Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows
Abstract
:1. Introduction
2. Materials and Methodologies
2.1. Overview
- A group of initial solutions is generated by a random value determined between the lower and upper boundaries for each variable of the new Muskingum flood routing model.
- One among a group of existing solutions is then selected, or a new solution is generated according to the selected probability.
- The inflow, storage, and outflow are calculated according to the generated solution, and the error between the flood outflow data and calculated outflow is determined as the objective function.
- The error is calculated using the sum of squares (SSQ), the Nash–Sutcliffe efficiency (NSE), and the root mean square error (RMSE).
2.2. New Muskingum Flood Routing Model
2.3. Self-Adaptive Vision Correction Algorithm
2.4. Flood Data
3. Application and Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANLMM-L | Advanced nonlinear Muskingum flood routing model considering continuous inflow |
NLMM-L | Nonlinear Muskingum flood routing model incorporating lateral flow |
NLMM | Nonlinear Muskingum method |
LMM-L | Linear Muskingum method incorporating lateral flow |
LMM | Linear Muskingum method |
SAVCA | Self-adaptive vision correction algorithm |
DR1 | Division rate 1 |
DR2 | Division rate 2 |
MTF | Modulation transfer function |
CF | Compression factor |
AR | Astigmatic rate |
AF | Astigmatic angle |
SSQ | Sum of squares |
NSE | Nash–Sutcliffe efficiency |
RMSE | Root mean square error |
References
- Go, I.H. Development of watershed integrated water resource management technique. J. Korea Water Resour. Assoc. 2004, 37, 10–15. [Google Scholar]
- Lee, E.H.; Lee, H.M.; Kim, J.H. Development and application of advanced Muskingum flood routing model considering continuous flow. Water 2018, 10, 760. [Google Scholar] [CrossRef] [Green Version]
- Absi, R. Reinvestigating the parabolic-shaped eddy viscosity profile for free surface flows. Hydrology 2021, 8, 126. [Google Scholar] [CrossRef]
- McCarthy, G.T. The unit hydrograph and flood routing. In Proceedings of Conference of North Atlantic Division; U.S. Army Corps of Engineers: New London, CT, USA, 1938. [Google Scholar]
- O’donnell, T. A direct three-parameter Muskingum procedure incorporating lateral inflow. Hydrol. Sci. J. 1985, 30, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Tung, Y.K. River flood routing by nonlinear Muskingum method. J. Hydraul. Eng. 1985, 111, 1447–1460. [Google Scholar] [CrossRef] [Green Version]
- Das, A. Parameter estimation for Muskingum models. J. Irrig. Drain. Eng. 2004, 130, 140–147. [Google Scholar] [CrossRef]
- Geem, Z.W. Parameter estimation for the nonlinear Muskingum model using the BFGS technique. J. Irrig. Drain. Eng. 2006, 132, 474–478. [Google Scholar] [CrossRef]
- Karahan, H.; Gurarslan, G.; Geem, Z.W. A new nonlinear Muskingum flood routing model incorporating lateral flow. Eng. Optim. 2015, 47, 737–749. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Abdi-Dehkordi, M.; Hamedi, F.; Pazoki, M.; Loáiciga, H.A. Generalized storage equations for flood routing with nonlinear Muskingum models. Water Resour. Manag. 2019, 33, 2677–2691. [Google Scholar] [CrossRef]
- Gill, M.A. Flood routing by the Muskingum method. J. Hydrol. 1978, 36, 353–363. [Google Scholar] [CrossRef]
- Yoon, J.; Padmanabhan, G. Parameter estimation of linear and nonlinear Muskingum models. J. Water Resour. Plann. Manag. 1993, 119, 600–610. [Google Scholar] [CrossRef]
- Mohan, S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. J. Hydraul. Eng. 1997, 123, 137–142. [Google Scholar] [CrossRef]
- Luo, J.; Xie, J. Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J. Hydrol. Eng. 2010, 15, 844–851. [Google Scholar] [CrossRef]
- Barati, R. Parameter estimation of nonlinear Muskingum models using Nelder-Mead simplex algorithm. J. Hydrol. Eng. 2011, 16, 946–954. [Google Scholar] [CrossRef]
- Orouji, H.; Bozorg Haddad, O.; Fallah-Mehdipour, E.; Marino, M.A. Estimation of Muskingum parameter by meta-heuristic algorithms. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2013; Volume 166, pp. 315–324. [Google Scholar]
- Niazkar, M.; Afzali, S.H. Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J. Hydrol. Eng. 2015, 20, 04014055. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, S. Application of the elitist-mutated PSO and an improved GSA to estimate parameters of linear and nonlinear Muskingum flood routing models. PLoS ONE 2017, 11, e0147338. [Google Scholar] [CrossRef]
- Moghaddam, A.; Behmanesh, J.; Farsijani, A. Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water Resour. Manag. 2016, 30, 2143–2160. [Google Scholar] [CrossRef]
- Hamedi, F.; Bozorg-Haddad, O.; Pazoki, M.; Asgari, H.R.; Parsa, M.; Loáiciga, H.A. Parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm. J. Irrig. Drain. Eng. 2016, 142, 04016059. [Google Scholar] [CrossRef]
- Perumal, M.; Tayfur, G.; Rao, C.M.; Gurarslan, G. Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods. J. Hydrol. 2017, 546, 437–449. [Google Scholar] [CrossRef]
- Zhang, S.; Kang, L.; Zhou, B. Parameter estimation of nonlinear Muskingum model with variable exponent using adaptive genetic algorithm. In Environmental Conservation, Clean Water, Air & Soil (CleanWAS); IWA Publishing: London, UK, 2017; pp. 231–237. [Google Scholar]
- Bagatur, T.; Onen, F. Development of predictive model for flood routing using genetic expression programming. J. Flood Risk Manag. 2018, 11, S444–S454. [Google Scholar] [CrossRef] [Green Version]
- Akbarifard, S.; Qaderi, K.; Alinnejad, M. Parameter estimation of the nonlinear Muskingum flood-routing model using water cycle algorithm. J. Watershed Manag. Res. 2018, 8, 34–43. [Google Scholar] [CrossRef]
- Talatahari, S.; Sheikholeslami, R.; Farahmand Azar, B.; Daneshpajouh, H. Optimal parameter estimation for Muskingum model using a CSS-PSO method. Adv. Mech. Eng. 2013, 5, 480954. [Google Scholar] [CrossRef]
- Ouyang, A.; Li, K.; Truong, T.K.; Sallam, A.; Sha, E.H.M. Hybrid particle swarm optimization for parameter estimation of Muskingum model. Neural Comput. Appl. 2014, 25, 1785–1799. [Google Scholar] [CrossRef]
- Haddad, O.B.; Hamedi, F.; Fallah-Mehdipour, E.; Orouji, H.; Marino, M.A. Application of a hybrid optimization method in Muskingum parameter estimation. J. Irrig. Drain. Eng. 2015, 141, 04015026. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Zhou, L.; Zhang, S. Parameter estimation of two improved nonlinear Muskingum models considering the lateral flow using a hybrid algorithm. Water Resour. Manag. 2017, 31, 4449–4467. [Google Scholar] [CrossRef]
- Ehteram, M.; Binti Othman, F.; Mundher Yaseen, Z.; Abdulmohsin Afan, H.; Falah Allawi, M.; Najah Ahmed, A.; Shaid, S.; Singh, V.; El-Shafie, A. Improving the Muskingum flood routing method using a hybrid of particle swarm optimization and bat algorithm. Water 2018, 10, 807. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, J.J.; Ahilan, S.; Bruen, M. A modified Muskingum routing approach for floodplain flows: Theory and practice. J. Hydrol. 2012, 470, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Easa, S.M. New and improved four-parameter non-linear Muskingum model. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2014; Volume 167, pp. 288–298. [Google Scholar]
- Yoo, C.; Lee, J.; Lee, M. Parameter estimation of the Muskingum channel flood-routing model in ungauged channel reaches. J. Hydrol. Eng. 2017, 22, 05017005. [Google Scholar] [CrossRef]
- Karahan, H.; Gurarslan, G.; Geem, Z.W. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. J. Hydrol. Eng. 2013, 18, 352–360. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour. Manag. 2016, 30, 4713–4730. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrol. Res. 2017, 48, 1253–1267. [Google Scholar] [CrossRef]
- Lee, E.H. Application of self-adaptive vision-correction algorithm for water-distribution problem. KSCE J. Civ. Eng. 2021, 25, 1106–1115. [Google Scholar] [CrossRef]
- Kim, Y.N. Development of Exponential Bandwidth Harmony Search with Centralized Global Search. Master’s Thesis, Chungbuk National University, Cheongju, Korea, 2021. (In Korean). [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill Civil Engineering Series; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Wang, W.; Xu, Z.; Qiu, L.; Xu, D. Hybrid chaotic genetic algorithms for optimal parameter estimation of Muskingum flood routing model. In Proceedings of the International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; pp. 215–218. [Google Scholar]
- Bajracharya, K.; Barry, D.A. Accuracy criteria for linearised diffusion wave flood routing. J. Hydrol. 1997, 195, 200–217. [Google Scholar] [CrossRef]
- Ulke, A. Flood Routing Using Muskingum Method. Master’s Thesis, Suleyman Demirel University, Kaskelen, Kazakhstan, 2003. (In Turkish). [Google Scholar]
- Karahan, H.; Gurarslan, G. Modelling flood routing problems using kinematic wave approach: Sutculer example. In Proceedings of the 7th National Hydrology Congress, Isparta, Turkey, 26–27 September 2013. [Google Scholar]
Parameters | DR1 | DR2 | MR | CF | AR | AF |
---|---|---|---|---|---|---|
Types | Self-adaptive | Self-adaptive | Fixed | Self-adaptive | Fixed | Fixed |
Parameters | Wilson’s Flood Data | Wang’s Flood Data | Flood Data for River Wye December in 1960 | Sutculer Flood Data | Flood Data for River Wyre October in 1982 |
---|---|---|---|---|---|
K | 0.01–50.00 | 0.01–50.00 | 0.01–50.00 | 0.01–50.00 | 0.01–50.00 |
X1 | −0.50–0.50 | −1.50–1.50 | −0.50–0.50 | −0.50–0.50 | −0.50–0.50 |
X2 | −0.50–0.50 | −1.50–1.50 | −0.50–0.50 | −0.50–0.50 | −0.50–0.50 |
m | 1.00–3.00 | 1.00–3.00 | 1.00–3.00 | 1.00–3.00 | 0.00–1.00 |
β | −0.10–0.10 | −3.00–3.00 | −0.10–0.10 | −0.10–0.10 | −3.00–3.00 |
θ1 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 |
θ2 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 |
θ3 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 | 0.00–1.00 |
Parameters | LMM | LMM-L | NLMM | NLMM-L | ANLMM-L | This Study |
---|---|---|---|---|---|---|
K | ○ | ○ | ○ | ○ | ○ | ○ |
X1 | ○ | ○ | ○ | ○ | ○ | ○ |
X2 | Ⅹ | Ⅹ | Ⅹ | Ⅹ | Ⅹ | ○ |
m | Ⅹ | Ⅹ | ○ | ○ | ○ | ○ |
β | Ⅹ | ○ | Ⅹ | ○ | ○ | ○ |
θ1 | Ⅹ | Ⅹ | Ⅹ | ○ | ○ | ○ |
θ2 | Ⅹ | Ⅹ | Ⅹ | Ⅹ | ○ | ○ |
θ3 | Ⅹ | Ⅹ | Ⅹ | Ⅹ | Ⅹ | ○ |
Time (h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) | LMM-L (m3/s) [5] | NLMM (m3/s) [42] | NLMM-L (m3/s) [9] | ANLMM-L (m3/s) [2] | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
0 | 22 | 22 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 |
6 | 23 | 21 | 21.87 | 21.10 | 22.00 | 21.71 | 21.57 | 21.33 |
12 | 35 | 21 | 20.52 | 21.70 | 22.40 | 22.02 | 21.67 | 21.13 |
18 | 71 | 26 | 19.07 | 22.60 | 26.60 | 26.08 | 25.46 | 25.53 |
24 | 103 | 34 | 26.90 | 30.70 | 34.50 | 33.51 | 34.59 | 34.75 |
30 | 111 | 44 | 43.58 | 44.70 | 44.20 | 42.83 | 43.73 | 43.52 |
36 | 109 | 55 | 59.58 | 58.10 | 56.90 | 55.44 | 54.59 | 54.62 |
42 | 100 | 66 | 72.32 | 68.90 | 68.10 | 66.67 | 66.01 | 66.08 |
48 | 86 | 75 | 80.65 | 76.10 | 77.10 | 75.77 | 75.52 | 75.53 |
54 | 71 | 82 | 83.91 | 79.20 | 83.30 | 82.12 | 82.16 | 82.11 |
60 | 59 | 85 | 82.51 | 78.50 | 85.90 | 84.78 | 85.04 | 85.08 |
66 | 47 | 84 | 78.63 | 75.60 | 84.50 | 83.42 | 84.00 | 83.89 |
72 | 39 | 80 | 72.32 | 70.70 | 80.60 | 79.44 | 79.62 | 79.61 |
78 | 32 | 73 | 65.49 | 65.10 | 73.70 | 72.48 | 72.63 | 72.53 |
84 | 28 | 64 | 58.21 | 59.10 | 65.40 | 64.08 | 63.80 | 63.81 |
90 | 24 | 54 | 51.70 | 53.40 | 56.00 | 54.58 | 54.31 | 54.27 |
96 | 22 | 44 | 45.50 | 47.90 | 46.70 | 45.22 | 44.80 | 44.84 |
102 | 21 | 36 | 40.15 | 43.10 | 37.70 | 36.34 | 36.25 | 36.32 |
108 | 20 | 30 | 35.82 | 38.90 | 30.50 | 29.21 | 29.45 | 29.52 |
114 | 19 | 25 | 32.26 | 35.40 | 25.20 | 24.21 | 24.63 | 24.66 |
120 | 19 | 22 | 29.17 | 32.30 | 21.70 | 20.96 | 21.39 | 21.46 |
126 | 18 | 19 | 26.93 | 29.90 | 20.00 | 19.41 | 19.81 | 19.77 |
SSQ (m3/s)2 | - | - | 605.63 | 815.68 | 36.77 | 9.82 | 4.54 | 4.11 |
Squared root of SSQ (m3/s) | - | - | 24.61 | 28.56 | 6.06 | 3.13 | 2.13 | 2.03 |
NSE | - | - | 0.974322 | 0.974326 | 0.992412 | 0.999583 | 0.999808 | 0.999826 |
RMSE (m3/s) | - | - | 5.310259 | 5.369885 | 2.919411 | 0.683993 | 0.464124 | 0.442254 |
Time (12 h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) [39] | LMM-L (m3/s) | NLMM (m3/s) [8] | NLMM-L (m3/s) [9] | ANLMM-L (m3/s) [2] | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
1 | 261 | 228 | 228.00 | 228.00 | 228.00 | 228.00 | 228.00 | 228.00 |
2 | 389 | 300 | 305.19 | 300.19 | 303.80 | 299.74 | 300.92 | 301.75 |
3 | 462 | 382 | 382.00 | 377.92 | 382.30 | 382.57 | 381.51 | 382.38 |
4 | 505 | 444 | 442.70 | 440.10 | 442.40 | 442.76 | 443.15 | 442.81 |
5 | 525 | 490 | 483.60 | 482.17 | 482.40 | 482.16 | 482.69 | 483.63 |
6 | 543 | 513 | 513.00 | 511.70 | 511.2 | 509.89 | 510.09 | 510.15 |
7 | 556 | 528 | 534.29 | 532.96 | 532.30 | 530.72 | 530.66 | 530.75 |
8 | 567 | 543 | 550.44 | 548.97 | 548.50 | 546.77 | 546.62 | 546.79 |
9 | 577 | 553 | 563.53 | 561.89 | 561.70 | 559.96 | 559.77 | 559.53 |
10 | 583 | 564 | 573.16 | 571.53 | 571.60 | 569.94 | 569.80 | 569.75 |
11 | 587 | 573 | 580.02 | 578.38 | 578.70 | 577.07 | 576.95 | 577.89 |
12 | 595 | 581 | 587.32 | 585.44 | 586.20 | 584.39 | 584.22 | 584.03 |
13 | 597 | 588 | 592.14 | 590.40 | 591.20 | 589.68 | 589.60 | 589.77 |
14 | 597 | 594 | 594.59 | 592.93 | 593.90 | 592.34 | 592.30 | 591.61 |
15 | 589 | 592 | 592.02 | 590.68 | 591.80 | 590.33 | 590.34 | 586.67 |
16 | 556 | 584 | 574.89 | 574.62 | 575.70 | 574.68 | 574.86 | 576.15 |
17 | 538 | 566 | 556.85 | 556.15 | 558.50 | 556.41 | 556.23 | 556.07 |
18 | 516 | 550 | 536.93 | 536.22 | 539.00 | 537.43 | 537.13 | 536.33 |
19 | 486 | 520 | 512.18 | 511.79 | 514.80 | 513.47 | 513.35 | 521.23 |
20 | 505 | 504 | 507.96 | 505.60 | 509.60 | 507.07 | 506.51 | 502.72 |
21 | 477 | 483 | 493.22 | 492.40 | 484.90 | 494.86 | 494.95 | 492.05 |
22 | 429 | 461 | 462.34 | 462.82 | 464.80 | 464.39 | 464.94 | 463.80 |
23 | 379 | 420 | 421.87 | 422.73 | 425.10 | 423.97 | 424.15 | 422.09 |
24 | 320 | 368 | 372.34 | 373.60 | 376.10 | 375.05 | 375.07 | 374.32 |
25 | 263 | 318 | 318.97 | 320.23 | 322.40 | 321.35 | 321.35 | 322.59 |
26 | 220 | 271 | 270.39 | 271.06 | 272.50 | 271.42 | 271.40 | 271.68 |
27 | 182 | 234 | 226.99 | 227.38 | 227.50 | 226.94 | 227.09 | 229.70 |
28 | 167 | 193 | 197.20 | 196.67 | 195.70 | 194.92 | 195.13 | 194.64 |
29 | 152 | 178 | 174.87 | 174.28 | 172.60 | 172.46 | 172.76 | 174.61 |
SSQ (m3/s)2 | - | - | 1086.84 | 999.83 | 979.96 | 917.06 | 909.35 | 759.79 |
Squared root of SSQ (m3/s) | - | - | 32.97 | 31.62 | 31.30 | 30.28 | 30.16 | 27.56 |
NSE | - | - | 0.998247 | 0.998326 | 0.998359 | 0.998464 | 0.998478 | 0.998728 |
RMSE (m3/s) | - | - | 6.008111 | 5.8711693 | 5.813054 | 5.623423 | 5.598762 | 5.118558 |
Time (h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) | LMM-L (m3/s) [5] | NLMM (m3/s) [42] | NLMM-L (m3/s) [9] | ANLMM-L (m3/s) [2] | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
0 | 154 | 102 | 102.00 | 102.00 | 102.00 | 102.00 | 102.00 | 102.00 |
6 | 150 | 140 | 118.15 | 116.00 | 154.00 | 149.50 | 146.52 | 141.89 |
12 | 219 | 169 | 115.12 | 120.00 | 152.00 | 156.59 | 155.74 | 155.50 |
18 | 182 | 190 | 152.64 | 147.00 | 181.00 | 191.40 | 194.41 | 185.46 |
24 | 182 | 209 | 161.35 | 158.00 | 191.00 | 200.79 | 194.19 | 190.53 |
30 | 192 | 218 | 165.67 | 165.00 | 185.00 | 195.14 | 196.05 | 195.99 |
36 | 165 | 210 | 178.37 | 176.00 | 187.00 | 197.46 | 198.35 | 196.69 |
42 | 150 | 194 | 177.11 | 178.00 | 179.00 | 188.48 | 186.83 | 188.20 |
48 | 128 | 172 | 173.05 | 176.00 | 162.00 | 170.80 | 172.12 | 175.53 |
54 | 168 | 149 | 152.45 | 164.00 | 141.00 | 148.10 | 150.37 | 157.72 |
60 | 260 | 136 | 140.42 | 160.00 | 154.00 | 162.59 | 167.56 | 169.06 |
66 | 471 | 228 | 137.74 | 167.00 | 198.00 | 210.36 | 216.61 | 213.24 |
72 | 717 | 303 | 192.13 | 218.00 | 264.00 | 281.58 | 294.27 | 287.51 |
78 | 1092 | 366 | 280.05 | 303.00 | 344.00 | 367.75 | 378.29 | 378.89 |
84 | 1145 | 456 | 511.40 | 484.00 | 416.00 | 447.65 | 461.17 | 465.87 |
90 | 600 | 615 | 797.99 | 690.00 | 599.00 | 629.57 | 612.03 | 609.41 |
96 | 365 | 830 | 781.75 | 700.00 | 871.00 | 892.78 | 862.51 | 863.65 |
102 | 277 | 969 | 674.00 | 642.00 | 834.00 | 859.01 | 884.60 | 887.00 |
108 | 227 | 665 | 565.24 | 572.00 | 689.00 | 719.30 | 737.54 | 730.86 |
114 | 187 | 519 | 472.11 | 505.00 | 535.00 | 567.50 | 565.33 | 555.56 |
120 | 161 | 444 | 392.21 | 442.00 | 397.00 | 427.85 | 414.97 | 410.06 |
126 | 143 | 321 | 326.86 | 386.00 | 283.00 | 308.86 | 297.45 | 300.33 |
132 | 126 | 208 | 275.37 | 338.00 | 202.00 | 220.90 | 216.14 | 224.40 |
138 | 115 | 176 | 233.04 | 296.00 | 152.00 | 163.64 | 164.43 | 174.61 |
144 | 102 | 148 | 200.36 | 260.00 | 124.00 | 131.90 | 134.94 | 143.56 |
150 | 93 | 125 | 172.80 | 228.00 | 106.00 | 111.93 | 114.46 | 121.64 |
156 | 88 | 114 | 150.03 | 201.00 | 94.00 | 99.28 | 101.24 | 106.75 |
162 | 82 | 106 | 132.71 | 179.00 | 88.00 | 92.90 | 94.00 | 97.42 |
168 | 76 | 97 | 118.75 | 160.00 | 82.00 | 86.14 | 86.94 | 89.67 |
174 | 73 | 89 | 106.60 | 144.00 | 75.00 | 79.34 | 80.13 | 82.79 |
180 | 70 | 81 | 97.18 | 130.00 | 73.00 | 76.46 | 76.87 | 78.56 |
186 | 67 | 76 | 89.65 | 118.00 | 69.00 | 73.13 | 73.54 | 74.88 |
192 | 63 | 71 | 83.66 | 109.00 | 66.00 | 69.85 | 70.23 | 71.46 |
198 | 59 | 66 | 78.25 | 100.00 | 62.00 | 65.09 | 65.60 | 67.24 |
SSQ (m3/s)2 | - | - | 196,077.12 | 251,802.00 | 37,944.15 | 25,915.27 | 20,494.98 | 18,816.99 |
Squared root of SSQ (m3/s) | - | - | 442.81 | 501.80 | 194.79 | 160.98 | 143.16 | 137.18 |
NSE | - | - | 0.916666 | 0.921600 | 0.959208 | 0.988986 | 0.991290 | 0.992003 |
RMSE (m3/s) | - | - | 77.082625 | 74.765750 | 53.930178 | 28.023612 | 24.921077 | 23.879109 |
Time (h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) | LMM-L (m3/s) | NLMM (m3/s) | NLMM-L (m3/s) [9] | ANLMM-L (m3/s) [2] | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
0 | 7.53 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
1 | 9.06 | 8.00 | 7.59 | 7.25 | 7.58 | 7.24 | 7.26 | 8.14 |
2 | 28.00 | 23.00 | 10.06 | 9.11 | 9.94 | 9.00 | 9.01 | 11.97 |
3 | 79.80 | 25.00 | 29.95 | 27.66 | 29.56 | 27.35 | 27.35 | 25.63 |
4 | 64.30 | 75.00 | 76.04 | 74.92 | 75.86 | 74.84 | 74.81 | 73.93 |
5 | 38.20 | 60.00 | 63.47 | 61.36 | 63.70 | 61.57 | 61.59 | 62.61 |
6 | 41.40 | 40.00 | 39.84 | 37.33 | 39.96 | 37.40 | 37.41 | 37.54 |
7 | 41.30 | 41.00 | 41.30 | 39.64 | 41.31 | 39.63 | 39.62 | 39.37 |
8 | 33.80 | 41.00 | 40.87 | 39.42 | 40.92 | 39.47 | 39.47 | 39.72 |
9 | 32.00 | 32.00 | 34.10 | 32.55 | 34.15 | 32.57 | 32.58 | 32.56 |
10 | 29.00 | 30.00 | 31.95 | 30.66 | 31.98 | 30.68 | 30.68 | 31.10 |
11 | 35.00 | 34.00 | 29.51 | 28.03 | 29.49 | 28.00 | 28.00 | 29.48 |
12 | 63.10 | 35.00 | 36.30 | 34.10 | 36.10 | 33.93 | 33.93 | 36.09 |
13 | 110.00 | 60.00 | 64.26 | 60.98 | 63.81 | 60.62 | 60.62 | 63.47 |
14 | 170.00 | 105.00 | 110.82 | 105.81 | 110.12 | 105.25 | 105.25 | 108.08 |
15 | 216.00 | 160.00 | 169.24 | 162.69 | 168.46 | 162.06 | 162.07 | 157.14 |
16 | 131.00 | 206.00 | 208.43 | 203.95 | 208.54 | 204.11 | 204.11 | 205.42 |
17 | 101.00 | 128.00 | 133.73 | 126.88 | 134.55 | 127.58 | 127.61 | 126.32 |
18 | 65.00 | 97.00 | 100.81 | 96.74 | 101.33 | 97.14 | 97.10 | 98.08 |
19 | 62.40 | 61.00 | 66.91 | 63.14 | 67.19 | 63.33 | 63.32 | 63.18 |
20 | 53.80 | 60.00 | 62.16 | 59.71 | 62.26 | 59.78 | 59.76 | 59.18 |
21 | 36.30 | 50.00 | 53.27 | 51.37 | 53.44 | 51.51 | 51.50 | 51.71 |
22 | 29.60 | 33.00 | 36.89 | 35.07 | 37.03 | 35.16 | 35.16 | 35.19 |
23 | 25.00 | 27.00 | 29.75 | 28.44 | 29.82 | 28.49 | 28.48 | 28.49 |
24 | 21.30 | 23.00 | 25.06 | 24.00 | 25.11 | 24.03 | 24.03 | 24.13 |
25 | 19.60 | 19.00 | 21.42 | 20.47 | 21.44 | 20.49 | 20.49 | 20.53 |
26 | 18.00 | 18.00 | 19.61 | 18.80 | 19.63 | 18.81 | 18.81 | 18.90 |
27 | 17.30 | 17.00 | 18.05 | 17.28 | 18.06 | 17.29 | 17.29 | 17.38 |
28 | 17.00 | 17.00 | 17.33 | 16.60 | 17.33 | 16.60 | 16.60 | 16.63 |
29 | 16.00 | 17.00 | 16.96 | 16.29 | 16.97 | 16.29 | 16.29 | 16.53 |
SSQ (m3/s)2 | - | - | 512.87 | 282.89 | 510.18 | 281.11 | 280.95 | 217.73 |
Squared root of SSQ (m3/s) | - | - | 22.65 | 16.82 | 22.59 | 16.77 | 16.76 | 14.76 |
NSE | - | - | 0.992557 | 0.995895 | 0.992596 | 0.995921 | 0.995922 | 0.996840 |
RMSE (m3/s) | - | - | 4.134694 | 3.070802 | 4.123823 | 3.061080 | 3.060593 | 2.694028 |
Time (h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) | LMM-L (m3/s) [5] | NLMM (m3/s) | NLMM-L (m3/s) [9] | ANLMM-L (m3/s) [2] | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
0 | 2.60 | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 | 8.30 |
1 | 4.20 | 9.00 | 5.58 | 8.20 | 6.00 | 8.51 | 8.52 | 8.73 |
2 | 12.30 | 9.90 | 1.68 | 8.10 | 2.27 | 8.79 | 9.94 | 10.11 |
3 | 25.40 | 10.20 | 0.00 | 12.70 | 0.00 | 10.94 | 12.74 | 12.75 |
4 | 24.10 | 18.90 | 9.67 | 27.90 | 8.66 | 20.28 | 19.71 | 19.51 |
5 | 20.30 | 35.90 | 16.45 | 39.90 | 15.50 | 37.54 | 35.73 | 36.22 |
6 | 23.30 | 51.80 | 16.58 | 45.70 | 16.02 | 49.07 | 48.87 | 49.25 |
7 | 27.70 | 59.40 | 17.15 | 52.20 | 16.91 | 55.11 | 55.95 | 55.83 |
8 | 27.70 | 63.30 | 20.94 | 61.40 | 20.90 | 62.50 | 62.74 | 62.54 |
9 | 26.90 | 69.60 | 23.71 | 68.90 | 23.78 | 71.44 | 71.35 | 71.33 |
10 | 24.80 | 76.70 | 25.73 | 74.70 | 25.80 | 78.03 | 77.95 | 77.87 |
11 | 26.90 | 82.00 | 24.52 | 77.20 | 24.59 | 82.07 | 82.67 | 82.68 |
12 | 33.70 | 85.30 | 22.52 | 79.80 | 22.77 | 83.72 | 85.27 | 85.10 |
13 | 33.90 | 89.00 | 26.45 | 87.80 | 26.92 | 87.43 | 88.11 | 87.71 |
14 | 27.80 | 94.60 | 31.69 | 95.50 | 32.09 | 95.49 | 94.74 | 94.61 |
15 | 20.80 | 98.80 | 33.23 | 97.70 | 33.18 | 100.88 | 99.90 | 99.91 |
16 | 15.60 | 98.00 | 30.95 | 94.40 | 30.43 | 99.29 | 98.87 | 98.75 |
17 | 11.90 | 91.80 | 26.98 | 87.90 | 26.29 | 92.06 | 92.05 | 91.82 |
18 | 9.50 | 82.30 | 22.57 | 79.80 | 21.98 | 82.22 | 82.36 | 82.12 |
19 | 7.80 | 72.00 | 18.59 | 71.50 | 18.24 | 71.75 | 71.88 | 71.67 |
20 | 6.50 | 61.90 | 15.26 | 63.60 | 15.19 | 61.94 | 61.93 | 61.80 |
21 | 5.80 | 53.00 | 12.40 | 56.10 | 12.60 | 53.12 | 53.10 | 53.03 |
22 | 5.00 | 45.60 | 10.37 | 49.60 | 10.74 | 45.47 | 45.37 | 45.34 |
23 | 4.80 | 39.20 | 8.52 | 43.70 | 9.04 | 39.14 | 39.04 | 39.07 |
24 | 4.50 | 33.80 | 7.31 | 38.80 | 7.87 | 33.76 | 33.65 | 33.68 |
25 | 4.10 | 29.30 | 6.47 | 34.60 | 7.03 | 29.55 | 29.39 | 29.44 |
26 | 3.70 | 26.20 | 5.78 | 30.90 | 6.34 | 26.12 | 25.96 | 26.02 |
27 | 3.40 | 23.50 | 5.16 | 27.70 | 5.71 | 23.20 | 23.08 | 23.14 |
28 | 3.20 | 21.20 | 4.61 | 24.80 | 5.14 | 20.67 | 20.59 | 20.64 |
29 | 2.90 | 19.20 | 4.23 | 22.30 | 4.73 | 18.52 | 18.44 | 18.48 |
30 | 2.80 | 17.70 | 3.79 | 20.10 | 4.27 | 16.71 | 16.68 | 16.72 |
31 | 2.60 | 16.40 | 3.52 | 18.20 | 3.96 | 15.12 | 15.09 | 15.23 |
SSQ (m3/s)2 | - | - | 53,544.67 | 468.84 | 53,544.99 | 53.66 | 40.16 | 38.81 |
Squared root of SSQ (m3/s) | - | - | 231.40 | 21.65 | 231.40 | 7.33 | 6.34 | 6.23 |
NSE | - | - | −0.213958 | 0.989570 | −0.213965 | 0.998842 | 0.999090 | 0.999120 |
RMSE (m3/s) | - | - | 40.905633 | 3.790780 | 40.905755 | 1.263563 | 1.120320 | 1.101288 |
Time (h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) | LMM-L (m3/s) | NLMM (m3/s) | NLMM-L (m3/s) | ANLMM-L (m3/s) | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
0 | 0.79 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 |
3 | 2.12 | 1.04 | 0.75 | 0.75 | 0.64 | 0.65 | 0.65 | 0.62 |
6 | 3.54 | 2.11 | 1.79 | 1.80 | 1.81 | 1.80 | 1.78 | 1.79 |
9 | 50.75 | 3.19 | 4.66 | 4.96 | 3.14 | 3.12 | 2.62 | 2.34 |
12 | 103.90 | 38.32 | 39.94 | 40.42 | 41.86 | 41.65 | 40.88 | 41.01 |
15 | 112.33 | 90.68 | 86.69 | 86.43 | 89.99 | 89.68 | 89.43 | 89.79 |
18 | 82.41 | 106.18 | 104.31 | 102.80 | 104.36 | 104.08 | 104.41 | 104.44 |
21 | 45.06 | 82.32 | 87.14 | 84.88 | 84.25 | 83.98 | 84.39 | 84.04 |
24 | 23.12 | 51.59 | 55.83 | 53.70 | 52.80 | 52.46 | 52.58 | 52.12 |
27 | 15.76 | 31.21 | 31.82 | 30.31 | 30.74 | 30.33 | 30.17 | 29.87 |
30 | 15.03 | 20.82 | 20.13 | 19.22 | 20.63 | 20.23 | 19.98 | 19.86 |
33 | 17.22 | 17.24 | 16.50 | 15.97 | 17.41 | 17.07 | 16.86 | 16.80 |
36 | 17.27 | 17.65 | 17.02 | 16.64 | 17.91 | 17.64 | 17.51 | 17.50 |
39 | 15.04 | 16.09 | 17.13 | 16.76 | 17.58 | 17.38 | 17.32 | 17.30 |
42 | 9.97 | 13.02 | 15.44 | 15.05 | 15.59 | 15.44 | 15.44 | 15.41 |
45 | 6.38 | 10.39 | 11.34 | 10.98 | 11.16 | 11.04 | 11.04 | 10.98 |
48 | 5.67 | 8.17 | 7.71 | 7.43 | 7.59 | 7.49 | 7.45 | 7.39 |
51 | 4.45 | 7.07 | 6.19 | 5.99 | 6.36 | 6.27 | 6.23 | 6.21 |
54 | 4.23 | 5.99 | 4.92 | 4.77 | 4.99 | 4.92 | 4.89 | 4.87 |
57 | 4.18 | 4.91 | 4.42 | 4.30 | 4.52 | 4.46 | 4.43 | 4.42 |
60 | 2.25 | 4.20 | 4.18 | 4.07 | 4.32 | 4.27 | 4.27 | 4.27 |
63 | 2.33 | 4.02 | 2.78 | 2.69 | 2.67 | 2.64 | 2.63 | 2.60 |
66 | 2.24 | 3.01 | 2.45 | 2.38 | 2.51 | 2.48 | 2.46 | 2.45 |
69 | 2.11 | 3.13 | 2.29 | 2.24 | 2.34 | 2.31 | 2.30 | 2.30 |
72 | 2.83 | 3.49 | 2.18 | 2.14 | 2.18 | 2.16 | 2.14 | 2.13 |
75 | 4.25 | 4.55 | 2.70 | 2.67 | 2.73 | 2.71 | 2.68 | 2.67 |
78 | 2.83 | 4.20 | 3.78 | 3.72 | 3.94 | 3.92 | 3.92 | 3.94 |
81 | 2.15 | 2.08 | 3.07 | 2.99 | 2.95 | 2.93 | 2.94 | 2.92 |
84 | 2.13 | 1.04 | 2.40 | 2.33 | 2.33 | 2.31 | 2.30 | 2.37 |
SSQ (m3/s)2 | - | - | 88.23 | 73.81 | 43.79 | 42.32 | 40.16 | 39.55 |
Squared root of SSQ (m3/s) | - | - | 1.78 | 1.62 | 1.25 | 1.23 | 1.20 | 1.19 |
NSE | - | - | 0.996612 | 0.997166 | 0.998319 | 0.998375 | 0.998458 | 0.998482 |
RMSE (m3/s) | - | - | 1.775135 | 1.623577 | 1.250501 | 1.229365 | 1.197584 | 1.188440 |
Time (h) | Inflow (m3/s) | Outflow (m3/s) | LMM (m3/s) | LMM-L (m3/s) | NLMM (m3/s) | NLMM-L (m3/s) | ANLMM-L (m3/s) | This Study (m3/s) |
---|---|---|---|---|---|---|---|---|
0 | 0.53 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
3 | 1.86 | 1.02 | 0.52 | 0.52 | 0.43 | 0.44 | 0.44 | 0.41 |
6 | 3.30 | 2.09 | 1.54 | 1.55 | 1.57 | 1.56 | 1.54 | 1.55 |
9 | 59.34 | 3.79 | 4.71 | 5.08 | 2.91 | 2.90 | 2.30 | 1.95 |
12 | 85.37 | 42.46 | 45.27 | 45.61 | 48.82 | 48.58 | 48.05 | 48.45 |
15 | 124.77 | 79.88 | 75.73 | 75.51 | 75.72 | 75.50 | 75.05 | 74.93 |
18 | 88.73 | 115.68 | 110.14 | 108.82 | 113.04 | 112.65 | 112.85 | 113.28 |
21 | 48.98 | 87.42 | 93.24 | 90.93 | 89.96 | 89.69 | 90.22 | 89.81 |
24 | 25.23 | 57.05 | 60.29 | 58.03 | 56.88 | 56.55 | 56.70 | 56.21 |
27 | 17.09 | 25.19 | 34.54 | 32.93 | 33.26 | 32.85 | 32.68 | 32.36 |
30 | 12.43 | 19.64 | 21.71 | 20.70 | 22.29 | 21.88 | 21.66 | 21.54 |
33 | 19.03 | 15.39 | 15.19 | 14.63 | 15.69 | 15.35 | 15.09 | 14.96 |
36 | 16.39 | 20.74 | 17.89 | 17.51 | 19.31 | 19.02 | 18.88 | 18.94 |
39 | 16.44 | 15.69 | 16.80 | 16.43 | 17.01 | 16.81 | 16.74 | 16.68 |
42 | 8.97 | 12.45 | 16.28 | 15.89 | 16.71 | 16.54 | 16.55 | 16.56 |
45 | 6.89 | 10.17 | 10.90 | 10.52 | 10.48 | 10.36 | 10.36 | 10.26 |
48 | 6.76 | 9.50 | 7.98 | 7.71 | 7.97 | 7.86 | 7.80 | 7.76 |
51 | 4.90 | 5.93 | 7.03 | 6.83 | 7.28 | 7.19 | 7.15 | 7.15 |
54 | 4.55 | 4.98 | 5.47 | 5.31 | 5.49 | 5.41 | 5.39 | 5.36 |
57 | 3.51 | 4.50 | 4.76 | 4.63 | 4.88 | 4.82 | 4.80 | 4.79 |
60 | 2.45 | 4.05 | 3.82 | 3.70 | 3.85 | 3.80 | 3.80 | 3.88 |
SSQ (m3/s)2 | - | - | 221.92 | 180.41 | 171.45 | 161.99 | 159.84 | 157.64 |
Squared root of SSQ (m3/s) | - | - | 2.82 | 2.54 | 2.47 | 2.41 | 2.39 | 2.37 |
NSE | - | - | 0.990792 | 0.992514 | 0.992886 | 0.993279 | 0.993368 | 0.993459 |
RMSE (m3/s) | - | - | 2.815292 | 2.538342 | 2.474522 | 2.405271 | 2.389282 | 2.372746 |
Comparative Indicators | LMM | LMM-L | NLMM | NLMM-L | ANLMM-L | This Study |
---|---|---|---|---|---|---|
Time (s) | 634 | 633 | 741 | 753 | 810 | 936 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.H. Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows. Water 2021, 13, 3170. https://doi.org/10.3390/w13223170
Lee EH. Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows. Water. 2021; 13(22):3170. https://doi.org/10.3390/w13223170
Chicago/Turabian StyleLee, Eui Hoon. 2021. "Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows" Water 13, no. 22: 3170. https://doi.org/10.3390/w13223170
APA StyleLee, E. H. (2021). Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows. Water, 13(22), 3170. https://doi.org/10.3390/w13223170