Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex Mine Water Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach
2.2. Materials
2.3. Column Tests
2.4. Analysis
2.5. Model and Calculations
2.5.1. Fixed-Bed Model
2.5.2. Ion Exchange Equilibrium
3. Results
3.1. First Model Approach
3.2. Sensitivity Analysis of Parameters and Coefficients
3.2.1. Cation Exchange Capacity
3.2.2. Exchange Coefficients
3.2.3. Ion Specific Parameters–Activity Coefficients
3.3. Estimation of CEC and Exchange Coefficients
3.4. Model Predictability for a Complex Mine Water Matrix
4. Discussion
4.1. Identification of Major Model Parameters
4.2. Model Calibration
4.3. Validation of Model Predictability for a Complex Mine Water
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Park, S.-M.; Yoo, J.-C.; Ji, S.-W.; Yang, J.-S.; Baek, K. Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH. Environ. Sci. Pollut. Res. 2015, 22, 3013–3022. [Google Scholar] [CrossRef]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef] [PubMed]
- Neumann, S.; Fatula, P. Principles of ion exchange in wastewater treatment. Asian Water 2009, 19, 14–19. [Google Scholar]
- Inamuddin, M. (Ed.) Ion Exchange Technology I: Theory and Materials; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kumar, P.; Pournara, A.; Kim, K.-H.; Bansal, V.; Rapti, S.; Manos, M.J. Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Prog. Mater. Sci. 2017, 86, 25–74. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Alonso, M.; Lozano, L.J. Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: Batch and continuous ion exchange modelling. Chemosphere 2004, 57, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Oyewo, O.A.; Agboola, O.; Onyango, M.S.; Popoola, P.; Bobape, M.F. Current methods for the remediation of acid mine drainage including continuous removal of metals from wastewater and mine dump. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 103–114. ISBN 9780128129869. [Google Scholar]
- Botelho Junior, A.B.; Vicente, A.d.A.; Espinosa, D.C.R.; Tenório, J.A.S. Recovery of metals by ion exchange process using chelating resin and sodium dithionite. J. Mater. Res. Technol. 2019, 8, 4464–4469. [Google Scholar] [CrossRef]
- Karlsson, D.; Jakobsson, N.; Brink, K.-J.; Axelsson, A.; Nilsson, B. Methodologies for model calibration to assist the design of a preparative ion-exchange step for antibody purification. J. Chromatogr. A 2004, 1033, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz İpek, İ.; Kabay, N.; Yüksel, M. Modeling of fixed bed column studies for removal of boron from geothermal water by selective chelating ion exchange resins. Desalination 2013, 310, 151–157. [Google Scholar] [CrossRef]
- Merkel, B.; Planer-Friedrich, B.; Nordstrom, D.K. Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540746676. [Google Scholar]
- Camden-Smith, B.; Johnson, R.H.; Camden-Smith, P.; Tutu, H. Geochemical modelling of water quality and solutes transport from mining environments. In Research and Practices in Water Quality; Lee, T.S., Ed.; InTech: London, UK, 2015; ISBN 978-953-51-2163-3. [Google Scholar]
- Franken, G.; Postma, D.; Duijnisveld, W.H.; Böttcher, J.; Molson, J. Acid groundwater in an anoxic aquifer: Reactive transport modelling of buffering processes. Appl. Geochem. 2009, 24, 890–899. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A. Description of Input and Examples for Phreeqc Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, 6th ed.; U:S: Geological Survey Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2013. Available online: http://pubs.usgs.gov/tm/06/a43/ (accessed on 28 September 2021).
- Tertre, E.; Beaucaire, C.; Coreau, N.; Juery, A. Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model. Appl. Geochem. 2009, 24, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Alguacil, F.J.; Garcia-Diaz, I.; Lopez, F. The removal of chromium (III) from aqueous solution by ion exchange on Amberlite 200 resin: Batch and continuous ion exchange modelling. Desalination Water Treat. 2012, 45, 55–60. [Google Scholar] [CrossRef]
- Lin, S.H.; Kiang, C.D. Chromic acid recovery from waste acid solution by an ion exchange process: Equilibrium and column ion exchange modeling. Chem. Eng. J. 2003, 92, 193–199. [Google Scholar] [CrossRef]
- Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Shaidan, N.H.; Eldemerdash, U.; Awad, S. Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique. J. Taiwan Inst. Chem. Eng. 2012, 43, 40–45. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. Enhanced removal of copper(II) from acidic streams using functional resins: Batch and column studies. J. Mater. Sci. 2020, 55, 13687–13715. [Google Scholar] [CrossRef]
- Wołowicz, A.; Hubicki, Z. The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions. Chem. Eng. J. 2012, 197, 493–508. [Google Scholar] [CrossRef]
- Lanxess Energizing Chemistry. Product Information Lewatit MonoPlus TP 220 [Fact sheet]. 2020. [Google Scholar]
- Wołowicz, A. Zinc(II) removal from model chloride and chloride–nitrate(V) Solutions using various sorbents. Physicochem. Probl. Miner. Process. 2019, 55, 1517–1534. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Sofińska-Chmiel, W.; Mendyk, E.; Hubicki, Z. DOWEX M 4195 and LEWATIT ® MonoPlus TP 220 in Heavy Metal Ions Removal from Acidic Streams. Sep. Sci. Technol. 2014, 49, 2003–2015. [Google Scholar] [CrossRef]
- Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780429152320. [Google Scholar]
- Appelo, C.; Verweij, E.; Schäfer, H. A hydrogeochemical transport model for an oxidation experiment with pyrite/calcite/exchangers/organic matter containing sand. Appl. Geochem. 1998, 13, 257–268. [Google Scholar] [CrossRef]
- Saaltink, M.W.; Ayora, C.; Stuyfzand, P.J.; Timmer, H. Analysis of a deep well recharge experiment by calibrating a reactive transport model with field data. J. Contam. Hydrol. 2003, 65, 1–18. [Google Scholar] [CrossRef]
- Boluda-Botella, N.; Valdes-Abellan, J.; Pedraza, R. Applying reactive models to column experiments to assess the hydrogeochemistry of seawater intrusion: Optimising ACUAINTRUSION and selecting cation exchange coefficients with PHREEQC. J. Hydrol. 2014, 510, 59–69. [Google Scholar] [CrossRef]
- Kyllönen, J.; Hakanen, M.; Lindberg, A.; Harjula, R.; Vehkamäki, M.; Lehto, J. Modeling of cesium sorption on biotite using cation exchange selectivity coefficients. Radiochim. Acta 2014, 102, 919–929. [Google Scholar] [CrossRef]
- Birta, L.G.; Arbez, G. A Conceptual modelling framework for DEDS. In Modelling and Simulation; Springer: London, UK, 2013; pp. 99–168. [Google Scholar]
- Poeter, E.P.; Hill, M.C. UCODE, a computer code for universal inverse modeling. Comput. Geosci. 1999, 25, 457–462. [Google Scholar] [CrossRef]
- Botelho, A.B.; Espinosa, D.C.R.; Dreisinger, D.; Tenório, J.A.S. Effect of PH to recover Cu(ii), Ni(ii) and Co(ii) from nickel laterite leach using chelating resins. Tecnol. Metal. Mater. Min. 2019, 16, 135–140. [Google Scholar] [CrossRef]
- Kang, N.-H.; Park, K.-H.; Parhi, P.K. Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin. J. Korean Inst. Resour. Recycl. 2011, 20, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Littlejohn, P.; Vaughan, J. Selectivity of commercial and novel mixed functionality cation exchange resins in mildly acidic sulfate and mixed sulfate–chloride solution. Hydrometallurgy 2012, 121, 90–99. [Google Scholar] [CrossRef]
- Malmström, M.E.; Destouni, G.; Martinet, P. Modeling expected solute concentration in randomly heterogeneous flow systems with multicomponent reactions. Environ. Sci. Technol. 2004, 38, 2673–2679. [Google Scholar] [CrossRef] [PubMed]
- Ooi, K.; Makita, Y.; Sonoda, A.; Chitrakar, R.; Tasaki-Handa, Y.; Nakazato, T. Modelling of column lithium adsorption from pH-buffered brine using surface Li+/H+ ion exchange reaction. Chem. Eng. J. 2016, 288, 137–145. [Google Scholar] [CrossRef]
- Robin, V.; Tertre, E.; Beaucaire, C.; Regnault, O.; Descostes, M. Experimental data and assessment of predictive modeling for radium ion-exchange on beidellite, a swelling clay mineral with a tetrahedral charge. Appl. Geochem. 2017, 85, 1–9. [Google Scholar] [CrossRef]
- Robinson, S. Conceptual modelling for simulation Part I: Definition and requirements. J. Oper. Res. Soc. 2008, 59, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Woodberry, P.; Stevens, G.; Northcott, K.; Snape, I.; Stark, S. Field trial of ion-exchange resin columns for removal of metal contaminants, Thala Valley Tip, Casey Station, Antarctica. Cold Reg. Sci. Technol. 2007, 48, 105–117. [Google Scholar] [CrossRef]
- Hörbrand, T.; Baumann, T.; Moog, H.C. Validation of hydrogeochemical databases for problems in deep geothermal energy. Geotherml Energy 2018, 6, 20. [Google Scholar] [CrossRef]
Parameter | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Conc. [mg/L] | |||
pH | 3.27 | 4.66 | 2.5 |
Al+3 | 236 | ||
Ca+2 | 20 | ||
Co+2 | 3637 | ||
Cu+2 | 0.98 | 1687 | 18 |
Fe+2 | 2000 | ||
Mn+2 | 110 | ||
Ni+2 | 2414 | ||
Sulfates | 960 | 23,107 | 15,725 |
Zn+2 | 822 | 7285 | 7000 |
Scenario | Water Retention 1 | Theoretical CEC 1 | Selectivity Rank |
---|---|---|---|
1 | 0.456 g-Cu/Lresin (min.) | Cu+2 > Zn+2 | |
2 | 48–60% | Cu+2 > Ni+2 > Co+2 > Zn+2 | |
3 | Cu+2 >> Zn+2 > Fe+2 > Mn+2 > Al+3 > Ca+2 | ||
Theoretical selectivity Rank 1 (pH = 2): | Cu+2 >> Ni+2 > Fe+3 > Zn+2 > Co+2 > Fe+2 |
Scenario | Length [m] | Diameter [m] | BV [L] | Inflow Rate [BV/h] | Throughput BV | Total Throughput BV | ||
---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | |||||
1 | 0.057 | 0.015 | 0.01 | 6 | 1 | 30;50 | 20 | 100 |
2 | 0.120 | 0.040 | 0.15 | 1 | 0.05 | 9 | 14 | 23 |
3 | 0.057 | 0.015 | 0.01 | 3 | - | 30 | - | 30 |
Exchange Coefficients | ||||||
---|---|---|---|---|---|---|
A 1 | B | C | D | E | F | |
Zn+2 | 0.8 | 0.8 | 0.8 | 0.7 | 0.65 | 0.6 |
Cu+2 | 0.6 | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 |
Ion-Specific Parameter a (b = 0.0) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
A 1 | B | C | D | E | F | G | H | I | J | |
Cu+2 | 6 | 5 | 4 | 3 | 2 | 1 | 6 | 6 | 6 | 6 |
Zn+2 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 3 | 2 | 1 |
Default 1 | Second Approach 2 | Estimated 3 | ||
---|---|---|---|---|
CEC [mol/Lw] | 0.494 | 0.617 | 0.617 | |
Exchange Coefficient | Cu+2 | 0.60 | 1.50 | 3.50 |
Ni+2 | - | 1.20 | 1.8 | |
Co+2 | - | 0.70 | 0.70 | |
Zn+2 | 0.80 | 0.55 | 0.55 | |
Fe+2 | 0.44 | 0.35 | ||
Mn+2 | 0.52 | 0.21 | ||
Al+3 | 0.41 | 0.20 | ||
Ca+2 | 0.80 | 0.19 |
Prediction | Experimental | |
---|---|---|
Scenario 3 | Cu+2 >> Zn+2 > Fe+2 > Mn+2 > Al+3 > Ca+2 | Cu+2 >> Zn+2 > Fe+2 > Mn+2, Al+3, Ca+2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedregal Montes, A.I.; Abeywickrama, J.; Hoth, N.; Grimmer, M.; Drebenstedt, C. Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex Mine Water Matrices. Water 2021, 13, 3109. https://doi.org/10.3390/w13213109
Pedregal Montes AI, Abeywickrama J, Hoth N, Grimmer M, Drebenstedt C. Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex Mine Water Matrices. Water. 2021; 13(21):3109. https://doi.org/10.3390/w13213109
Chicago/Turabian StylePedregal Montes, Angela Isabel, Janith Abeywickrama, Nils Hoth, Marlies Grimmer, and Carsten Drebenstedt. 2021. "Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex Mine Water Matrices" Water 13, no. 21: 3109. https://doi.org/10.3390/w13213109
APA StylePedregal Montes, A. I., Abeywickrama, J., Hoth, N., Grimmer, M., & Drebenstedt, C. (2021). Modeling of Ion Exchange Processes to Optimize Metal Removal from Complex Mine Water Matrices. Water, 13(21), 3109. https://doi.org/10.3390/w13213109