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Abstract: A satisfactory performance of hydrological models under historical climate conditions
is considered a prerequisite step in any hydrological climate change impact study. Despite the
significant interest in global hydrological modeling, few systematic evaluations of global hydro-
logical models (gHMs) at the catchment scale have been carried out. This study investigates the
performance of 4 gHMs driven by 4 global observation-based meteorological inputs at simulating
weekly discharges over 198 large-sized North American catchments for the 1971-2010 period. The
16 discharge simulations serve as the basis for evaluating gHM accuracy at the catchment scale within
the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). The simu-
lated discharges by the four gHMs are compared against observed and simulated weekly discharge
values by two regional hydrological models (rHMs) driven by a global meteorological dataset for the
same period. We discuss the implications of both modeling approaches as well as the influence of
catchment characteristics and global meteorological forcing in terms of model performance through
statistical criteria and visual hydrograph comparison for catchment-scale hydrological studies. Over-
all, the gHHM discharge statistics exhibit poor agreement with observations at the catchment scale
and manifest considerable bias and errors in seasonal flow simulations. We confirm that the gHM
approach, as experimentally implemented through the ISIMIP2a, must be used with caution for
regional studies. We find the rHM approach to be more trustworthy and recommend using it for
hydrological studies, especially if findings are intended to support operational decision-making.

Keywords: global hydrological modeling; regional hydrological modeling; multi-model; intercomparison
study; catchment-scale assessment; North America

1. Introduction

Climate change impact research is currently moving onto the provision of climate
projection services by impact models for use in developing adaptation strategies in various
environmental sectors [1]. In the water sector, many worldwide initiatives have emerged
from organizations and research centers, with the production and dissemination of informa-
tion on projected climate change impacts on water resources through specific hydrological
indicators. Such information is usually designed to cater to the needs of water and en-
ergy domain practitioners and is intended for use (and is sometimes used) in operational
decision-making. Data suppliers and modelers thus have the responsibility of providing
reliable and accurate information on the impacts of climate change on water as local adap-
tation measures stem from that. Projected climate change impacts on water resources are
typically estimated by driving a hydrological model with climate projections from regional
climate models or global climate models processed with statistical downscaling approaches
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to obtain hydrological projections at the catchment scale. Such work normally makes use
of a hydrological model calibrated and validated at the catchment under study.

Global hydrological models (gHMs; spatial resolution approximately of 0.5 x 0.5) are
often used to provide a general picture of hydrological features at the continental or global
scale [2]. Only a limited number gHMs are calibrated for climatic regions or large-scale
river basins, such as the WAter and Snow balance MODelling system (WASMOD; [3]) and
Water Global Assessment and Prognosis (WaterGAP; [4]). The gHMs display contrasting
model features regarding reservoir storage, the crop growth model, the energy balance
model, and sub-grid variability.

The main output of all gHMs is the simulated runoff at the grid level, which is
further aggregated to the catchment scale and routed to the outlet based on the number of
grids within the catchment (see [5] for a gHM review). Although the gHMs represent a
significant advancement in providing precious estimates of water resources, as compared
to basic empirical statistical analyses, they were designed to be effective for global-scale
hydrological studies [5]. Though they have been increasingly used in various studies [6],
their implementation at the regional or catchment scale involves many uncertainties due to
their coarse resolution and global parameterization [7]. It is challenging to affirm that the
quality of the performance of gHMs will be satisfactory locally and will provide an accurate
description of the hydrological processes for the catchment of interest [8,9]. Several studies
have shown the quite poor or weak performance of gHMs in most cases, for large river
basins as well as for relatively small catchments (e.g., [4,7,10-13]).

Regional hydrological models (rHMs), in contrast, are widely employed at the catch-
ment scale for various purposes, such as the modeling of flow dynamics and its compo-
nents [14,15]), understanding hydrological processes [16], streamflow forecasting [17-19],
predicting discharges in ungauged catchments [20,21] and evaluating the likely impacts of
climate change on hydro systems [22,23]. They have higher spatial resolutions and require
more detailed inputs to simulate hydrological processes. Contrary to the gHMs, which are
mostly not calibrated, the rHMs are calibrated to match the observed discharge values at the
regional or catchment scale; hence, they are expected to represent the observed discharge
dynamics more accurately than the gHMSs [9,11]. However, few rHMs are implemented
for multiple catchments or large regions [23,24], mainly because their implementation and
calibration involve great numerical modeling effort.

rHMs are commonly calibrated and validated over a historical period to assess their
performance, and this is a prerequisite for conducting a climate change impact study.
With the rise in the number of impact studies involving gHMs [7,25,26], it is becoming
increasingly important to explore their accuracy through an intercomparison between
gHMs and rHMs at the catchment scale. In its second phase (phase 2a), the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP; https:/ /www.isimip.org/about/ accessed
on 1 November 2021) provides simulated discharges from several gHMs globally from
which simulations for individual large-scale river basins can be extracted. The gHMs in the
ISMIP2a are driven by multiple observation-based meteorological datasets. A systematic as-
sessment of the gHMs’ performance, along with the uncertainty associated with the choice
of the driving meteorological inputs, is of great importance since it provides the basis for
the following impact studies. Some studies consider multiple gHMs (e.g., [11,12,21,27,28])
with several forcing inputs (e.g., [6,29,30]), but with a macro (i.e., continental to global
scale) or regional (e.g., [4,11,31-33]) scale evaluation of the simulated discharges by the
gHMSs. Among these works, only a few examine the gHMs’ performance for river basins in
North America (NA; [11,12,34,35]). A study [10] evaluated several gHMs globally, driven
by one forcing data for 966 small catchments (<5.000 km?), including the NA region. It
found significant inter-gHM performance differences, with substantial biases in the driving
forcing data compared to the observations. Another study [6] provided an intercomparison
of multiple gHMs driven by four driving forcing data for two large dam-regulated river
basins in NA. It showed profound discrepancies in the simulated river flows among the
gHMs. The weak performance of the gHMs at reproducing the seasonal discharge cycle
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for NA and Pan-Artic (including Canadian/USA catchments) river basins has also been
reported [11,12]. However, the use of small-sized catchments is a limitation regarding the
spatial resolution of the gHMs (0.5-degree grid cells), while a weak sample of catchments
precludes a spatially detailed assessment of the gHM's performance.

Based on a multi-model approach composed of four gHMs (DBH, H08, LPJml, and
PCR-GLOBWB) and two rHMs (GR4] and HMETS) driven by multiple forcing meteoro-
logical datasets over 198 large-sized NA catchments for the 1971-2010 period, this study
aims at contributing to the ISIMIP2a topic for operational use purposes by: (1) assessing
the gHMs’ performance in terms of simulating seasonal flow dynamics; (2) comparing
the gHMs’ performance with that of the rHMs; and (3) based on (1) and (2), exploring the
influence of the global driving datasets and catchment characteristics on gHHM performance.
The four gHMs are selected as they contain the varsoc socio-economic scenario for multi-
ple forcing meteorological datasets over NA; the selected rHMSs usually display reliable
accuracy in data-deficient conditions due to their quite simple and parsimonious struc-
ture [36,37]. Overall, this work provides key information for subsequent impact studies,
supporting decision-making based on the gHM:s for the NA region covered by the global
ISIMIP2 domain.

2. Materials and Methods

This section details the methodology of the multi-model approach (Figure 1) and the
rationale behind the choices implemented in this study. The study area and selection of
catchments are first described, followed by the extraction of gHM discharge values, as well
as the application of hydrological simulations using the typical rHM approach. Finally, the
statistical model performance criteria are described.

Global input .
; Hydrological
meteorological ] Assessment
modelling
data
4 input datasets 4 gHMs
16 discharge simulations
WFDEI.GPCC DBH
GSWP3 HO8 NO_ A N -
WATCH Forcing Data LPIml calibration
Pri
rinceton PGMFD PCR-GLOBWB
2 rHMs 2 discharge simulations
1 input dataset e
Princeton PGMFD <_ mmmp Calibration — -
~ HMETS

Figure 1. Schematic description of the multi-model approach used in this study.

2.1. Study Area

The catchments are selected from the HYSETS large-scale database (https:/ /osf.io/
rpc3w/ accessed on 1 November 2021), which is comprised of 14,425 catchments in the
NA region. The HYSETS database includes a wide array of hydrometeorological data
over the 1950-2018 period: (1) daily precipitation, minimum and maximum temperature
products from seven data sources; (2) hydrometric gauging station discharge time series
from one data source per country (Canada, contiguous U.S., Mexico); (3) SNODAS and
ERAS5-Land snow water equivalent; and (5) catchment properties from PAVICS-Hydro
(area, elevation slope, land use, soil properties, and other physiographic information).
See [38] for additional information regarding the HYSETS database.

For this work, given the requirement for the gHM-gridded discharge values, large-
sized catchments with a drainage area of more than 10,000 km? were selected. This
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10,000 km? threshold was selected to ensure that discharge at the basin outlets was com-
posed of at least a few runoff grid points that could be routed to the outlet, allowing us to
attenuate the impacts of scale between catchments and the runoff generation scale. The
study area is thus composed of 198 catchments across NA, with a drainage area between
10,000 and 508,000 km?, an elevation ranging from 23 to 2171 m, and a slope of 0.4° to
20.3°. The annual average daily temperature ranges from —14 to + 22 °C, and the annual
average precipitation varies from 127 to 1538 mm. The selected catchments are unregulated
(or can be considered as such due to weak regulation). Figure 2 shows the location of the

catchments over the study domain.
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Figure 2. Locations of the 198 large-sized catchments used in this study. The red stars indicate the
location of the specific river basins analyzed in Section 3.2.

2.2. Global Hydrological Simulations from the ISIMIP Database

The present study is conducted in the framework of a research project through a
partnership with NA water industries and the Ouranos Consortium (https:/ /www.ouranos.
ca/en/ accessed on 1 November 2021). In that project, the ISIMIP2a database is only
explored.

Among the 13 gHMs participating in ISIMIP2a, 4 gHMSs, namely, DBH [39], HO8 [40],
LPJml [41], and PCR-GLOBWB [42], are used to ensure a comparison with the rHM simu-
lations (presented in Section 2.3) over the 1971-2010 period. Each gHM is driven by four
global daily gridded meteorological datasets for a total of 16 gHM/driver combinations
per catchment.

The four global daily gridded meteorological datasets used within the ISIMIP2a
database are briefly presented in Table 1. All datasets are used to drive the gHMs. As
WEFDEILGPCC starts in 1979, WFDEI combines WATCH (before 1979) and WFDEL.GPCC
(after 1979) in ISIMIP2a.

The four gHMs are selected as they are the only ones available that contain the varsoc
socio-economic scenario for the four global meteorological forcing datasets. The varsoc
scenario includes changes in climate, population, gross domestic product (GDP), land
use, technological progress, and other variables to reflect as best as possible the state of
the world in the historical period [47,48]. This socio-economic scenario should be more
representative than naturalized runs or those with a fixed present-day socio-economic
scenario. All gHMs are run at the daily time step with a regular grid spatial aggregation,
and they cover the globe at a spatial resolution of 0.5° (~50 km). A short description of
each gHM, including model settings, specifications, and main hydrological processes, is
provided in Table 2. For a full technical description of the ISIMIP2a protocol and simulation
data from the water (global) sector, see [47,48].
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Table 1. Description of the four meteorological datasets used to drive the gHMs. These datasets are distributed by the
ISIMIP within the 2a phase.

Grid Spatial

Global Data Reanalysis Bias Correction . Period Reference
Resolution
GPCC V6, GPCP, CRU o
GSWP3 20th Centurya and SRB 0.5° (~50km) 1901-2010 [43]
Princeton PGMFD v2 NCEP/N.CAR CRU, SBM and TRMM 0.5° (~50km) 1901-2012 [44]
Reanalysis 1
mgH Forcing Data o 4 40 GPCC v4 0.5° (~50km) 1971-2001 [45]
WEFDELGPCC ERA-Interim GPCC v5 and v6 0.5° (~50km) 1979-2012 [46]

Table 2. Characteristics of the four gHMs used in this study. Each gHM, at the beginning of 1971, was stabilized (spin-up)
using pre-1970 data. (a) See [49] for the DDM30 data used for the river routing in DBH, H08, and LPJml. Note that the
energy balance for estimating snowmelt simulates energy and mass exchanges between internal layers of the snowpack as

well as snowpack stratigraphy from physically based calculations using simulated meteorological data.

gHM Spin-Up River Routing PET Method S;;’::;E th Calibration
DBH 20-year Lmeg:\ rlgsDellCI/;)(l)r(gased Energég]a lance Energy balance No
HO08 70-year Lmeg:l %%ﬁgér(gased Bulk formula [40] Energy balance No
5000-year potential
natural vegetation
spin-up, followed
LPjml by 390-year Linear reservoir based Priestley-Taylor Degree-day with No
land-use spin-up, on DDM30 @) [51] precipitation factor
both recycling
120-year random
climate sequence
Degree-day with
PCR-GLOBWB 50-year Travel-time routing Hamon [52] rain—snow No

transition

For each of the 198 study catchments, gHM-simulated discharge is obtained by select-
ing the value of the grid point with the maximum discharge (variable ‘dis” in ISIMIP2a)
within the catchment boundaries for each day. This allows comparisons of the gauged
discharge values at the catchment outlet.

2.3. Regional Hydrological Simulations Based on the HYSETS Database

Two rHMs driven by the Princeton PGMFD v2 daily gridded meteorological dataset
are used as a reference to compare the performance of the ISIMIP2a gHM:s to site-specific
rHMs, a necessary step towards meeting the objective of this study. It is thus expected that
the rHM performance in simulating discharges will be better than that of the gHMs.

The selected rHMs are GR4] (modele du Génie Rural a 4 parametres Journaliers—a
daily rural engineering model with four parameters; [53]) and HMETS (Hydrological
Model of Ecole de technologie supérieure; [54]), two lumped models operating at the daily
time step. They have been widely used for various water-related purposes [55-57]. A short
description of the main characteristics of the rHM:s is provided in Table 3.
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Table 3. Characteristics of the two rHMs used in this study. Each rHM, at the beginning of 1971, was initialized (spin-up)
using pre-1970 data (1-year spin-up based on the Princeton data).

Model
rHM Parameters Ilgptu ¢ Spin-Up Flow Schemes PET Method SII\‘/;) v:}r\n glt Calibration/Validation
(Nb.) am etho
Production Degree-day
GR4J 4 P, PET 1-year and routing Oudin [58] (CEMANEIGE; Yes
components [59])
Two connected
reservoirs for
HMETS 21 P T 1-year the saturated Oudin [58] Degr(e’ag -day Yes
and vadose 60]

zones

The first step is to calibrate the two rHMs for the 198 catchments with the Princeton
PGMEFD v2 dataset (https:/ /esg.pik-potsdam.de/search/isimip/ accessed on 1 November
2021) and the HYSETS hydrometric data. Climate data is averaged at the catchment scale
using an unweighted average of all grid points within each catchment boundary [38]. The
calibration period is made over the first 20 years (1971-1990), whereas the validation is done
based on the remaining 20 years (1991-2010). The parameters of the rHMs, which include
the snowmelt module parameters, are calibrated with observed daily discharge data.
Automatic calibrations are performed with different combinations of model parameters,
and the optimal combination of parameter values is selected based on the objective function.
The Shuffled Complex Evolution optimization algorithm, developed at the University of
Arizona (SCE-UA), is used to obtain optimal parameter values for the rHMs [61]. SCE-UA
is an evolutionary type of black-box optimization algorithm. A study [62] has shown
that it is a proper calibration algorithm for small optimization problems such as those in
this study. To ensure convergence, 15,000 objective function evaluations were permitted.
The objective function used is the Nash-Sutcliffe Efficiency (NSE) metric [63] as it is the
most well-known continuous discharge performance measure and is adequate, in most
cases, over long time series. Figure 3 shows the validation NSE values for each rHM for
all catchments combined. In all cases, as expected, the rHMs perform satisfactorily, with
median NSE values exceeding 0.5. HMETS had slightly better performance (median NSE
values of 0.62) than GR4J (median NSE values of 0.52) at simulating daily discharges over
the 1991-2010 validation period. The results in the calibration period are similar to those in
the validation period and are not shown here.

Nash-Sutcliffe Efficiency (NSE)

GR4J HMETS

Figure 3. NSE values in the validation (1991-2010) of the two rHMs for the 198 catchments combined.
The red line in the box plots represents the median value; the ends of the boxes represent the 25th
(lower) and 75th (upper) quantiles; outliers are shown as red crosses.
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2.4. Model Performance and Statistical Criteria

For both the gHMs and rHMs, the simulated daily discharge time series are analyzed
over the 1971-2010 period. The suggested metrics in the ISIMIP2a protocol model evalua-
tion are the Nash-Sutcliffe Efficiency (NSE; [63]; Equation (1)) and the percent bias (PBIAS
in %; Equation (2)), given by:

NSE =1 |Zim1 (O =S ) )
£, (0i-0)’
N (0,
p1As = |E=1Oi 8D | g )
i—1 Oi

where O; refers to the observed discharge for day i; O is the mean daily observed discharge;
S; is the simulated discharge for day i; and N is the number of observed or simulated
discharge values.

They are used in this study to evaluate the overall performance of both gHMs and
rHMs with respect to the observations at the weekly time step for the whole period. A
weekly time step is considered to minimize the impact of timing issues with gHMs, whose
internal routing schemes are often too coarse to generate well-timed flow events. These
metrics are also used to assess the quality of the high-flow and low-flow simulations
by the gHMs and the rHMs, as they are common evaluation criteria for mean seasonal
dynamics. Performance of both gHMs and rHMs are judged “satisfactory” for the weekly
discharge simulations at the catchment-scale if NSE > 0.50 and relative bias < -25% (partly
based on [64]). The NSE and relative bias values in evaluation are important since poor
performance should limit the ability of the gHM-climate-dataset combinations to produce
reliable trends for climate change impact studies.

3. Results
3.1. gHM Performance in Simulating Discharge at the Catchment Scale

gHM performance in simulating discharge is measured by comparing it to that of the
two rHMs taken individually for the 198 catchments over the 1971-2010 period, except for
the gHM-WATCH combination, where the evaluation period is 1971-2001 due to WATCH
data availability (see Table 1). Figure 4 shows the average NSE values of the discharge
for the 16 gHM—climate—dataset combinations and the two rHMs. The same approach is
utilized on the PBIAS metric, which is often used in operational reservoir management.
Figure 5 shows the PBIAS values for the gHM—climate—dataset combinations and the two
rHMs. The box-and-whisker plots are based on the 198 catchments.

From Figure 4, the gHMs perform poorly in simulating the discharge at the catchment
scale, with negative median NSE values; the 25th—75th quantile boxes are practically below
zero level in all cases. DBH displays the poorest performance whatever the global meteoro-
logical dataset used to drive the gHM. The gHM-Princeton combination generates lower
variability in the simulated discharge values, as depicted by the box plot amplitude. Statis-
tically, the gHM-WATCH combination performs the worst, with considerable uncertainty
in the results. To test if it could be attributed to the different evaluation periods between
WATCH and the other datasets, we computed the NSE values for all gHM-climate—dataset
combinations for the 1971-2001 period. The results showed no significant improvement
of gHM performance over the common period (not presented here). As expected, both
rHM-Princeton combinations outperform all the gHM-climate-dataset combinations, with
satisfactory median NSE values (NSE > 0.5).
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Figure 4. NSE scores of the 16 gHM—climate—dataset combinations and rHMs used in this study.
The red line in the box plots represents the median value; the ends of the boxes represent the 25th
(lower) and 75th (upper) quantiles; outliers are shown as red crosses (+). Figure 5 confirms that all
gHMs perform unsatisfactorily, with systematic large positive biases for all global driving datasets
(PBIAS > +25%). DBH displays an overall poor performance, whatever the global meteorological
dataset used to drive the gHM. Regarding the other three gHM-climate—dataset combinations, we
can see those biases in terms of median values and 25th—75th quantile boxes are lower. These
three gHM-climate—dataset combinations show comparable findings in terms of relative bias for
the discharge values at the catchment scale and similar inter-gHM variability, as expressed by the
box plots. Besides DBH, it seems that the choice of the global meteorological dataset used to drive
the gHM has a greater influence on the variability of the results than does the choice of gHM. The
gHM-Princeton combinations give the lowest variability in simulated discharge values in terms of
relative bias.
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Figure 5. PBIAS (%) of the 16 gHHM—climate-dataset combinations and rHMs used in this study. The
red line in the box plots represents the median value; the ends of the boxes represent the 25th (lower)
and 75th (upper) quantiles; outliers are shown as red crosses (+).

Compared to the gHMSs, both rHMs offer the best performance, with satisfactory bias
values (PBIAS < +25%) while decreasing the spread of the discharge values.
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3.2. Detailed Analysis of four NA Catchments

To further understand the limitations of the global-scale simulations for catchment-
scale hydrological studies, four catchments with contrasting climate features according to
the Koéppen climate classification and geomorphological features (drainage area, altitude)
were analyzed; these sites were chosen among the large sample of catchments to be
representative of the typical performance of all hydrological models involved. The location
of each catchment is shown in Figure 2. Table 4 lists some of their main features. For all
river basins, the catchment-scale climate inputs and discharge variables were examined.

Table 4. General characteristics of the four NA catchments.

. . Province or Drainage Area Mean Altitude qupen
River Basin State (Country)  (km?) (m) Climate
Y cClassification
Quebec Continental—
Baleine 32,500 380 Subarctic climate
(Canada)
(Dfc)
Northwest Continental—
Liard Territories 275,000 980 Subarctic climate
(Canada) (Dfc)
Tropical—
Tropical
Rio Grande Oaxaca (Mexico) 11,982 1869 rainfor-
est/monsoon
climate (Af/Am)
Continental—
Pennsylvania Warm-summer
Susquehanna y 67,313 410 humid
(US) .
continental

climate (Dfb)

The characteristics of global meteorological forcing were investigated over the en-
tire period (1971-2010) for daily precipitation (Figure 6), daily maximum (Figure 7), and
minimum (Figure 8) temperatures. For precipitation, the mean interannual cycles differed
significantly between the four datasets at the catchment scale, with the major discrep-
ancies observed for the less rainy months (autumn and winter months). The highest
differences in precipitation among the four global meteorological datasets were seen for
the high-elevation Mexican catchment; the Princeton dataset showed an different over-
all pattern of mean daily precipitation over that catchment, with a lower precipitation
amount throughout the year (Figure 6¢). Fewer inter-dataset differences were observed in
the mean interannual cycles of maximum and minimum temperatures. The four global
meteorological forcings are, overall, in good agreement over the catchments, except for
the high-elevation Mexican catchment, where the strongest variability in temperature is
observed; again, for the Rio Grande River Basin, the Princeton dataset generates a different
pattern compared to the other three datasets with colder temperatures Figures 7c and 8c).
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period.
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PGMEFD, WATCH, and GSWP3) over the (a) Baleine, (b) Liard, (c) Rio Grande, and (d) Susquehanna river basins over the
1971-2010 period.

The ability of each gHM—climate—dataset combination to simulate catchment-scale
discharge was then assessed by visual hydrograph comparison (Figure 9 and Figures S1,
S3 and S5), through the analysis of the Taylor diagrams, which provide a summary of the
relative skill of the gHMs (Figure 10 and Figures S2, S4 and S6), and of statistic criteria for
the high- and low-flow periods (Tables 5 and 6). For the Baleine River Basin, the compari-
son of the gHM—climate—dataset combinations with the observations and the rHMs shows
significant differences in the reproduction of the mean interannual cycles of the simulated
discharge (Figures 9 and 10). Most of the gHM-climate—dataset combinations display
spatial correlation coefficients above 0.6, except for the LPJml, with high RMSVD values
(Figure 10). The high flow period is overestimated in all the DBH-dataset combinations
(Figure 9 and Table 5). In the HO8 simulations, an overestimation of the peak flow is present
regardless of the dataset used to drive the gHM. The peak flow is both overestimated and
delayed in all the LPjml simulations; however, there are more satisfactory bias values for
the high flow period (Table 5). PCR-GLOBWB and H08 provide more realistic discharge
patterns and variability than DBH and LPJml (Figure 10). In particular, the PCR-GLOBWB-
Princeton and PCR-GLOBWB-WATCH combinations almost capture both the magnitude
and timing of the peak flow, which translate into acceptable relative bias values of high
flows (Table 5); both the PCR-GLOBWB-Princeton and PCR-GLOBWB-WATCH combina-
tions are the closest to the rHM simulations (Figure 9). Most of the gHM-climate—dataset
combinations give satisfactory bias values for the low flows (Table 5).
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Figure 9. Observed (blue curve) and simulated weekly catchment-scale discharge for the Baleine River Basin in Quebec
(Canada; S = 32,500 km?) by the 16 gHM-climate—dataset combinations (red curves) and the two rHMs (black curve) over
the 1971-2010 period.

Observed ‘

For the Liard River Basin, all the DBH and HO08 simulations depict an overly vigorous
mean interannual cycle of discharge with overestimated high flows (Figure S1 and Table 5).
Most of the gHM—climate—dataset combinations display correlation coefficients above 0.6
but with high standard deviation and RMSD values (Figure S2). The magnitude of the
spring peak flow is consistently overestimated in the LPJml simulations, with a similar
time offset whatever the dataset used as forcing. Such finding is observed for both river
basins submitted to a subarctic climate (Table 4). The misrepresentation of the spring peak
flow is linked to the misrepresentation of the snowmelt peak, caused either by a cold bias
in temperature or poor representation of snow processes by the gHHM. Since all global
meteorological datasets give similar patterns of air temperature and the other gHMs do
not provide delayed spring peak flow, we attribute that to the snowpack state processing
into LPJml, which relies on a degree-day approach with a precipitation factor (Table 2).
All the PCR-GLOBWB-dataset combinations give smooth mean interannual cycles of the
simulated discharge, with strong relative bias values of high and low flows (Table 5).
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Table 5. PBIAS values (%) of high and low flows computed for each gHM—climate—-dataset combination and the two
rHM s for the four catchments over the 1971-2010 period. The satisfactory PBIAS values are in bold (PBIAS < £25%; see

Section 2.4).
River Basi Global gHM rHM
Tver basin Meteorological PCR-
Datasets DBH Ho08 LPJml GLOBWB All gHMs GR4J HMETS
Bias high flows (%)—50% of highest observed flows
GSWP3 52 38 18 24 33
Baleine Princeton 17 9 —13 —6 2
1€ ) WATCH 69 48 31 7 39 —11 -5
(5 =32,500 km?) WEDEI 53 14 25 34 32
All datasets 47.8 27.3 15.3 14.8
GSWP3 353 197 33 109 173
Liard Princeton 331 187 18 99 159
AT N WATCH 453 231 50 70 201 -10 -0.2
(§=275000km")  WgpE] 01 193 45 118 194
All datasets 390 202 37 99
GSWP3 —36 —52 —49 23 -29
Rio Grand. Princeton —52 —48 —56 19 —34
S“i ﬁagfézek 2 WATCH —54 —61 —57 13 —40 -17 -10
(S =11,982 km?) WFDEI —61 —64 62 17 43
All datasets —51 —56 —56 18
GSWP3 —-19 —31 —30 —28 —27
Princeton —-30 —40 —37 —35 —36
Susquehanna _ WATCH —4 —7 -15 —29 ~14 -9 -1
(5 =67,313 km~) WFDEI -6 —14 —-16 -19 —14
All datasets —15 —23 —25 —28
Bias low flows (%)—50% of lowest observed flows
GSWP3 0.4 13 7 38 15
Baleine Prglcgton —16 7 10 19 5
i€ ) WATCH -6 16 62 27 25 20 4
(S =32,500 km?) WEFDEI —05 51 78 46 43
All datasets —6 22 39 33
GSWP3 206 946 951 630 683
Liard Princeton 186 949 810 594 6345
ar 5 WATCH 235 982 1189 562 742 104 )
(5=275000km")  WEpE; 237 1181 1137 671 807
All datasets 216 1014 1022 614
GSWP3 —22 —81 -33 123 -3
Rio Grande Princeton —24 —78 —44 89 —14
o ) WATCH 38 —88 —53 113 -17 73 49
(5 =11,982 km?) WEDEI _53 —91 _53 110 —2
All datasets —34 —85 —46 109
GSWP3 224 -8 41 25 71
Princeton 220 0.06 45 24 72
Susquehanna | WATCH 276 16 59 17 92 38 37
(5 = 67,313 km?) WFDEI 255 12 52 41 90
All datasets 244 5 49 27

As for the Rio Grande River Basin, the mean interannual cycle of discharge is cap-
tured by any gHM—climate—dataset combination (Figure 53). LPJml displays the poorest
model skill for this catchment. HO8 and PCR-GLOBWB display the highest correlation
coefficient values and the lowest standard deviation and RMSD values for this catchment
(Figure S4). Both the high and low flows tend to be underestimated by the gHMs (except
for PCR-GLOBWB), with significant bias values (Table 5). Given the similar high flow
underestimation by DBH, H08, and LPJmL, when driven by the four global meteorological
datasets (Figure S3), but depicting marked discrepancies in seasonal climate patterns over
that high-elevation catchment (Figures 7-9), the systematic underestimation of the high-
flow period seems to be more related to the internal pathways of the gHHMs for depicting
hydrological processes, such as PET (Table 2), rather than the quality of the global meteo-
rological datasets. The errors in simulating weekly low flows, particularly perceptible on
the DBH, HO8, and LPJmL simulations, are linked to the challenges faced by the gHMs in
accurately representing groundwater and baseflow processes. The rHMs reproduced the
overall seasonal cycle of discharge for this catchment, with correlation coefficients above
0.6 (Figure 54); however, the low flows are overestimated, and the magnitude of the peak
flow is consistently underestimated (Figure S3 and Table 5).
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Table 6. NSE values of high and low flows computed for each gHM—climate-dataset combination and the two rHMs for the
four catchments over the 1971-2010 period. The satisfactory NSE values are in bold (NSE > 0.5; see Section 2.4).

Global gHM rHM
River Basin i -
Meteorological DBH Ho8 LPJml ciobwg  AllgHMs  GR4J  HMETS
NSE high flows—50% of highest observed flows
GSWP3 —8.2 —11.7 —-30.5 -2.1 —13.1
Baleine Princeton -1.7 —-2.5 —-16.7 —-0.9 —-55
(5=32,500 WATCH —13.7 —18.0 —-319 —0.6 —16.1 0.01 0.4
km2) WEDEI —7.8 —4.7 —27.8 -2.7 —10.8
All datasets -8 -9 —-27 -2
GSWP3 —54.9 —15.2 -75 -3.8 —20.4
Liard Princeton —47.6 —12.7 -5.0 —-3.3 —174
(S=275,000 WATCH —88.6 —20.0 -7.7 —1.6 —29.5 0.5 0.7
kmz) WEDEI —80.6 —14.0 -7.5 —4.9 —26.8
All datasets —67.9 —15.5 —6.9 —34
GSWP3 —-3.6 -3.0 —-2.6 2.7 -29
Rio Grande Princeton —1.0 -1.2 -1.1 —-1.1 —-1.1
(5=11,982 WATCH —1.3 —-2.0 —-1.4 —1.1 -1.5 —0.04 0.3
kmz) WEFDEI -1.5 —-2.0 -1.3 —-1.0 —1.45
All datasets -1.9 -2.1 —-1.6 —-1.5
GSWP3 —0.6 —-0.2 0.04 —-0.1 —0.22
Susquehanna Princeton —0.6 -0.3 —0.1 -0.3 —0.33
(5=67,313 WATCH —-1.1 —0.03 0.2 —-0.1 —0.26 0.4 0.4
kml) WEFDEI -1.1 —-0.1 0.2 —0.2 —-0.3
All datasets -0.9 —-0.2 0.1 —-0.2
NSE low flows—50% of lowest observed flows
GSWP3 - —1. —26. —-1.4 —8.2
Baleine Princeton —2.2 —-0.4 —28.5 —-0.3 —-7.9
(5=32,500 WATCH —4.0 -1.6 —-59.0 —-0.5 —16.3 0.2 0.4
km?2) WEDEI -3.2 —-2.3 —66.3 -1.9 —18.4
All datasets —3.2 —-14 —45.1 -1
GSWP3 —222.8 —1043.8 —3438.1 —360.6 —1266
Liard Princeton —198.2 —1028.8 —2095.0 —318.2 —-910
(S =275,000 WATCH —2724 —11129 —3309.3 —264.0 —1239 -12 -0.8
km2) WEDEI —292.0 —1483.4 —3179.2 —412.1 —1341
All datasets —246.4 —1167.2 —3005.4 —338.7
GSWP3 —-21.4 —-8.7 —22.3 —239 —-19.1
Rio Grande Princeton —12.5 —6.8 -89 —-16.9 —-11.3
(5=11,982 WATCH -9.0 -8.0 -9.9 —-19.3 —11.6 —6.6 —6.7
km2) WEDEI 67 —6.8 —9.2 ~15.0 —9.4
All datasets —124 —7.6 —-12.6 —18.8
GSWP3 —32.6 -1.1 -3.0 —-2.1 -9.7
Susquehanna Princeton —31.4 -1.3 -33 —1.6 —9.4
(5=67,313 WATCH —57.2 -2.1 —6.0 —24 —-16.9 —-1.6 —24
ka) WEFDEI —47.3 —2.4 —5.3 —4.0 —14.8
All datasets —42.1 -1.7 —4.4 —-25

Regarding the Susquehanna River Basin, the gHM-climate—dataset combinations
perform poorly in reproducing seasonal discharge (Figure S5) and systematically provide
a time offset of the spring peak flow. This is confirmed with the analysis of the Taylor
diagram with strong RMSD values (Figure S6). H08, DBH, and PCR-GLOBWB tend to
better capture the mean interannual cycles of discharge, with a good simulation of low
flows with minimal bias values, especially for the HO8-dataset and PCR-GLOBWB-dataset
combinations (Table 5). Only HO8, when driven by WATCH and WFDEI, exhibits realistic
peak flow simulations that are the closest to the rHM simulations.

As for the gHM-rHM comparison, the rHM-Princeton combinations yield more con-
sistent discharge simulations over the catchments than the gHM-Princeton combinations,
with a more reliable reproduction of the observed magnitude and timing of peak flow
(Figure 9 and Figures S1, S3 and S5), and better model skill. The standard deviation values
of the rHMs are similar to the observations, with higher correlation coefficient values and
lower RMSD values than the gHMs (Figure 10 and Figures S2, 54 and S6). This confirms
the fact that the gHMSs, with their coarse resolution and the related limitations regarding
the misrepresentation of local topography, translate into some unrealistic simulations of
discharge for the four NA catchments. However, a general underestimation of the rHM-
simulated high flows is observed, while the low flows are generally overestimated. This
might be explained by the inadequate representation of the seasonal PET cycle, which is
likely underestimated during the high flow period and overestimated during the low flow
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period. This is likely related to the potential bias in the global meteorological data showing
their limitations of use for hydrological modeling at the catchment scale.

3.3. Potential Factors Controlling gHM Performance

To explain the gHMs’ poor ability to simulate discharge at the catchment scale, two
levels of issue that can impact model efficiency are explored. For the four catchments,
we questioned the impact of the geomorphological features (catchment size, altitude,
geographical location) as well as the global meteorological forcing.

We investigated the influence of the geomorphological features on the PBIAS and NSE
values of high flows and low flows for each gHM and for the two rHMs by considering
all meteorological datasets combined (Tables 5 and 6). The results show that the poorest
gHM performance at simulating seasonal flows are obtained for the Liard River Basin
in the northwest territories (Canada), followed by the Rio Grande River Basin in Oaxaca
(Mexico), which are the highest elevation catchments and the largest (S = 325,000 km?)
and the smallest (S = 11,982 km?) sized catchments, respectively, among the four sites.
All gHMs lead to a significant overestimation of seasonal flows for the Liard River Basin
and a significant underestimation of seasonal flows for the Rio Grande River Basin, with
negative NSE values in both cases. For the Baleine and Susquehanna River Basins, the
two northeastern NA catchments with a mean altitude below 500 m and a drainage area
between 30,000 and 70,000 km?, the overall gHM performance at simulating seasonal
flows is slightly improved, especially for the high flows in terms of PBIAS only. Even
though the geomorphological features of the catchments contribute to the gHM perfor-
mance, this improvement remains minor. The same finding can be transposed to the
two rHMs since the values of statistical criteria do not significantly increase with any
geomorphological features.

We then investigated the influence of the global meteorological forcing on the PBIAS
and NSE values of high flows and low flows by comparing each global dataset for all
gHMs combined and the two rHMs (Tables 5 and 6). Results show that the gHM-dataset
combinations lead to significant bias in the high-flow simulations, with some sparse
exceptions such as the gHM-Princeton combination for the Baleine River Basin as well as
the gHM-WATCH and gHM-WFDEI combinations for the Susquehanna River Basin. As
for the low flows, all gHM-dataset combinations tend to provide more reliable simulations
over the Baleine and Rio Grande River Basins, while they fail at producing acceptable
results in terms of relative bias over the Liard and Susquehanna River Basins. There is, thus,
no global driving dataset that consistently outperforms others locally for seasonal flow
simulations when they are used as inputs to the gHMs. However, both rHMs, forced by
the Princeton dataset, led to improved simulations of seasonal flows, with more acceptable
values of PBIAS and NSE.

4. Discussion
4.1. On the Use of gHMs and rHMs Driven by Global Meteorological Datasets

When looking at the NA region, we found some variability between the global driving
datasets for the 198 catchments combined (Figures 4 and 5). The use of Princeton in the
gHM-climate—dataset combinations leads to more consistent discharge simulations with
reduced error. However, when looking at the scale of the specific site, the gHMs used in
this study do not appear to be sensitive to the choice of the global meteorological datasets
since the datasets lead to similar levels of efficiency in terms of discharge simulations
(Tables 5 and 6). At the local scale, a higher variability between the gHMs is observed, as
compared to the inter-dataset variability (Figures 9 and 10). The driving forcing datasets
seem to have more influence regionally than at the catchment scale, where, locally, even
though the global driving datasets display some discrepancies in seasonal climate patterns,
especially for precipitation (Figures 6-8), the differences would be more linked to the way
the gHM s represent the main hydrological processes and their resolution.
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However, the moderate performances of the rtHM-Princeton combinations for the four
catchments, especially for the high-elevation catchment, point to limitations in global data
quality, which seriously constrain any efforts at hydrological modeling for the NA region,
as is the case for the Southern Africa region [65]. Disentangling the factors explaining the
poor quality of the global meteorological datasets is not easy as more than one characteristic
differs between each dataset (e.g., bias correction, reanalysis; see Table 1). Many studies
have reported the importance of incorporating observational or pseudo-observational
(satellite remote sensing data, radar data) inputs into global meteorological products to
better depict spatiotemporal climate variability in complex areas [66,67]. One study [68]
compared seven global datasets in five Koppen climate zones and underlined that there
are some global datasets that perform well under a specific climate but that no single one
performs best for all climate types. Another study [69] showed that the WFDEI dataset
only provides better discharge simulations than reanalysis in the subtropical and humid
continental climate regions.

Using global meteorological datasets for hydrological modeling, such as in ISIMIP2a,
relies on pragmatic reasons (e.g., spatiotemporal resolution, period of available datasets).
Global dataset intercomparisons for choosing the most reliable products are often set aside
due to the time constraints in such large projects. However, conducting an evaluation of
global meteorological dataset quality before using them as forcings to the gHMs is required,
especially when the rHMs are also driven by the global datasets, leading to a low level of
efficiency in terms of discharge simulations at the catchment scale.

4.2. gHMs’ Performance between Catchments

We find a high variability between gHMs in their ability to reproduce the mean
interannual cycles of weekly discharge for the four catchments. This confirms findings
from previous catchment-scale studies that emphasize that large spreads from the gHMs
are not primarily due to errors in the driving data or local geomorphological aspects
but to errors in the gHM structure [32,70]. The gHM models include quite simple linear
reservoir approaches to routing flows to the outlet. In addition, the DEM resolution
used in the gHM models cannot precisely reflect the flow path in complex regions, such
as the mountain catchments. Misrepresentations of physical processes can explain the
discrepancies between the gHHM-simulated and observed (or rHM-simulated) discharges,
which are more obvious at the catchment scale than over a continental region such as the
NA region. For instance, the overestimated high flows in the fall over the Rio Grande
River Basin by most gHMs can be a result of lower PET. The PET simulations were shown
to feature large variations between the ISIMIP2a gHMs [71]. Another factor could be the
inability of the gHMs to accurately represent soil properties, thus influencing the generation
and timing of high flows [72]. Over the Baleine and Liard River Basins, all gHMs fail to
capture the spring peak flow. The poor snowmelt simulation is likely the main reason for
such a bias. Temporal biases in snow-dominant regions have been reported [73-75], largely
due to driving data errors and the misrepresentation of snow processes (e.g., meltwater
infiltration into soil profiles, refreezing of meltwater over cold periods), and snowmelt
delays in the gHMs [76].

When aggregating across catchments, no gHM stands out in the reproduction of
discharge for the set of specific sites (Figure 9, Figure 10 and Figures S1-56). This is partly
explained by both the generalized parameters and the relatively coarse resolution of the
ISIMIP2a gHMs, which prevent them from performing accurately in different locations
under different climates. In addition, when driven by different global meteorological
datasets, the performance of a given gHM (for instance, PCR-GLOBWB in Figure 9 and
Figures S1, S3 and S5) is relatively similar. However, for a given driving dataset (for
instance, WFDEI in Figure 9 and Figures S1, S3 and S5), the differences in the gHHM struc-
ture and parametrization lead to highly contrasted reproductions of mean flow seasonal
dynamics between the gHMs.
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In hydrological modeling, an increase in model efficiency with the increasing size of
catchments is often reported [77]. Ref. [78] showed that the drainage area of the catchment
is one of the five most significant explanatory variables affecting the discharge simulations.
It is expected that for large catchments with a smooth hydrological behavior, it will be
easier for the models to reproduce the discharge. This finding cannot be transposed to both
the gHMs and rHM s in the present study (Tables 5 and 6). Moreover, the meteorological
input data for large catchments are known with less uncertainty than for small catchments,
which should tend towards a better gHM performance for larger catchments. Again, this is
not illustrated in this work.

Multi-gHM intercomparison studies carried out over the last few years have revealed
large differences among the gHMs [4,72]. It is crucial to identify error sources and to
investigate why they exist to improve gHM:s [6]. Therefore, caution should be applied in
selecting only one gHHM in catchment-scale hydrological applications. Considering more
than one gHM appears to be a good option to account for the uncertainty associated with
the gHM structure. In the case of the application of multiple gHMs in various locations,
it could be tempting, yet unwise, to exclude the gHM with the weakest performance in
the analysis, as there could be a risk of missing the other skills of that gHM for another
location, as seen with PCR-GLOBWSB in the present study.

4.3. gHM versus rHM Approach at the Catchment Scale

From the analysis of the 198 catchments combined, the comparison of discharge
simulations by the gHMs and rHMs shows that the median NSE and error spread are not
comparable (>50% difference: Figures 4-6) and the bias values and errors spread are not
comparable (>10% difference: Figures 4 and 6).

From the analysis of the four specific sites, the comparison of discharge simulations
by the gHMs and rHMs shows that no gHM can reproduce the observed mean seasonal
dynamics. Both rHMs depict better skill (Figure 10 and Figures S2, S4 and S6) at simulating
discharge variability as well as the magnitude and the timing of peak flows compared to
the gHMs (Figure 9 and Figures S1, S3 and S5).

The better performance of rHMs compared to gHMs at the catchment scale is likely
linked to: (a) better representation of snow processes (accumulation and melting), which is
critical for peak flow dynamics in the Baleine and Liard River Basins; (b) better representa-
tion of groundwater and baseflow processes required for the low-flow simulations; and
(c) the calibration of rHMs for each catchment (as compared to the uncalibrated gHMs),
leading to better reproduction of the overall hydrological processes. Both rHMs driven
by the Princeton dataset give better results than the gHM-Princeton combinations, and
HMETS-Princeton combination provides more satisfactory discharge simulations than
the GR4J-Princeton combination. The first finding can be explained by the existence of
calibrated parameters in rHMs, allowing compensation of the errors in global datasets at
the regional and local scale compared to the gHMs; the second finding is probably related
to the number of model parameters since HMETS has a larger set of parameters compared
to GR4]J (23 calibrated parameters versus 4 calibrated parameters; Table 2), leading to a
higher degree of freedom and better model adaptability to different regions.

Our findings are similar to those of [13], who compared simulations of several rHMs
and gHMs for the Lena River Basin in Russia. The authors reported a high performance of
the rHMs, partly attributed to their calibration. There is, thus, a compromise in continuing
gHM applicability at the catchment scale and ignoring local diversity in the physiographic
and climate features on each river basin. In practice, and for operational purposes, the
gHMs with a spatial resolution of 0.5°, such as in the ISIMIP2a, cannot be the preferred
option for catchment-scale applications. However, as mentioned in other studies [6,79,80],
the gHMs are good candidates for valuable spatiotemporal estimation of global water
resources and surface waters and for understanding human water uses and providing
future trends of changes for those estimates. This is in clear contrast to the rHMs, which
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can be implemented on a specific site to respond to local water- and energy-related issues
as they are designed for this purpose.

5. Conclusions

This study presents a catchment-scale comparative evaluation of the performance of
four gHMs driven by four global meteorological datasets against two rHMs driven by one
global meteorological dataset using two statistical criteria, Taylor diagrams, and visual
hydrograph comparisons. We provide aggregated catchment-scale results, facilitating the
comparison of model performance spatially for 198 large-sized catchments over the NA
region. These findings are critical, as they provide the basis for the climate change impact
studies using the gHMs in the next phase of ISIMIP2a.

We find a tendency for most gHM-climate—dataset combinations to overestimate
discharges with negative NSE scores and large positive PBIAS and RMSD values. The
errors and median values spread for the gHM-simulated discharges are not in good
agreement with the observations or the rtHM simulations. Looking at the four selected
large-sized catchments, no gHHM—climate—dataset combination can simulate the seasonal
weekly discharge cycles. The magnitude and timing of the peak flows are poorly captured
by most applied gHMs in the four catchments. Our evaluation provides recommendations
to the global-scale hydrological modeling community in pursuing efforts to improve the
gHMs’ ability to reproduce the global characteristics of discharge seasonality. The results
obtained by considering the four forcing datasets slightly vary the conclusions drawn at the
catchment scale; however, more influence seems to be associated with the gHM resolution
and structure. Both the rHMs, driven by the global dataset, provide better simulation
results for the 198 NA catchments in terms of the criteria used in this study.

This study evaluates gHM performance regarding river discharge for the NA region.
We naturally recognize that a similar evaluation conducted in other regions will be welcome
to confirm our findings. Further assessments, including other water balance components
such as snowmelt and potential evapotranspiration, could provide more insights into the
performance of the gHMs, particularly for the representation of seasonal dynamics at the
catchment scale. In addition, extensive cross-validation of the rHMs driven by the ISIMIP2a
global meteorological datasets, as well as the use of regionalized rHM parameters, might
be considered in future work for providing further insights into rHM accuracy compared
to that of the gHMs for large-sized catchments.

Our results show that there are still some challenges with accurate catchment-scale
simulations of discharges by the gHHMs. The gHMs, as implemented within ISIMIP2a,
exhibited large uncertainties over the 1971-2010 period over the NA region. Therefore, a
systematic and comprehensive evaluation of the gHMs within ISIMIP2a over a historical
period is recommended before they are used for climate change impact studies. However,
the rHM approach is found to be more reliable; we, therefore, recommend using it for
catchment-scale hydrological studies, particularly where findings will be used to support
operational decision-making.

Our study can be extended by comparing both ISIMIP2A and ISIMIP3a experiments
and by evaluating if the ISIMIP3a models’ performance is improved regarding their coun-
terparts by reducing uncertainty in the discharge simulations over NA catchments. Other
statistical evaluation metrics and additional flow indicators could be included in such
an assessment.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/w13213112/s1. Figure S1 Observed (blue curve) and simulated weekly catchment-scale
discharges for the Liard River Basin in Northwest territories (Canada; S = 27,500 km?) by the sixteen
gHM-climate-dataset combinations (red curves) and the two rHMs (black curve) over the 1971-2010
period. Figure S2. Taylor diagram exploring the performance of the sixteen gHM-climate-dataset
combinations and the two rHMs with respect to the discharge observations for the Liard River Basin
in Northwest territories (Canada; S = 27,500 km?) over the 1971-2010 period. Figure S3. Observed
(blue curve) and simulated weekly catchment-scale discharges for the Rio Grande River Basin in
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Oaxaca (Mexico; S = 11,982 km?) by the sixteen gHM-climate-dataset combinations (red curves)
and the two rHMs (black curve) over the 1971-2010 period. Figure S4. Taylor diagram exploring
the performance of the sixteen gHM-climate-dataset combinations and the two rHMs with respect
to the discharge observations for the Rio Grande River Basin in Oaxaca (Mexico; S = 11,982 kmz)
over the 1971-2010 period. Figure S5. Observed (blue curve) and simulated weekly catchment-scale
discharges for the Susquehanna River Basin in Pennsylvania (USA; S = 67,313 km?) by the sixteen
gHM-climate-dataset combinations (red curves) and the two rHMs (black curve) over the 1971-2010
period. Figure S6. Taylor diagram exploring the performance of the sixteen gHM-climate-dataset
combinations and the two rHMs with respect to the discharge observations for the Susquehanna
River Basin in Pennsylvania (USA; S = 67,313 km?) over the 1971-2010 period.
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