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Abstract: Reclaimed water is an alternative water source which could alleviate the shortage of water
resources in agricultural systems. Many researchers have studied the effect of reclaimed water on soil
environment, crop yield, etc. However, carbon sequestration in reclaimed water irrigated agricultural
systems is less studied. This study investigates methane uptake and photosynthesis in reclaimed
water irrigation systems contributing to carbon sequestration estimation and analyzes the important
factors impacting them. The results show that CH4 uptake is related to soil water-filled pore space
(WFPS) with a quadratic and it has the highest uptake when WFPS is between 40 and 50%. Long-term
reclaimed water irrigation could significantly decrease (p < 0.05) CH4 uptake and macroaggregate
stability in the topsoil. However, reclaimed water had no significant impact on photosynthesis in
comparison. The type of fertilizer is an important factor which impacts CH4 emission from soil; urea
had a lower CH4 uptake and a higher CO2 emission than slow-released fertilizer. Overall, reclaimed
water irrigation could effectively decrease soil carbon sequestration. A soil wetted proportion level
of 40–50% was recommended in this study for favorable methane oxidation. Slow-released fertilizer
in reclaimed water irrigated agriculture could better control soil carbon emission and soil carbon
absorption.

Keywords: CH4 uptake; photosynthesis; carbon exchange; soil environment; water-filled pore space;
types of fertilizer

1. Introduction

Agricultural CH4 production from soil plays an important role in global radiation
and the greenhouse effect. Some studies showed that CH4 contributes 18% of global radia-
tion [1,2], and its greenhouse effect capacity is 26 times that of CO2 [2]. Lashof et al. [3] and
Jain et al. [4] considered that global CH4 emissions were rising. Dryland carbon sequestra-
tion is necessary for global carbon balance, which includes CH4 uptake and photosynthesis.
Most studies showed that dryland CH4 uptake accounts for 6% of the total global methane
consumption, and it is a very important part of CH4 sink [5,6]. The soil carbon sequestration
could be impacted by many factors, such as temperature, soil water content, fertilizer, soil
environment, etc. Temperature can significantly promote the activity of methane oxidizing
bacteria and increase methane production [7]. Soil moisture can control bacteria activity
and affect the soil oxygen content. Previous literature also studied the relationship between
CH4 oxidation capacity and soil moisture, showing that it increases with the increase in soil
moisture [8]. Previous studies also demonstrated that there is a strong relationship between
methane production and soil oxygen concentration [9]. Methane oxidizing bacteria could
have a strong relationship with soil EC, nitrogen [10]. These driving factors can be divided
into two types: (1) Dynamic type, water change and temperature could drive CH4 emission
and significantly impact crop growth. (2) Biochemistry type, that attributed soil properties
could participate in CH4 production processes and crop growth by impacting the soil
microorganism and the soil electronic change.
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In recent years, with the development of intensive agricultural systems, the water
resources in some regions are vulnerable [11]. Reclaimed water as an alternative water
source has gradually been used in agricultural irrigation. Most studiesshowed that long-
term reclaimed water irrigation could effectively impact the soil pH, EC, and soil organic
carbon [12,13] and could effectively impact crop growth and photosynthesis [14,15]. More-
over, some researchers showed that sewage water could increase soil CH4 emission in
the paddy field agricultural system [16,17]. These studies suggest that the increasing gas
emissions from soil could contribute to the microorganism activity [18] or the changing
soil environment [19] impacted by reclaimed water. However, few studies have explored
the reason for this. Therefore, it is necessary to determine the effect of reclaimed water on
soil CH4 emission and observe the patterns of soil carbon sinks under reclaimed water
irrigated agricultural systems. This effectively guided the reclaimed water irrigation and
balanced carbon emission.

The present study focused on the effect of reclaimed water on the patterns of main
carbon sequestration (dryland CH4 uptake, crop photosynthesis) under two types of fertil-
izer (urea and slow-released fertilizer) and illustrated the factors affecting these changes
under reclaimed water irrigation. Our findings could effectively guide the reclaimed water
irrigation technology contributing to carbon balance in the soil–atmosphere system, and
are beneficial to fertilizer in reclaimed water irrigated agriculture.

2. Materials and Methods
2.1. Experiment Design

The experiment site of Tongzhou, Beijing, China, is shown in Figure 1. The details
of trail conditions and agricultural management are described in Chi et al. [20]. The
experiment set two types of water quality (reclaimed water and underground water)
and two types of fertilizer (urea and slow released fertilizer), as shown in Table 1. The
properties of the soil in all treatments were measured at the beginning of the experiment.
The sampling took place in October 2013 and the details are shown in Table 2.
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Table 1. The number of experiment.

Item Water Quality Fertilizer Number Remarks

1 underground water/CW urea/UF CUF control group
2 underground water/CW slow released fertilizer/AF CAF
3 reclaimed water/RW urea/UF RUF experimental

group4 reclaimed water/RW slow released fertilizer/AF RAF

Table 2. The soil background value at beginning of planting.

Item NO3
(mg/k)

NH4
+

(mg/kg) pH EC
(us/cm)

TN
(mg/kg)

SOC
(mg/kg)

RUF 2013 8.21 ± 2.12 8.94 ± 2.12 7.81 ± 0.32 531.23 ± 12 3.12 ± 0.22 11.06 ± 0.13
CUF 2013 8.10 ± 1.94 8.73 ± 2.34 7.93 ± 0.11 654.51 ± 34 3.01 ± 0.22 8.01 ± 0.77
RAF 2013 8.11 ± 0.14 8.19 ± 3.42 8.01 ± 0.15 431.43 ± 24 2.94 ± 0.13 10.34 ± 0.54
CAF 2013 8.13 ± 2.34 8.41 ± 2.32 8.04 ± 0.24 351.71 ± 15 2.01 ± 0.14 11.23 ± 0.54

2.2. The Sampling Method and Collection

Soil CH4 emission: The CH4 emission from the soil was measured by chamber-gas
chromatography, using Agilent GC-6820 (Agilent Technologies Inc., Santa Clara, CA, USA),
20 mL of gas was collected in each sample. The square chamber was 50 cm×50 cm×50 cm,
and it was inserted to a depth of 5 cm in the soil. One chamber and stopwatch was inserted
into each plot, 2–3 people sampled at the same time, and a gas collection was fulfilled in
10 s. Samples were taken between 14:00 p.m. and 16:00 p.m. in wheat growth season and
between 9:00 a.m. and 11:00 a.m. in maize growth season [21]. Every treatment had three
replicates. The calculation of CH4 emission was described by Hashimoto et al. [22] and
Konda et al. [23]. The soil average temperature of 0–20 cm was recorded when the gas
was collected.

Crop photosynthesis: The rate of crop photosynthesis was measured by a portable
photosynthetic gas analysis system (CI-340, CID, America), every treatment had 5 replicates.
During the winter wheat period, the photosynthesis of flag leaf was measured. The sample
was collected on early jointing, mid jointing, botting, heading, and filling stage. During the
summer maize period, the collecting time was V3 (third leaf), V6 (sixth leaf), V12 (twelfth
leaf), VT (tasseling), R2 (blister stage) and R3 (milk stage).

Carbon balance means to the carbon gas exchange. The calculation is as follows:

Carbon balance = C4 + Cp − C2

C2 was cumulative CO2 emission (t.hm−2); Cp was et photosynthesis in wheat-summer
rotation system (t.hm−2); C4 was cumulative CH4 emission (t.hm−2) (hm2 = 1000 × m2),
the value converted to CO2-eq from soils during one crop production in wheat-summer
rotation system.

WFPS and temperature: soil water content and temperature were measured by soil
moisture and temperature sensors (ET-100, Insentek, China), the buried depth of sensor
was 1 m. The WFPS in 20 cm depth soil was as follows:

WFPS =
θv

1 − r/ρ
(1)

θv was the soil water content; r was the soil bulk density; ρ was the soil density
2.65 g/cm2.

pH, EC and soil nitrogen: Soil samples were collected when the photosynthesis was
measured, every treatment had five replicates and the depth was 0–30 cm. The pH and EC
was measured by a multi-parameter tester (SG23, Mettler Toledo, Shanghai, China) and
the soil nitrogen (NH4

+, NO3
−) was measured by a continuous flowing analyzer (Alliance

FUTURA, AMS, Frépillon, France). The measurement method of soil properties referred to
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can be found in [24]. Soil particle size was measured by a laser particle sizer (0.01–3500 um,
Mastersizer 3000, Malvern, England).

2.3. Data Analysis

All statistical analyses were carried out using SPSS V26 for MacOS (SPSS Inc., Chicago,
IL, USA). Analysis of variance (ANOVA) was used to determine treatment effects. The least
significant difference procedure (LSD) and contrasts with a probability level of 0.05 were
used to determine significant differences between treatment means by using a t-test. In
this study, average refers to the arithmetic mean. Correlations were assessed by Pearson’s
correlation coefficient (α). The soil carbon exchange in this paper refers to the carbon
content exchanged between soil and atmosphere during the main planting period in winter
wheat and summer maize rotation.

3. Results
3.1. Principal Component Analysis

The PC1 was 55.1% and the PC2 was 24.9%. As shown in Figure 2, UF treatments in
PC2 were higher than AF treatments, and RW (reclaimed water) treatments in PC1 were
higher than CW (clean/underground water) treatments. Type of fertilizer respect PC2,
type of water respect PC1. EC, NO3

−, N2O and NH4
+ occurred on the first quadrant. pH,

SOC and CO2 occurred on the fourth quadrant. CH4 was at the second quadrant. The N2O
emission flux was related to EC, NO3

−, NH4
+ and TN, the CO2 emission flux was related

to SOC, pH and TN, but these soil properties had no relationship with soil CH4 emission.
Moreover, all treatments were divided into two parts according to fertilizer type (Figure 2).
During the four-year experiment, reclaimed water could effectively soil pH, TN, NO3

−,
and the greenhouse gas (CO2, N2O and CH4) was related to the type quality of irrigated
water. The absolute value of NH4

+, EC and SOC in PC2 was higher than PC1.

Water 2021, 13, x FOR PEER REVIEW 4 of 11 
 

 

and the soil nitrogen (NH4+, NO3-) was measured by a continuous flowing analyzer (Alli-
ance FUTURA, AMS, Frépillon, France). The measurement method of soil properties re-
ferred to can be found in [24]. Soil particle size was measured by a laser particle sizer 
(0.01–3500 um, Mastersizer 3000, Malvern, England). 

2.3. Data Analysis 
All statistical analyses were carried out using SPSS V26 for MacOS (SPSS Inc., Chi-

cago, IL, USA). Analysis of variance (ANOVA) was used to determine treatment effects. 
The least significant difference procedure (LSD) and contrasts with a probability level of 
0.05 were used to determine significant differences between treatment means by using a 
t-test. In this study, average refers to the arithmetic mean. Correlations were assessed by 
Pearson’s correlation coefficient (α). The soil carbon exchange in this paper refers to the 
carbon content exchanged between soil and atmosphere during the main planting period 
in winter wheat and summer maize rotation. 

3. Results 
3.1. Principal Component Analysis 

The PC1 was 55.1% and the PC2 was 24.9%. As shown in Figure 2, UF treatments in 
PC2 were higher than AF treatments, and RW (reclaimed water) treatments in PC1 were 
higher than CW (clean/underground water) treatments. Type of fertilizer respect PC2, 
type of water respect PC1. EC, NO3-, N2O and NH4+ occurred on the first quadrant. pH, 
SOC and CO2 occurred on the fourth quadrant. CH4 was at the second quadrant. The N2O 
emission flux was related to EC, NO3-, NH4+ and TN, the CO2 emission flux was related to 
SOC, pH and TN, but these soil properties had no relationship with soil CH4 emission. 
Moreover, all treatments were divided into two parts according to fertilizer type (Figure 
2). During the four-year experiment, reclaimed water could effectively soil pH, TN, NO3-, 
and the greenhouse gas (CO2, N2O and CH4) was related to the type quality of irrigated 
water. The absolute value of NH4+, EC and SOC in PC2 was higher than PC1. 

 
Figure 2. The patterns of soil temperature and WFPS from 2014 to 2015. 

3.2. Soil CH4 Emission 
As shown in Figure 3, soil could absorb methane effectively from 2013 to 2014, and 

the patterns of methane emission flux were similar in all treatments. As shown in Table 3, 
reclaimed water could significantly decrease methane uptake between 11.76 and 27.27%, 
AF could increase the methane uptake in comparison with UF. The order of methane cu-
mulative uptake was RUF < RAF < CUF < CAF. 

Figure 2. The patterns of soil temperature and WFPS from 2014 to 2015.

3.2. Soil CH4 Emission

As shown in Figure 3, soil could absorb methane effectively from 2013 to 2014, and
the patterns of methane emission flux were similar in all treatments. As shown in Table 3,
reclaimed water could significantly decrease methane uptake between 11.76 and 27.27%,
AF could increase the methane uptake in comparison with UF. The order of methane
cumulative uptake was RUF < RAF < CUF < CAF.
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Table 3. The average and cumulative CH4 emission from 2013 to 2016.

Treatment
2013 2014 2015 2016

Aver Cum Aver Cum Aver Cum Aver Cum

RUF −13.21 a −0.079 a −13.79 a −0.17 a −13.25 a −0.16 a −12.87 a −0.11 a
CUF −12.47 a −0.074 a −15.26 b −0.19 b −15.04 b −0.18 b −14.86 b −0.14 b
RAF −13.53 a −0.081 a −13.08 a −0.16 a −13.63 a −0.17 a −13.45 a −0.12 a
CAF −12.93 a −0.077 a −13.14 a −0.17 a −15.58 b −0.19 b −15.12 b −0.14 b

Aver means the average CH4 emission flux during the growth period, unit is ug.h−1.m−2.; Cum means the
cumulative CH4 emission flux during the growth period, unit is t.hm−2. a.b indicate that the significant analysis
between different water quality types within the same fertilizer. Means followed by the same letter are not
significantly different according to t-test (p < 0.05).

In order to analyze the factors that could impact methane emission, the paper shows
the relationship between methane and WFPS, soil nitrogen. As shown in Figure 4, the
relationship between WFPS and methane was quadratic, and the R2 in AF treatment was
higher UF. Meanwhile, the RAF (0.15) and RUF (0.34) was higher CUF (0.13) and CAF
(0.26). As shown in Figure 4, there was a strong linear relationship between methane and
soil NH4

+, the R2 in RUF and CUF was 0.65 and 0.32, respectively (Table 4). However,
there is no relationship between methane and soil NO3

−.

Table 4. The regression between CH4 emission and soil WFPS, NH4
+ content.

The Regression
Equation R2

Y-CH4 Emission x

RUF WFPS Y= −30.82 + 53.5x − 36.97x2 0.15
RAF WFPS Y = 51.00 − 267.03x + 271.82x2 0.34 **
CUF WFPS Y= 31.84 − 228.92x + 266.67x2 0.13
CAF WFPS Y= 26.55 − 218.92x + 267.83x2 0.26 **
RUF NH4

+ Y= −21.89 + 0.96x 0.65 *
CUF NH4

+ Y= −19.45 + 0.68x 0.32
* indicates that p< 0.05 according to T-TEST test; ** indicates that p< 0.01 according to T-TEST test.
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3.3. Photosynthesis

As shown in Figure 5, photosynthesis from 2014 to 2015 had similar varieties among all
treatments; photosynthesis first increased and then decreased. There is a strong correlation
between photosynthesis and temperature, the highest value appeared between 12:00 and
15:00, and the average value in the summer-maize period was higher than in the winter-
wheat period. The highest value appeared in August during the summer-maize period,
white-wheat kept it steady among all treatments. As shown in Table 5, there was no
significant difference (p > 0.05) between RW and CW, and photosynthesis in UF was higher
than AF during the whole period.

Table 5. Cumulative carbon balance calculation from 2014 to 2015.

Treatment CO2 Emission
t.hm−2

CH4 Emission
t.hm−2

Photosynthesis
t.hm−2

Carbon Balance
t.hm−2

RAF 64.41 a −0.31 a 119.00 a −54.90 a
RUF 66.61 a −0.33 a 108.39 a −42.11 a
CAF 61.64 a −0.37 b 115.80 a −54.53 a
CUF 62.51 a −0.36 b 112.11 a −49.96 a

CO2 emission from 2014 to 2015 was listed on Table 4 refer to [22]; CO2 emission and CH4 emission is accumulative
gas emission from 2014 to 2015. photosynthesis is average photosynthesis multiply time. Means followed by the
same letter within a column are not significantly different according to t-test (p < 0.05).
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3.4. The Effect of RW on Soil Carbon Balance

CH4 uptake in dryland and plant photosynthesis were necessary parts of carbon sink.
As shown in Table 5, the paper has demonstrated that RW can significantly decrease soil
CH4 emission and not affect plant photosynthesis. Although RW could increase the CO2
emission in comparison with CW, RW could not impact carbon balance during the whole
growth period in 2014 and 2015. Facing the field carbon balance, fertilization and field
management were the key factors to determine the difference. By contrast, reclaimed water
could effectively increase CO2 emission and decrease soil CH4 uptake, but it had no effect
on carbon exchange between farmland and atmosphere.

3.5. The Effect of RW on Soil Particle Size

As shown in Figure 6, the distribution of soil particles was mainly attributed to the
quality of irrigation water. Urea and slow-released fertilizer had no significant (p > 0.05)
effect on the distribution. The soil particle size of RW was significantly (p < 0.05) larger
than that of CW between 10–100 um. When soil particle size is greater than 10 um, the
distribution in CW was significantly (p < 0.05) higher than RW. When soil particle size was
less than 1 um, there was no significant difference between RW and CW from 2014 to 2015.
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4. Discussion

In this paper it is demonstrated that methane is absorbed and its uptake has a strong
relationship with WFPS. Other studies also considered that WFPS is an important factor
which impacts CH4 uptake [25]. This could largely be attributed to the oxygen content in
soil; the production of soil CH4 is driven by soil microorganism, methane oxidizing bacte-
ria [26]. Some researchers showed that methane oxidizing bacterial reproduction could be
provided by soil nutrients [27] or a good oxygen environment [28,29]. Although, in this
study, reclaimed water could significantly decrease methane uptake from soil (Table 3),
there was no difference between reclaimed water and clean water in soil nitrogen, pH, and
other factors (Figure 1). Therefore, RW might affect the distribution of soil particle size to
impact soil aeration as that is the main factor affecting soil methane emission. Macroag-
gregate stability decreased for reclaimed water in our study (Figure 5) and soil organic
carbon and soil nitrogen (Table 2). Some studies showed that a lower soil gas diffusivity
and a higher mineral N content in soil could significantly decrease CH4 uptake [30]. Some
researchers considered that reclaimed water irrigation could cause soil hardening and
the soil structure quality could decrease with increasing sewage irrigation years [31,32].
Our results illustrated that RW had a better soil aeration in comparison with CW, and soil
aeration in RW could be easily impacted by soil WFPS. As shown in Table 3, the correlation
R2 in RW was higher than CW. DZ et al. [33] also consider that reclaimed water irrigation
could decrease soil water holding capacity and increase soil penetration resistance.

However, soil respiration is also necessary to impact CH4 uptake. The increasing
soil respiration could effectively decrease CH4 emission from soil [34]. Liang et al. [35]
showed that reclaimed water could improve soil respiration. Therefore, reclaimed water
decreases CH4 uptake. It also explains the difference between UF and AF in CH4 uptake.
Soil microbial activity could be affected by fertilizer type [36] and it could impact the
activity of aerobic methanotrophs. As shown in Table 3, the R2 in AF was higher UF in
addition to the effect of fertilization. The difference between them is attributed to the
fertilizer method, urea could raise significantly soil respiration during the 3–5 days after
fertilization [37,38], it could accelerate the formation of tiny anaerobic areas in soil porosity
in comparison with AF treatment.

RW as an alternative water source could effectively impact soil properties, increase
soil NO3

− content [39], reduce soil pH, increase SOC [40] and EC. In this study, the carbon
balance was calculated, and it was demonstrated that there is no significant (p > 0.05)
difference between RW and CW. The variety of SOC increased only with the increase
in irrigation and fertilization years (Table 1). However, the effect of reclaimed water
irrigation on wheat and maize photosynthesis had no significant difference with clean water
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irrigation, as shown in Figure 4. Photosynthesis could be influenced by yield, illumination,
soil microelement, etc. Most studies showed that reclaimed water could not significantly
impact the yield [41]. Soil nitrogen, potassium, and magnesium play an important role
in plant photosynthesis [42]. In our experiment, it is difficult to reflect on the effect of
reclaimed water on crop photosynthesis because the amount of nitrogen applied is much
greater than that in reclaimed water. In terms of carbon emission, RW could significantly
improve soil respiration by increasing the abundance of microorganisms [43,44]. However,
CO2 emission not only includes microorganism activity, but also crop root respiration.
Irrigation, fertilizer, and air environment play an important role in crop root respiration [45]
and these are similar among all treatments.

5. Conclusions

Quadratic correlation (p < 0.05) between methane flux and WFPS was found in this
study, and the level of 40%~50% WFPS had an advantage on methane oxidation. Irrigation,
water quantity, and water quality are important factors in CH4 uptake on dryland, although
they did not significantly impact crop photosynthesis. In addition, long term irrigation
with reclaimed water can significantly decrease macroaggregate stability to decrease CH4
uptake 11.76%~27.27%. The application of urea enhanced CO2 emission and decreased
CH4 uptake in comparison with the application of slow-release fertilizer, this is likely
due to high levels of ammonium. Overall, slow-release fertilizer is recommended in this
study in order to favorably control carbon gas emissions and to effectively increase carbon
sequestration under reclaimed water irrigated agriculture.
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