Evapotranspiration and Quantitative Partitioning of Spring Maize with Drip Irrigation under Mulch in an Arid Region of Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experiment Design
2.3. Irrigation Management
2.4. Data Measurements
2.5. Quantitative Partitioning of ETc Using the SIMDualKc Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, N.; Liu, Y.; Cai, J.; LS, P. Validation and application of dual crop coefficient model SIMDual_Kc. Trans. Chin. Soc. Agric. Eng. 2011, 27, 89–95. [Google Scholar]
- Allen, R.G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, X. Quantification of transpiration and evaporation over agricultural field using the FAO-56 dual crop coefficient approach-a case study of the maize field in an oasis in the middlestream of the Heihe River basin in Northwest China. Sci. Agric. Sin. 2010, 43, 4016–4026. [Google Scholar]
- Pieruschka, R.; Huber, G.; Berry, J.A. Control of transpiration by radiation. Proc. Natl. Acad. Sci. USA 2010, 107, 13372–13377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Fan, Y.; Cai, H. Comparison of crop water requirements computed by single crop coefficient approach and dual crop coefficient approach. J. Hydraul. Eng. 2002, 3, 50–54. [Google Scholar]
- Lu, X.; Duan, S.; Ma, X.; Bai, S. A comparative study between single crop coefficient method and double crop coefficient method in calculation of water requirement of maize. Water Sav. Irrig. 2012, 11, 18–21. [Google Scholar]
- Shi, J.; Gong, D.; Mei, X.; Hao, W.; Ma, X.; Hu, X. Research progress in surface evapotranspiration measuring and partitioning methods. China Rural Water Hydropower 2012, 2, 49–53,59. [Google Scholar]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Fandiño, M.; Olmedo, J.L.; Martínez, E.M.; Valladares, J.; Paredes, P.; Rey, B.J.; Mota, M.; Cancela, J.J.; Pereira, L.S. Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus Lupulus), and relations of transpiration with hops yield and alpha-acids. Ind. Crop Prod. 2015, 77, 204–217. [Google Scholar] [CrossRef]
- Giménez, L.; Petillo, M.G.; Paredes, P.; Pereira, L.S. Predicting maize transpiration, water use and productivity for developing improved supplemental irrigation schedules in western Uruguay to cope with climate variability. Water 2016, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Qiu, R.; Du, T.; Kang, S.; Chen, R.; Wu, L. Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China. Agric. Syst. 2015, 138, 1–9. [Google Scholar] [CrossRef]
- Wei, Z.; Paredes, P.; Liu, Y.; Chi, W.W.; Pereira, L.S. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric. Water Manag. 2015, 147, 43–53. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Wang, H.; Wang, T.; Pereira, L.S. Ecohydrology of groundwater-dependent grasslands of the semi-arid Horqin sandy land of inner Mongolia focusing on evapotranspiration partition. Ecohydrology 2016, 9, 1052–1067. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, H.; Yu, L.; Wang, X.; Shi, X. Estimation of evapotranspiration and soil evaporation of winter wheat in arid region of Northwest China based on SIMDualKC model. Trans. Chin. Soc. Agric. Eng. 2016, 32, 126–136. [Google Scholar]
- Yan, H.; Wu, H.; Zhang, C.; Acquah, S.; Zhao, B.; Huang, S. Estimation of greenhouse cucumber evapotranspiration in different seasons based on modified dual crop coefficient model. Trans. Chin. Soc. Agric. Eng. 2018, 34, 117–125. [Google Scholar]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Sui, J.; Wu, Z. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter. Trans. Chin. Soc. Agric. Eng. 2018, 34, 89–97. [Google Scholar]
- Li, R.; Zhao, J.; Shi, H.; Wang, N.; Qi, Y.; Feng, Y.; Jia, Q. Simulation of evapotranspiration of corn under mulched drip irrigation based on SIMDual_Kc model in Tongliao area of Inner Mongolia. Trans. Chin. Soc. Agric. Eng. 2018, 34, 127–134. [Google Scholar]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Du, T. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Hou, X.; Wang, F.; Han, J.; Kang, S.; Feng, S. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. Forest Meteor. 2010, 150, 115–121. [Google Scholar] [CrossRef]
- Zhou, L.; Li, F.; Jin, S.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Fan, Y.; Ding, R.; Kang, S.; Hao, X.; Du, T.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2017, 179, 122–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Sui, J.; Wu, Z.; Mo, Y. Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China. Agric. Water Manag. 2018, 205, 90–99. [Google Scholar] [CrossRef]
- Cai, H.; Kang, S.; Zhang, Z.; Chai, H.; Hu, X.; Wang, J. Proper growth stages and deficit degree of crop regulated deficit irrigation. Trans. Chin. Soc. Agric. Eng. 2000, 16, 24–27. [Google Scholar]
- Trout, T.J.; DeJonge, K.C. Water productivity of maize in the US high plains. Irrig. Sci. 2017, 35, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Comas, L.H.; Trout, T.J.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Fernando, R.M.; Alves, I.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software: 2. Model testing. Agric. Water Manag. 2012, 103, 62–77. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Y.; Cai, J.; Paredes, P.; Rosa, R.D.; Pereira, L.S. Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component. Agric. Water Manag. 2013, 117, 93–105. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.N. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar]
- Xu, D.; Mermoud, A. Modeling the soil water balance based on time-dependent hydraulic conductivity under different tillage practices. Agric. Water Manag. 2003, 63, 139–151. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Xu, D.; Zhao, N.; Lei, B.; Rosa, R.D.; Paredes, P.; Paço, T.A.; Pereira, L.S. The dual crop coefficient approach to estimate and partitioning evapotranspiration of the winter wheat–summer maize crop sequence in North China Plain. Irrig. Sci. 2013, 31, 1303–1316. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Bakhsh, A.; Ragab, R.; Khaliq, A.; Engel, B.A.; Rizwan, M.; Shahid, M.A.; Nawaz, Q. Modeling corn growth and root zone salinity dynamics to improve irrigation and fertigation management under semi-arid conditions. Agric. Water Manag. 2020, 230, 105952. [Google Scholar] [CrossRef]
- Martins, J.D.; Rodrigues, G.C.; Paredes, P.; Carlesso, R.; Oliveira, Z.B.; Knies, A.E.; Petry, M.T.; Pereira, L.S. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosyst. Eng. 2013, 115, 291–310. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Paredes, P.; Gonçalves, J.M.; Alves, I.; Pereira, L.S. Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns. Agric. Water Manag. 2013, 126, 85–96. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.P.; Alves, I.; Pereira, L.S. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Zhang, F.; Wu, Y.; Qiang, S.; Zou, H.; Xiang, Y.; Fan, J.; Tian, J. Estimation of drip irrigated summer maize soil water content and evapotranspiration based on SIMDualKc model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 152–160. [Google Scholar]
- Zhao, N.; Liu, Y.; Cai, J.; Yu, F.; Li, C. Research on soil evaporation of summer maize by field measurement and model simulation. Trans. Chin. Soc. Agric. Eng. 2012, 28, 66–73. [Google Scholar]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Pereira, L.S. Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise. Agric. Water Manag. 2015, 152, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Du, T.; Chen, R. Application of the dual crop coefficient model for estimating tomato evapotranspiration in greenhouse. J. Hydaul. Eng. 2015, 46, 678–686. [Google Scholar]
- Kang, S.; Gu, B.; Du, T.; Zhang, J. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 2003, 59, 239–254. [Google Scholar] [CrossRef]
- Difonzo, F.V.; Masciopinto, C.; Vurro, M.; Berardi, M. Shooting the numerical solution of moisture flow equation with root water uptake models: A python tool. Water Resour. Manag. 2021, 35, 2553–2567. [Google Scholar] [CrossRef]
- De Melo, M.L.A.; de Jong van Lier, Q. Revisiting the Feddes reduction function for modeling root water uptake and crop transpiration. J. Hydrol. 2021, 603, 126952. [Google Scholar] [CrossRef]
- Wu, X.; Zuo, Q.; Shi, J.; Wang, L.; Xue, X.; Ben-Gal, A. Introducing water stress hysteresis to the Feddes empirical macroscopic root water uptake model. Agric. Water Manag. 2020, 240, 106293. [Google Scholar] [CrossRef]
Years | Dates | Irrigation Depth (mm) | |
---|---|---|---|
T1 | T2 | ||
2017 | 5/3 | 30 | 30 |
5/31 | 17 | 16 | |
6/18–6/19 | 40 | 41 | |
6/30–7/1 | 55 | 22 | |
7/10–7/11 | 53 | 21 | |
7/22–7/24 | 120 | 120 | |
8/8 | 43 | 57 | |
8/31 | 75 | 30 | |
2018 | 4/27 | 30 | 30 |
5/9 | 21 | 21 | |
6/10 | 50 | 51 | |
6/23 | 60 | 25 | |
6/30 | 41 | 17 | |
7/9 | 37 | 16 | |
7/18–7/19 | 68 | 100 | |
8/15–8/16 | 75 | 87 |
Traits | Years | Treatments | Growth Stages | ||||
---|---|---|---|---|---|---|---|
Initial | Development | Mid-Season | Late-Season | Whole Season | |||
Growth length (d) | 2017 | T1 | 27 | 27 | 64 | 30 | 148 |
T2 | 28 | 29 | 58 | 33 | 148 | ||
2018 | T1 | 32 | 25 | 64 | 30 | 151 | |
T2 | 32 | 28 | 59 | 32 | 151 | ||
Plant height (m) | 2017 | T1 | 0.3 | 1.5 | 2.9 | 3.1 | — |
T2 | 0.29 | 1.5 | 2.4 | 2.4 | |||
2018 | T1 | 0.4 | 1.4 | 2.9 | 3.1 | ||
T2 | 0.4 | 1.2 | 2.7 | 2.7 | |||
Root depth (m) | 2017 | T1 | 0.1 | 0.4 | 0.74 | 0.74 | — |
T2 | 0.2 | 0.5 | 0.65 | 0.65 | |||
2018 | T1 | 0.2 | 0.44 | 0.7 | 0.7 | ||
T2 | 0.25 | 0.5 | 0.7 | 0.7 | |||
Canopy cover | 2017 | T1 | 0.1 | 0.97 | 0.93 | 0.6 | — |
T2 | 0.1 | 0.9 | 0.85 | 0.56 | |||
2018 | T1 | 0.1 | 0.95 | 0.9 | 0.6 | ||
T2 | 0.1 | 0.88 | 0.85 | 0.55 |
Parameters | Initial Values | Calibrated |
---|---|---|
Crop parameters | ||
Kcb-ini | 0.15 | 0.2 |
Kcb-mid | 1.15 | 1.15 |
Kcb-end | 0.50 | 0.55 |
pini | 0.55 | 0.55 |
pmid | 0.55 | 0.55 |
pend | 0.55 | 0.55 |
Soil parameters | ||
REW (mm) | 10 | 12 |
TEW (mm) | 30 | 30 |
Ze (m) | 0.12 | 0.15 |
Years | Treatments | b | R2 | RMSE (cm3·cm−3) | AAE (cm3·cm−3) | Emax (cm3·cm−3) | dIA | EF |
---|---|---|---|---|---|---|---|---|
2017 | T1 | 0.98 | 0.84 | 0.008 | 0.006 | 0.013 | 0.96 | 0.82 |
T2 | 0.96 | 0.90 | 0.008 | 0.006 | 0.022 | 0.97 | 0.89 | |
2018 | T1 | 1.07 | 0.95 | 0.005 | 0.004 | 0.010 | 0.99 | 0.94 |
T2 | 1.00 | 0.95 | 0.008 | 0.006 | 0.025 | 0.99 | 0.94 |
Years | Treatments | b | R2 | RMSE (mm·d−1) | AAE (mm·d−1) | Emax (mm·d−1) | dIA | EF |
---|---|---|---|---|---|---|---|---|
2017 | T1 | 0.99 | 0.95 | 0.366 | 0.294 | 1.060 | 0.97 | 0.88 |
T2 | 1.00 | 0.91 | 0.379 | 0.293 | 1.163 | 0.95 | 0.80 | |
2018 | T1 | 0.91 | 0.97 | 0.367 | 0.310 | 0.709 | 0.98 | 0.91 |
T2 | 1.04 | 0.95 | 0.389 | 0.346 | 0.649 | 0.96 | 0.82 |
Growth Stages | Years | Es (mm) | Tr (mm) | ETc (mm) | Es/ETc (%) | Tr/ETc (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | T1 | T2 | ||
Initial | 2017 | 17.8 | 21.5 | 18.3 | 22.0 | 36.2 | 43.6 | 49.3 | 49.4 | 50.7 | 50.6 |
2018 | 21.0 | 21.0 | 31.9 | 32.9 | 52.9 | 54.0 | 39.7 | 39.0 | 60.3 | 61.0 | |
Development | 2017 | 7.8 | 10.0 | 70.5 | 71.8 | 78.3 | 81.8 | 9.9 | 12.2 | 90.1 | 87.8 |
2018 | 0.8 | 1.2 | 77.3 | 73.3 | 78.1 | 74.5 | 1.0 | 1.6 | 99.0 | 98.4 | |
Mid-season | 2017 | 3.9 | 7.9 | 302.9 | 214.2 | 306.9 | 222.1 | 1.3 | 3.5 | 98.7 | 96.5 |
2018 | 5.5 | 8.6 | 306.4 | 218.3 | 311.9 | 226.9 | 1.8 | 3.8 | 98.2 | 96.2 | |
Late-season | 2017 | 2.4 | 4.2 | 84.2 | 77.2 | 86.6 | 81.4 | 2.8 | 5.2 | 97.2 | 94.8 |
2018 | 7.9 | 12.6 | 68.3 | 62.9 | 76.3 | 75.5 | 10.4 | 16.7 | 89.6 | 83.3 | |
Whole season | 2017 | 32.0 | 43.6 | 476.0 | 385.3 | 507.9 | 428.9 | 6.3 | 10.2 | 93.7 | 89.8 |
2018 | 35.2 | 43.4 | 484.0 | 387.5 | 519.1 | 430.9 | 6.8 | 10.1 | 93.2 | 89.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, C.; Ding, R.; Shao, J.; Liu, Y. Evapotranspiration and Quantitative Partitioning of Spring Maize with Drip Irrigation under Mulch in an Arid Region of Northwestern China. Water 2021, 13, 3169. https://doi.org/10.3390/w13223169
Xuan C, Ding R, Shao J, Liu Y. Evapotranspiration and Quantitative Partitioning of Spring Maize with Drip Irrigation under Mulch in an Arid Region of Northwestern China. Water. 2021; 13(22):3169. https://doi.org/10.3390/w13223169
Chicago/Turabian StyleXuan, Chenggong, Risheng Ding, Jie Shao, and Yanshuo Liu. 2021. "Evapotranspiration and Quantitative Partitioning of Spring Maize with Drip Irrigation under Mulch in an Arid Region of Northwestern China" Water 13, no. 22: 3169. https://doi.org/10.3390/w13223169
APA StyleXuan, C., Ding, R., Shao, J., & Liu, Y. (2021). Evapotranspiration and Quantitative Partitioning of Spring Maize with Drip Irrigation under Mulch in an Arid Region of Northwestern China. Water, 13(22), 3169. https://doi.org/10.3390/w13223169