1997–1999; Scientific Investigations Report 5252; U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Sa’Adi, Z.; Shahid, S.; Pour, S.H.; Ahmed, K.; Chung, E.-S.; Yaseen, Z.M. Multi-variable model output statistics downscaling for the projection of spatio-temporal changes in rainfall of Borneo Island. HydroResearch 2020, 31, 62–75. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- LeGates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Hatmoko, W.; Levina; Diaz, B. Comparison of rainfall-runoff models for climate change projection–case study of Citarum River Basin, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 423, 012045. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Asuero, A.G.; Sayago, A.; González, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Castendyk, D.N.; Webster-Brown, J.G. Sensitivity analyses in pit lake prediction, Martha Mine, New Zealand 1: Relationship between turnover and input water density. Chem. Geol. 2007, 244, 42–55. [Google Scholar] [CrossRef]
- Villain, L.; Alakangas, L.; Öhlander, B. The effects of backfilling and sealing the waste rock on water quality at the Kimheden open-pit mine, northern Sweden. J. Geochem. Explor. 2013, 134, 99–110. [Google Scholar] [CrossRef]
- Puhalovich, A.A.; Coghill, M. Management of mine wastes using pit void backfilling methods—current issues and approaches. In Mine Pit Lakes: Closure and Managament; Australian Centre for Geomechanics: Crawley, Australia, 2011; pp. 3–14. [Google Scholar]
- Lund, M.; van Etten, E.; Polifka, J.; Vasquez, M.Q.; Ramessur, R.; Yangzom, D.; Blanchette, M.L. The Importance of Catchments to Mine-pit Lakes: Implications for Closure. Mine Water Environ. 2020, 39, 572–588. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuheteru, E.J.; Gautama, R.S.; Kusuma, G.J.; Kuntoro, A.A.; Pranoto, K.; Palinggi, Y. Water Balance of Pit Lake Development in the Equatorial Region. Water 2021, 13, 3106. https://doi.org/10.3390/w13213106
Tuheteru EJ, Gautama RS, Kusuma GJ, Kuntoro AA, Pranoto K, Palinggi Y. Water Balance of Pit Lake Development in the Equatorial Region. Water. 2021; 13(21):3106. https://doi.org/10.3390/w13213106
Chicago/Turabian StyleTuheteru, Edy Jamal, Rudy Sayoga Gautama, Ginting Jalu Kusuma, Arno Adi Kuntoro, Kris Pranoto, and Yosef Palinggi. 2021. "Water Balance of Pit Lake Development in the Equatorial Region" Water 13, no. 21: 3106. https://doi.org/10.3390/w13213106
APA StyleTuheteru, E. J., Gautama, R. S., Kusuma, G. J., Kuntoro, A. A., Pranoto, K., & Palinggi, Y. (2021). Water Balance of Pit Lake Development in the Equatorial Region. Water, 13(21), 3106. https://doi.org/10.3390/w13213106