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Abstract: Songnen Plain is one of the three great plains in northeast China with abundant ground-
water resources. The continuous population growth and the rapid development of agriculture and
economy in China has caused a series of environmental problems in the plain, such as endemic
diseases caused by the accumulation of harmful substances in drinking water. This paper conducts a
systematic investigation of fluorine in the groundwater of Songnen Plain. The results showed that flu-
orine was widespread in the groundwater of the plain in the concentration range of BDL–8.54 mg·L−1,
at a mean value of 0.63 mg·L−1 and detectable at a rate of 85.91%. The highest concentrations of
fluorine were found in central and southwest areas of the plain. The concentration exceeded the
guideline values for fluorine in drinking water and may have varying degrees of adverse effects
on adults, and especially children, in the study area. The fluorine in groundwater mainly came
from the dissolution of fluorite and other fluorine-containing minerals, and the concentrations and
distribution of fluorine were affected by cation exchange, groundwater flow field and hydrochemical
indexes (pH, TDS and HCO3

−). The study provides scientific basis for the investigation, evaluation
and prevention of endemic diseases caused by fluorine.
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1. Introduction

Water is an important natural resource to guarantee normal human life and socioe-
conomic development. As one of the main components of water resources, groundwater
is exerting a more and more significant influence on society, and groundwater is also a
prerequisite for the development of other resources, especially in arid and semi-arid areas [1].
However, the accumulation of harmful elements caused by geological causes or human
activities not only harms the water environment, but also seriously affects the safety of
drinking water [2,3]. Fluorine is an essential element of the human body and moderate in-
take (0.5–1.5 mg·L−1) is beneficial to human health, according to the WHO guidelines [4–6].
However, excessive fluoride, after long-term consumption may lead to fluorosis, and it is
also a serious problem for the world’s geological environments [2,7]. Studies have shown
that over 260 million people are at risk of fluorosis all over the world, reported in locations
such as America, Argentina, China, Mexico, and India [8–13]. Therefore, the research on
high fluorine groundwater have gradually become a research focus.

Drinking water is the primary route by which fluoride enters the human body [14].
The National Health Commission of the PRC [15] and the WHO [16] guidelines have
set values for fluorine in drinking water at 1.0 and 1.5 mg·L−1, respectively. Fluorine is
widespread in natural minerals, such as flourite, cryolite, fluorapatite, etc. [8,9,17]. Studies
have shown that the main reason for the formation of high-fluorine groundwater in many
regions of the world is dissolution of fluorine-bearing minerals [18–20]. However, the
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distribution, formation and risk of high-fluorine groundwater in Songnen Plain, China
have not been systematically studied.

Songnen Plain is one of the largest and most fertile plains in China, and an important
agricultural production base [21,22]. The plain has a large groundwater aquifer system
with multiple aquifers and abundant groundwater resources [23]. With the continuous
growth of population and the rapid development of agriculture and economy, the con-
tradiction between supply and demand of water resources is becoming more and more
prominent in the area [24], and has caused a series of environmental problems, such as
metal pollution [25], nitrate pollution [26,27], and endemic diseases caused by excessive
content of fluorine, iodine and arsenic [28,29].

In this paper, the high content of fluorine in the groundwater of Songnen Plain is
investigated systematically. Through a series of processes such as field sampling, index
determination, sample preservation, pretreatment, detection and data analysis, the con-
centration, distribution, formation and human health risk of fluorine in groundwater in
Songnen Plain are revealed. This provides scientific basis for the investigation, evaluation,
and prevention of endemic diseases caused by fluorine.

2. Materials and Methods
2.1. Study Area

Songnen Plain is in the northeastern part of China and located at longitude 121◦21′–
128◦18′ and latitude 43◦36′–49◦26′. Songnen Plain is an important grain commodity pro-
duction base and animal husbandry base of China. It covers an area of 103,200 km2, and is
placed in the Songhua River basin. The plain evolved from the Mesozoic-Cenozoic faulted
basin and has accumulated over 8 km of Cretaceous terrestrial clastic deposits. Gravel, sand
and loam are the main components of strata in the study area, and cohesive soil interlayers
are locally distributed [1,26]. Analysis of the strata minerals revealed that fluorine–bearing
minerals are rich in the central and southwest strata of the plain, mainly including flourite,
apatite, cryolite, topaz, biotite, hornblende, tourmaline [26]. The regional groundwater
resources are abundant and the largest groundwater system of the entire aquifer includes
Neogene fissure–pore water, Cretaceous pore–fracture water, Quaternary pore water and
Paleogene fissure-pore water. Irrigation and precipitation constitute the main sources
of local groundwater recharge [30]. The shallow groundwater (depth is less than 50 m)
are greatly affected by anthropogenic activities, complicated and changeable chemical
composition. With the rapid development of agriculture and industry in northeastern
China, groundwater exploitation in this region is expanding and, coupled with decreasing
precipitation, the water table is declining and the groundwater environment in the study
area changed greatly.

2.2. Sampling

In this paper, a comprehensive groundwater pollution survey was carried out in
Songnen Plain from 2012 to 2014. Sampling time was concentrated in May to October each
year, due to the cold winters in northeast China. Groundwater sample collection in the
study area relied on local mechanized wells. A total of 2683 groundwater samples were
collected; their locations are shown in Figure 1. Prior to groundwater collection, the original
well water was pumped more than three times to flush the well’s pump [3]. The sampling
bottles (500 mL) were made of polyethylene plastic and were soaked in a 10%-sodium
hydroxide solution for 3 h [11], then cleaned with deionized water and distilled water in
turn, and finally dried at 60 ◦C for 5 h and stored in ziplock bags. Additionally, 2 mL
of concentrated nitric acid (1:1) was added to the sampling bottle for measuring heavy
metals [26]. Then, 2 mL of concentrated sulphuric acid (1:1) was added to the sample bottles
for the measurement of Fe and Mn [1]. The sample bottles were washed three times with the
corresponding water before each sampling. Each water sample collected was refrigerated at
−4 ◦C, and handled within 48 h. Unstable parameters, such as water temperature (T), pH,
electrical conductivity (EC) and also water-table depth were measured in situ.
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2.3. Analysis Methods
2.3.1. Data Analysis Method

In this paper, a variety of data analyses are reported; a hydrochemical analysis,
simulation methods, spatial analysis and mapping software are used herein toprocess the
large volume of groundwater-sample testing data collected. The comprehensive parameters
that can reflect groundwater characteristics and kriging method in statistics are selected
as spatial interpolation method. Based on variogram theory and structural analysis, the
comprehensive parameter zoning maps of groundwater at each layer are drawn with
the help of ArcGIS and Surfer professional mapping software. The SPSS software was
used to carry out descriptive statistical analysis on the main components of the sampled
groundwater. SUPCRTBL and PHREEQC were used to calculate the saturation index (SI)
of various rocks in combination with the latest database.

2.3.2. Instrumental Analysis

The instrumental analysis method used for the determinations of the water samples is
referenced from a previous study [1,26]: the pH and redox potential were determined by
dual-channel multi-parameter water quality analyzer (HQ40D, Field Case, cat. No:58258-00,
HACH, Loveland, CO, USA); K, Ca, Na, Mg, Mnand Fe concentrations were measured by
ICP-AES (IRIS Intrepid II XSP, Thermo Scientific, Waltham, MA, USA); the concentrations



Water 2021, 13, 3236 4 of 12

of Cl− and NO3
− in the water samples were measured by ion chromatograph (Dionex2500,

Dionex, Sunnyvale, CA, USA).

2.3.3. Saturation Index

The saturation index (SI) is, itself, derived from the formula of a theoretical derivation
and used to describe the equilibrium state of the water with respect to mineral phases
therein and to determine the dissolution or precipitation of minerals in rock–water interac-
tions [31,32]. The index was calculated by Equation (1):

SI = log
(

IAP
Ks

)
(1)

where IAP is the ion activity product of the solution and Ks is the solubility product
of the mineral. Different SI values indicate different states of ion in solution: SI > 0
indicates oversaturation (precipitation), SI = 0 indicates equilibrium and SI < 0 indicates
undersaturation (dissolution).

2.3.4. Human Health Risk Assessment

A human health risk assessment consists in determining potential adverse effects
of a target pollutant. The health risk assessment model (RBCA) was created to assess
non-carcinogenic risks. We have mainly referred to oral exposures to pollutants in this
study because the mouth is considered the primary route thereof. The calculations of
non-carcinogenic risk (hazard quotient, HQ) of directly consuming water resources were
extrapolated from the oral reference dose (RfD), hazard index (HI) represents the total
non-carcinogenic risk to humans when the ADI (average daily intake) was unavailable, as
shown in Equation (2). HI > 1 indicates that the exposed individual was adversely affected.

HQ =
EDI
R f D

=
CS× IR× EF× ED

BW × AT × R f D
and HI =

n

∑
i=1

HQi (2)

where CS (mg·L−1) is the concentration of OPPs in the water; IR is the average daily
water intake (1.5 and 0.7 L·d−1 for adults, children, respectively); EF stands for exposure
frequency (365 d·y−1). The EDs (exposure durations) for children and adults were 12 and
30 years, respectively; BWs (body weights) for children and adults were 10 and 60 kg,
respectively [16]. AT represents average lifetime, and was 4380 and 1095 days for adults
and children, respectively. RfD stands for the reference dose of the carcinogen consumed
orally. The value of the RfD for fluoride was 0.04 mg·kg−1·day−1 [33,34].

2.4. Quality Assurance/Quality Control (QA/QC)

In order to make sure the accuracy of the measurement results, blank samples and
standard samples were taken from each batch during sampling. After analysis, the standard
deviations ranged from 0.09% to 0.23% and the target pollutant was not detected in the blank
samples, which conformed to the stated data processing standards [35,36]. In determining
groundwater quality parameters, the recovery indicator was added before the water sample
was processed; samples’ recovery rates ranged from 84.4 to 95.7%, and the average was
89.4%; moreover, we compiled the standard curve for target objects and the results of
the analysis show that the correlation coefficient of the linear equation was over 0.99; all
conformed to quality assurance standards for the processing of groundwater [37,38].

3. Results and Discussion
3.1. Hydrochemical Parameters and Types

The concentrations of hydrochemical parameters are shown in Table 1. The main
cations in groundwater in the study area were Ca and Na, the concentration of Ca ranged
from 1.56 to 567.65 mg·L−1, with an average of 95.04 mg·L−1 and the concentration of Na
ranged from 4.51 to 1107.36 mg·L−1, with an average of 74.45 mg·L−1. According to the
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groundwater index detection values, the Piper diagram of groundwater hydrochemistry
types in the study area was drawn in Figure 2. Generally speaking, the main groundwater
chemical type in the study area was HCO3–Ca type [1], accounting for 24.83% of the total
water samples. Other main groundwater types include HCO3–Ca·Mg type, HCO3–Na·Ca
type, HCO3–Na·Mg·Ca type and HCO3·Cl–Ca type, accounting for 19.43%, 16.78%, 13.92%,
12.11% and 9.56% of the total water samples, respectively.

Table 1. Concentrations of hydrochemical parameters and saturation indexes of minerals.

Parameters
Concentration

Minimum Maximum Mean

K+ (mg·L−1) 0.85 234.18 8.55
Na+ (mg·L−1) 4.51 1107.36 74.45
Ca2+ (mg·L−1) 1.56 567.65 95.04
Mg2+ (mg·L−1) 2.43 589.88 36.77

HCO3− (mg·L−1) 11.61 1838.05 354.69
SO4

2− (mg·L−1) 0.19 1198.79 86.93
Cl− (mg·L−1) BDL 1831.56 113.45

NO3− (mg·L−1) BDL 1751.89 100.23
TH (g·L−1) 0.15 2.44 0.98
TDS (g·L−1) 0.58 6.17 1.46

pH 5.76 9.99 7.37
F− (mg·L−1) BDL 8.54 0.63
SI (Flourite) −5.57 −0.48 −1.88
SI (Calcite) −1.87 −0.10 −0.98

SI (Gypsum) −6.01 3.11 −0.79
SI (Halite) −7.16 −0.05 −3.08

SI (Dolomite) −2.80 −0.35 −1.01
Unit: BDL = below detection limit.TH: total hardness; TDS: total dissolved solids.
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3.2. Distributions of Fluorine

The concentration range of fluorine in groundwater was BDL–8.54 mg·L−1, with a
mean value of 0.63 mg·L−1, and its detection rate was 85.91%. The content distributions of
fluorine are showed in Figure 3; in the study area’s groundwater the highest concentrations
of fluorine (over 2 mg·L−1) were found in the central and southwest areas of the Songnen
Plain, such as Tongyu, Qianan, Baicheng, Lindian, Daqing, Zhaozhou, Zhaodong—and,
the observed concentrations exceeded the maximum fluorine content (1.5 mg·L−1) that is
beneficial to human health [6] and within the guideline values set by the National Health
Commission of the PRC (1.0 mg·L−1) [15] and the WHO (1.5 mg·L−1) [16].
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3.3. Formation and Influencing Factors of Fluorine in Groundwater
3.3.1. Dissolution and Precipitation of Minerals

Research has shown that the dissolution of fluorine-bearing minerals and the precipi-
tation of calcium-bearing minerals are the main influencing factors of F− enrichment in
groundwater [8,20,39,40]. Analysis of the strata minerals in the study area revealed an
abundance of fluorine-bearing minerals in the central and southwest strata of the plain,
mainly flourite, apatite, cryolite, topaz and hornblende [1,26]. The saturation indices of SI
fluorite in almost all groundwater samples in the study area were less than zero, and there
was a significant positive correlation between F− concentration and SI fluorite (Figure 4a),
suggesting that the dissolution of fluorite is the main source of F− in the groundwater
of these areas. According to other mineral saturation indices (SI Calcite < 0, SI Halite < 0,
SI Dolomite < 0), calcite, halite and dolomite had not reached the saturation state and were
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easy to dissolve in reaction. SI fluorite had a logarithmic increase, with an increasing
concentration of F− in groundwater (Figure 4a). Where fluorite tended to saturate, the
concentration of F− reached the upper limit, indicating that the concentration of F− was
restricted by the equilibrium constant of fluorite (Ksp = 10−10.059, 22 ◦C). By comparing the
concentration relationship between Ca2+ and F− (Figure 4b), fluorine in the groundwater
samples below the fluorite dissolution curve (dotted line in Figure 4b) mainly came from
the dissolution of fluorite, and the fluorine in the groundwater samples above the disso-
lution curve came not only from the dissolution of fluorite, but also from other sources.
The results show that the dissolution of fluorine-bearing minerals is main reason for the
deposition of significant fluorine in the groundwater of Songnen Plain—similar to condi-
tions found elsewhere in China [14,41] and the world, such as America [11], Mexico [8] and
India [10].
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3.3.2. Cation Exchange

The formation of groundwater hydrochemistry is often closely related to cation ex-
change [40], and cation exchange is the significant factor affecting the formation of fluorine
in this study area. Cation exchange was confirmed with chloro-alkaline CAI 1 and CAI 2,
and the indices were calculated by Equations (3) and (4).

CAI 1 =
CI− −

(
Na+ + K+

)
CI−

(3)

CAI 2 =
CI− −

(
Na+ + K+

)
HCO3− + SO4

2− + CO32− + NO3− (4)

where, if CAI 1 > 0 and CAI 2 > 0, it is indicated that the dissolved Na+ and K+ in the
groundwater will exchange cations with the absorbed Mg2+ and Ca2+. However, when
less than zero, it is indicated that the dissolved Mg2+ and Ca2+ will exchange with the
absorbed Na+ and K+. Moreover, the greater the absolute value, the stronger the cation
exchange. Figure 5 shows the CAI 1 and CAI 2 of the groundwater samples. All values
of CAI 2 do not exceed zero, and most values of CAI 1 were negative. This suggested
that the cation exchange process of dissolved Mg2+ and Ca2+ exchanging cations with the
absorbed Na+ and K+ was the driving process explaining local mineral concentrations,
and it is also responsible for the decreased contents of Mg2+ and Ca2+ in the groundwater.
This process may promote the hydrolysis of fluorite and other fluorine minerals (including
apatite, cryolite, topaz, hornblende, tourmaline, etc.), thereby increasing the fluorine in
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groundwater. This indicates that the cation exchange process can affect the fluorine content
in groundwater, as is consistent with previous studies [12,19,40,42].
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3.3.3. Hydrochemical and Hydrological Influence Factors

Hydrochemical parameters are also one of the important factors affecting the content
and distribution of fluorine [43,44]. It has been found that fluorine accumulates more
easily in an alkaline environment [18], therefore, the areas with the highest pH values
(pH > 8.5) in the study area (shown in Supplementary materials, Figure S1) also had
the highest F− contents. Correlation analysis between fluorine and other hydrochemical
parameters in groundwater showed (Figure 6) that the concentrations of F− in groundwater
were positively correlated with the concentrations of TDS (total dissolved solids) and
HCO3

−. The results indicated that the concentrations and distribution characteristics of
F− in groundwater were closely related to the pH of the groundwater environment and
the concentrations of TDS and HCO3

−, again, as is consistent with previous studies [44].
Correlation analysis of fluorine and other high concentration pollutants (I−, Mn2+, Fe) in
the groundwater showed (Figure S2) that fluorine was only weakly correlated with iodine
(having similar properties), indicating that the pollutants in the groundwater had little
influence on each other.

Hydrological conditions can partly affect the concentration and distribution of fluorine
in groundwater [1,41]. The shallow groundwater system of Songnen Plain belongs to a larger
groundwater catchment basin, and groundwater gather in its central low plain [16,29]. There-
fore, the groundwater in the surrounding areas, especially the high-fluorine groundwater
in the southwest area, will gradually migrate to the central region through the groundwa-
ter flow field, further increasing the fluorine concentrations in the already-high-fluorine
groundwater in the central plain area.

3.4. Human Health Risk Assessment of Fluorine

Health risk assessments are mainly concerned with oral exposures; to that end, the risk
assessment of non-carcinogens performed was based on the concentrations of fluorine in ground-
water, and the results are shown in Figure 7. The sampling points (HQ Children > 1) accounted
for 92.26% of the total samples, signaling that the groundwater fluorine concentration is
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high enough to have significant adverse effects on children in the study area. The sampling
points (HQ Adults > 1) accounted for 32.18% of the total samples, indicating that the fluorine
content was also high enough to adversely affect adults, though much less so than chil-
dren. In addition, the districts where the fluorine in the groundwater showed the greatest
potential influence on children and adults were roughly the same, and were concentrated
in the southwest and central Songnen Plain, such as Tongyu Lindian and Daqing.
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4. Conclusions

Fluorine is widespread in the groundwater of the Songnen Plain, at a concentration
range of BDL–8.54 mg·L−1, with a mean value of 0.63 mg·L−1 and detectable at a rate of
85.91%. The highest concentrations of fluorine (over 2 mg·L−1) were found in the central
and southwest areas of the plain. The concentrations there exceeded the guideline values
for fluorine in drinking water set by both the National Health Commission of the PRC
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(1.0 mg·L−1) and the WHO (1.5 mg·L−1), and represent varying degrees of adverse effect
on adults, and especially children, in the study area. The fluorine in these groundwaters
mainly came from the dissolution of fluorite and other fluorine-containing minerals in the
study area; additionally, the concentrations and distribution of fluorine were shown to be
affected by cation exchange, the groundwater flow field and hydrochemical indexes (pH,
TDS and HCO3

−). The study provides scientific basis for the investigation, evaluation and
prevention of endemic diseases caused by groundwater fluorine.
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