Multiscale Complexity Analysis of Rainfall in Northeast Brazil
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data
2.3. Sample Entropy (SampEn)
- For a time series of length , one first forms m—dimensional template vectors ;
- The distance between two vectors and is defined as the maximum difference of their corresponding scalar components;
- ,;
- One then counts the number of vectors which are similar to within the tolerance level : , (—standard deviation of ) and to exclude self-matches;
- Defining , the probability that two vectors will match for n points is given by ;
- The steps i-iv are then repeated for vectors of length , defining and , where is a number of vectors which are similar (at tolerance level ) to , and is the probability that two vectors will match for points;
- Finally, sample entropy (SampEn) is defined as
2.4. Multiscale Entropy (MSE)
2.5. Modified Multiscale Entropy (MMSE)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Tomasella, J.; Ribeiro-Neto, G.G.; Brown, M.; Garcia, S.R.; Brito, S.B.; Carvalho, M.A. Changes in the spatial–temporal patterns of droughts in the Brazilian Northeast. Atmos. Sci. Lett. 2018, 19, e855. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Bernasconi, M. Regional differences in aridity/drought conditions over Northeast Brazil: Present state and future projections. Clim. Chang. 2015, 129, 103–115. [Google Scholar] [CrossRef]
- Hastenrath, S.; Greischar, L. Circulation mechanisms related to Northeast Brazil rainfall anomalies. J. Geophys. Res. Atmos. 1993, 98, 5093–5102. [Google Scholar] [CrossRef]
- Andreoli, R.V.; Kayano, M.T. Tropical Pacific and South Atlantic effects on rainfall variability over Northeast Brazil. Int. J. Climatol. 2006, 26, 1895–1912. [Google Scholar] [CrossRef]
- De Lima Moscati, M.C.; Gan, M.A. Rainfall variability in the rainy season of semiarid zone of Northeast Brazil (NEB) and its relation to wind regime. Int. J. Climatol. 2007, 27, 493–512. [Google Scholar] [CrossRef]
- Liebmann, B.; Kiladis, G.N.; Allured, D.; Vera, C.S.; Jones, C.; Carvalho, L.M.V.; Bladé, I.; Gonzáles, P.L.M. Mechanisms associated with large daily rainfall events in Northeast Brazil. J. Clim. 2011, 24, 376–396. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.T.; Santos e Silva, C.M.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor. Appl. Climatol. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Santos e Silva, C.M.; Souza, D.O. Spatial distribution of the level of return of extreme precipitation events in Northeast Brazil. Int. J. Climatol. 2020, 40, 5098–5113. [Google Scholar] [CrossRef]
- Uvo, C.; Berndtsson, R. Regionalization and spatial properties of Ceará State rainfall in Northeast Brazil. J. Geophys. Res. Atmos. 1996, 101, 4221–4233. [Google Scholar] [CrossRef] [Green Version]
- Lyra, G.B.; Oliveira-Júnior, J.F.; Zeri, M. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. Int. J. Climatol. 2014, 34, 3546–3558. [Google Scholar] [CrossRef]
- Silva, B.K.N.; Lucio, P.S. Characterization of risk/exposure to climate extremes for the Brazilian Northeast—case study: Rio Grande do Norte. Theor. Appl. Climatol. 2015, 122, 59–67. [Google Scholar] [CrossRef]
- Medeiros, E.S.D.; Lima, R.R.D.; Olinda, R.A.D.; Santos, C.A.C.D. Modeling spatiotemporal rainfall variability in Paraíba, Brazil. Water 2019, 11, 1843. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Celleri, R.; Willems, P.; De Bievre, B.; Wyseure, G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douka, M.; Karacostas, T. Statistical analyses of extreme rainfall events in Thessaloniki, Greece. Atmos. Res. 2018, 208, 60–77. [Google Scholar] [CrossRef]
- Blanchet, J.; Molinié, G.; Touati, J. Spatial analysis of trend in extreme daily rainfall in southern France. Clim. Dyn. 2018, 51, 799–812. [Google Scholar] [CrossRef]
- Camberlin, P.; Barraud, G.; Bigot, S.; Dewitte, O.; Makanzu Imwangana, F.; Maki Mateso, J.; Martiny, N.; Monsieurs, E.; Moron, V.; Pellarin, T.; et al. Evaluation of remotely sensed rainfall products over Central Africa. Q. J. R. Meteorol. Soc. 2019, 145, 2115–2138. [Google Scholar] [CrossRef]
- Neto, R.M.B.; Santos, C.A.G.; da Costa, J.F.C.B.; da Silva, R.M.; Dos Santos, C.A.C.; Mishra, M. Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: A trend analysis. Sci. Rep. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Chen, J.; Robertson, F.R.; Adler, R.F. Evaluation of global precipitation in reanalyses. J. Appl. Meteorol. Climatol. 2008, 47, 2279–2299. [Google Scholar] [CrossRef]
- Tessier, Y.; Lovejoy, S.; Hubert, P.; Schertzer, D.; Pecknold, S. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res. Atmos. 1996, 101, 26427–26440. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rybski, D.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.Y. Multifractality of Canadian precipitation and streamflow. Int. J. Climatol. 2017, 37, 1221–1236. [Google Scholar] [CrossRef]
- Adarsh, S.; Nourani, V.; Archana, D.S.; Dharan, D.S. Multifractal description of daily rainfall fields over India. J. Hydrol. 2020, 586, 124913. [Google Scholar] [CrossRef]
- Fuwape, I.A.; Ogunjo, S.T.; Oluyamo, S.S.; Rabiu, A.B. Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theor. Appl. Climatol. 2017, 130, 119–132. [Google Scholar] [CrossRef]
- Sivakumar, B. Nonlinear dynamics and chaos in hydrologic systems: Latest developments and a look forward. Stoch. Environ. Res. Risk Assess. 2009, 23, 1027–1036. [Google Scholar] [CrossRef]
- Mishra, A.K.; Özger, M.; Singh, V.P. An entropy-based investigation into the variability of precipitation. J. Hydrol. 2009, 370, 139–154. [Google Scholar] [CrossRef]
- Pierini, J.O.; Scian, B.; Lovallo, M.; Telesca, L. Discriminating climatological regimes in rainfall time series by using the Fisher-Shannon method. Int. J. Phys. Sci. 2011, 6, 7799–7804. [Google Scholar]
- Xavier, S.F.A.; da Silva Jale, J.; Stosic, T.; dos Santos, C.A.C.; Singh, V.P. An application of sample entropy to precipitation in Paraíba State, Brazil. Theor. Appl. Climatol. 2019, 136, 429–440. [Google Scholar] [CrossRef]
- Malik, N.; Bookhagen, B.; Marwan, N.; Kurths, J. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim. Dyn. 2012, 39, 971–987. [Google Scholar] [CrossRef]
- Boers, N.; Bookhagen, B.; Marengo, J.; Marwan, N.; von Storch, J.S.; Kurths, J. Extreme rainfall of the South American monsoon system: A dataset comparison using complex networks. J. Clim. 2015, 28, 1031–1056. [Google Scholar] [CrossRef]
- Jha, S.K.; Sivakumar, B. Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size. J. Hydrol. 2017, 554, 482–489. [Google Scholar] [CrossRef]
- Zhou, X.; Lei, W. Spatial patterns of sample entropy based on daily precipitation time series in China and their implications for land surface hydrological interactions. Int. J. Climatol. 2020, 40, 1669–1685. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Sang, Y.F. Precipitation complexity and its spatial difference in the Taihu Lake Basin, China. Entropy 2019, 21, 48. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.S.A.; Menezes, R.S.C.; Rosso, O.A.; Stosic, B.; Stosic, T. Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil. Chaos Solitons Fractals 2021, 143, 110623. [Google Scholar] [CrossRef]
- Serinaldi, F.; Zunino, L.; Rosso, O.A. Complexity–entropy analysis of daily stream flow time series in the continental United States. Stoch. Environ. Res. Risk Assess. 2014, 28, 1685–1708. [Google Scholar] [CrossRef]
- Ma, W.; Kang, Y.; Song, S. Analysis of streamflow complexity based on entropies in the Weihe River Basin, China. Entropy 2019, 22, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 68102. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.S.S.; Moorman, J.R.R.; Funke, G.J.; Knott, B.A.; Salas, E.; Pavlas, D.; Strang, A.J.; Gilmour, T.P.; Piallat, B.; Lieu, C.A.; et al. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, Y.K. Multi-scale entropy analysis of Mississippi River flow. Stoch. Environ. Res. Risk Assess. 2008, 22, 507–512. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Y.; Singh, V.P.; Chen, X. The influence of dam and lakes on the Yangtze River streamflow: Long-range correlation and complexity analyses. Hydrol. Process. 2012, 26, 436–444. [Google Scholar] [CrossRef]
- De Carvalho Barreto, I.D.; Stosic, T.; Filho, M.C.; Delrieux, C.; Singh, V.P.; Stosic, B. Complexity analyses of Sao Francisco river streamflow: Influence of dams and reservoirs. J. Hydrol. Eng. 2020, 25, 5020036. [Google Scholar] [CrossRef]
- Chou, C.M. Applying multiscale entropy to the complexity analysis of rainfall-runoff relationships. Entropy 2012, 14, 945–957. [Google Scholar] [CrossRef]
- Wu, S.D.; Wu, C.W.; Lee, K.Y.; Lin, S.G. Modified multiscale entropy for short-term time series analysis. Phys. A Stat. Mech. Its Appl. 2013, 392, 5865–5873. [Google Scholar] [CrossRef]
- Ranta, P.; Blom, T.O.M.; Niemela, J.; Joensuu, E.; Siitonen, M. The fragmented Atlantic rain forest of Brazil: Size, shape and distribution of forest fragments. Biodivers. Conserv. 1998, 7, 385–403. [Google Scholar] [CrossRef]
- Melo Santos, A.M.; Cavalcanti, D.R.; Silva, J.M.C.D.; Tabarelli, M. Biogeographical relationships among tropical forests in north-eastern Brazil. J. Biogeogr. 2007, 34, 437–446. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Da Silva, A.S.A.; Stosic, B.; Menezes, R.S.C.; Singh, V.P. Comparison of interpolation methods for spatial distribution of monthly precipitation in the state of Pernambuco, Brazil. J. Hydrol. Eng. 2019, 24, 4018068. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Griffin, M.P.; Moorman, J.R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Integr. Comp. Physiol. 2002, 283, R789–R797. [Google Scholar] [CrossRef] [Green Version]
- Mujib Kamal, S.; Babini, M.H.; Krejcar, O.; Namazi, H. Complexity-based decoding of the coupling among heart rate variability (HRV) and walking path. Front. Physiol. 2020, 11, 602027. [Google Scholar] [CrossRef] [PubMed]
- Balasis, G.; Daglis, I.A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K. Investigating dynamical complexity in the magnetosphere using various entropy measures. J. Geophys. Res. Sp. Phys. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Shuangcheng, L.; Qiaofu, Z.; Shaohong, W.; Erfu, D. Measurement of climate complexity using sample entropy. Int. J. Climatol. A J. R. Meteorol. Soc. 2006, 26, 2131–2139. [Google Scholar] [CrossRef]
- Han, M.; Pan, J. A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings. Measurement 2015, 76, 7–19. [Google Scholar] [CrossRef]
- Govindan, R.B.; Wilson, J.D.; Eswaran, H.; Lowery, C.L.; Preißl, H. Revisiting sample entropy analysis. Phys. A Stat. Mech. Its Appl. 2007, 376, 158–164. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Its Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef]
- Miskovic, V.; MacDonald, K.J.; Rhodes, L.J.; Cote, K.A. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Hum. Brain Mapp. 2019, 40, 538–551. [Google Scholar] [CrossRef]
- Guzmán-Vargas, L.; Ramírez-Rojas, A.; Angulo-Brown, F. Multiscale entropy analysis of electroseismic time series. Nat. Hazards Earth Syst. Sci. 2008, 8, 855–860. [Google Scholar] [CrossRef]
- Martina, E.; Rodriguez, E.; Escarela-Perez, R.; Alvarez-Ramirez, J. Multiscale entropy analysis of crude oil price dynamics. Energy Econ. 2011, 33, 936–947. [Google Scholar] [CrossRef]
- Gamboa, J.C.R.; Marques, E.C.M.; Stosic, T. Complexity analysis of Brazilian agriculture and energy market. Phys. A Stat. Mech. Its Appl. 2019, 523, 933–941. [Google Scholar]
- Azami, H.; Escudero, J. Coarse-graining approaches in univariate multiscale sample and dispersion entropy. Entropy 2018, 20, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, S.M.; de Farias, M.M.M. Potential for rainwater harvesting in a dry climate: Assessments in a semiarid region in northeast Brazil. J. Clean. Prod. 2017, 164, 1007–1015. [Google Scholar] [CrossRef]
Region | ||||||
---|---|---|---|---|---|---|
Agreste | Sertão | Zona da Mata | ||||
sd | sd | |||||
1 | 1.074 | 0.160 | 0.713 | 0.166 | 1.101 | 0.180 |
2 | 1.605 | 0.157 | 1.333 | 0.142 | 1.519 | 0.167 |
3 | 1.828 | 0.129 | 1.692 | 0.104 | 1.729 | 0.175 |
4 | 1.884 | 0.128 | 1.775 | 0.106 | 1.750 | 0.223 |
5 | 1.821 | 0.134 | 1.631 | 0.121 | 1.659 | 0.246 |
6 | 1.706 | 0.154 | 1.472 | 0.142 | 1.506 | 0.243 |
7 | 1.828 | 0.136 | 1.740 | 0.122 | 1.680 | 0.286 |
8 | 1.833 | 0.118 | 1.825 | 0.121 | 1.711 | 0.294 |
9 | 1.825 | 0.138 | 1.846 | 0.117 | 1.696 | 0.281 |
10 | 1.728 | 0.154 | 1.758 | 0.139 | 1.630 | 0.290 |
11 | 1.507 | 0.155 | 1.411 | 0.126 | 1.400 | 0.256 |
12 | 1.317 | 0.163 | 1.166 | 0.131 | 1.207 | 0.212 |
Region | ||||||
---|---|---|---|---|---|---|
Agreste | Sertão | Zona da Mata | ||||
sd | sd | sd | ||||
1 | 1.583 | 0.192 | 1.331 | 0.268 | 1.654 | 0.254 |
2 | 1.880 | 0.138 | 1.730 | 0.156 | 1.874 | 0.187 |
3 | 1.965 | 0.114 | 1.842 | 0.147 | 1.948 | 0.134 |
4 | 1.977 | 0.110 | 1.852 | 0.160 | 1.944 | 0.142 |
5 | 1.924 | 0.109 | 1.828 | 0.157 | 1.870 | 0.133 |
6 | 1.858 | 0.127 | 1.778 | 0.156 | 1.789 | 0.217 |
7 | 1.846 | 0.115 | 1.775 | 0.158 | 1.788 | 0.200 |
8 | 1.804 | 0.129 | 1.726 | 0.151 | 1.733 | 0.186 |
9 | 1.761 | 0.133 | 1.691 | 0.147 | 1.688 | 0.201 |
10 | 1.691 | 0.130 | 1.645 | 0.162 | 1.641 | 0.199 |
11 | 1.606 | 0.156 | 1.550 | 0.164 | 1.558 | 0.232 |
12 | 1.516 | 0.173 | 1.479 | 0.173 | 1.482 | 0.242 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.S.A.d.; Barreto, I.D.d.C.; Cunha-Filho, M.; Menezes, R.S.C.; Stosic, B.; Stosic, T. Multiscale Complexity Analysis of Rainfall in Northeast Brazil. Water 2021, 13, 3213. https://doi.org/10.3390/w13223213
Silva ASAd, Barreto IDdC, Cunha-Filho M, Menezes RSC, Stosic B, Stosic T. Multiscale Complexity Analysis of Rainfall in Northeast Brazil. Water. 2021; 13(22):3213. https://doi.org/10.3390/w13223213
Chicago/Turabian StyleSilva, Antonio Samuel Alves da, Ikaro Daniel de Carvalho Barreto, Moacyr Cunha-Filho, Rômulo Simões Cezar Menezes, Borko Stosic, and Tatijana Stosic. 2021. "Multiscale Complexity Analysis of Rainfall in Northeast Brazil" Water 13, no. 22: 3213. https://doi.org/10.3390/w13223213
APA StyleSilva, A. S. A. d., Barreto, I. D. d. C., Cunha-Filho, M., Menezes, R. S. C., Stosic, B., & Stosic, T. (2021). Multiscale Complexity Analysis of Rainfall in Northeast Brazil. Water, 13(22), 3213. https://doi.org/10.3390/w13223213