Effect of Time-Resolution of Rainfall Data on Trend Estimation for Annual Maximum Depths with a Duration of 24 Hours
Abstract
:1. Introduction
2. Study Area and Rainfall Data
3. Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koutsoyiannis, D. Revisiting the global hydrological cycle: Is it intensifying? Hydrol. Earth Syst. Sci. 2020, 24, 3899–3932. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce1, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-induced changes in the hydrology of the Western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharafati, A.; Pezeshki, E. A strategy to assess the uncertainty of a climate change impact on extreme hydrological events in the semi-arid Dehbar catchment in Iran. Theor. Appl. Climatol. 2020, 139, 389–402. [Google Scholar] [CrossRef]
- Hajani, E. Climate change and its influence on design rainfall at-site in new south wales state, Australia. J. Water Clim. Chang. 2020, 11, 251–269. [Google Scholar] [CrossRef]
- Homsi, R.; Sanusi Shiru, M.; Shahid, S.; Ismail, T.; Bin Harun, S.; Al-Ansari, N.; Chau, K.-W.; Mundher Yaseen, Z. Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Eng. Appl. Comp. Fluid Mech. 2020, 14, 90–106. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Lenderink, G.; Van Meijgarrd, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Hardwick-Jones, R.; Westra, S.; Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 2010, 37, L22805. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-W.; Wang, K.; Pielke Sr, R.A.; Lin, J.C.; Matsui, T. Towards a robust test on North America warming trend and precipitable water content increase. Geophys. Res. Lett. 2008, 35, L18804. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, P.; Koutsoyiannis, D.; Iliopoulou, T.; Papanicolaou, P. A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes. Hydrology 2021, 8, 59. [Google Scholar] [CrossRef]
- Kunkel, K. North American trends in extreme precipitation. Nat. Hazards 2003, 29, 291–305. [Google Scholar] [CrossRef]
- Re, M.; Barros, V.R. Extreme rainfalls in SE South America. Clim. Chang. 2009, 96, 119–136. [Google Scholar] [CrossRef]
- Fowler, H.J.; Ali, H. Changes in Extreme Rainfall Events under the Warming Climate. In Rainfall. Modeling, Measurement and Applications; Morbidelli, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A global, continental, and regional analysis of changes in extreme precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Fowler, H.J.; Barbero, R.; Westra, S.; Lenderink, G.; Blenkinsop, S.; Li, X.F. Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Chang. 2018, 8, 803–807. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Rajeevan, M. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, L09707. [Google Scholar] [CrossRef]
- Shahid, S. Trends in extreme rainfall events of Bangladesh. Theor. Appl. Climatol. 2011, 104, 489–499. [Google Scholar] [CrossRef]
- Park, J.S.; Kang, H.S.; Lee, Y.S.; Kim, M.K. Changes in the extreme daily rainfall in South Korea. Int. J. Climatol. 2011, 31, 2290–2299. [Google Scholar] [CrossRef]
- Nkrumah, F.; Vischel, T.; Panthou, G.; Klutse, N.A.B.; Adukpo, D.C.; Diedhiou, A. Recent trends in the daily rainfall regime in southern West Africa. Atmosphere 2019, 10, 741. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Alexander, L.V.; Herold, N.; Dittus, A.J. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J. Geophys. Res. Atmos. 2016, 121, 11174–11189. [Google Scholar] [CrossRef] [Green Version]
- Gershunov, A.; Cayan, D.R. Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. J. Clim. 2003, 16, 2752–2765. [Google Scholar] [CrossRef] [Green Version]
- Schreck, C.J.; Semazzi, F.H.M. Variability of the recent climate of Eastern Africa. Int. J. Climatol. 2004, 24, 681–701. [Google Scholar] [CrossRef]
- Grimm, A.M.; Tedeschi, R.G. ENSO and extreme rainfall events in South America. J. Clim. 2009, 22, 1589–1609. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barroz, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in total and extreme South America rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Cayan, D.R.; Redmond, K.T.; Riddle, L.G. ENSO and hydrologic extremes in the western United States. J. Clim. 1999, 12, 2881–2893. [Google Scholar] [CrossRef] [Green Version]
- Gershunov, A. ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability. J. Clim. 1998, 11, 3192–3203. [Google Scholar] [CrossRef]
- Aryal, S.K.; Bates, B.C.; Campbell, E.P.; Li, Y.; Palmer, M.J.; Viney, N.R. Characterizing and modelling temporal and spatial trends in rainfall extremes. J. Hydromet. 2009, 10, 241–253. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Beecham, S.; Metcalfe, A.V. Non-stationarity in rainfall and temperature in the Murray Darling Basin. Hydrol. Proc. 2011, 25, 1659–1675. [Google Scholar] [CrossRef]
- Kendon, E.J.; Blenkinsop, S.; Fowler, H.J. Will changes in short duration precipitation extremes be detectable before daily extremes? J. Clim. 2018, 31. [Google Scholar] [CrossRef]
- Willems, P. Adjustment of extreme rainfall statistics accounting for multidecadal climate oscillations. J. Hydrol. 2013, 490, 126–133. [Google Scholar] [CrossRef]
- Teegavarapu, R.S.V.; Nayak, A. Evaluation of long-term trends in extreme precipitation: Implications of in-filled historical data use for analysis. J. Hydrol. 2017, 550, 616–634. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Cancelliere, A.; Rossi, G. Detecting trends of extreme rainfall series in Sicily. Adv. Geosci. 2005, 2, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Caporali, E. A comprehensive analysis of changes in precipitation regime in Tuscany. Int. J. Climatol. 2009, 29, 1883–1893. [Google Scholar] [CrossRef]
- Morbidelli, R.; García-Marín, A.P.; Al Mamun, A.; Atiqur, R.M.; Ayuso-Muñoz, J.L.; Bachir Taouti, M.; Baranowski, P.; Bellocchi, G.; Sangüesa-Pool, C.; Bennett, B.; et al. The history of rainfall data time-resolution in different geographical areas of the world. J. Hydrol. 2020, 590, 125258. [Google Scholar] [CrossRef]
- Hershfield, D.M.; Wilson, W.T. Generalizing of Rainfall-intensity-frequency Data. IUGG/IAHS Publication No. 43; AIHS. Gen. Ass. Tor. 1958, 1, 499–506. [Google Scholar]
- Hershfield, D.M. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years; US Weather Bureau Technical Paper N. 40; U.S. Department of Commerce: Washington, DC, USA, 1961. [Google Scholar]
- Weiss, L.L. Ratio of true to fixed-interval maximum rainfall. J. Hydraul. Div. 1964, 90, 77–82. [Google Scholar] [CrossRef]
- Harihara, P.S.; Tripathi, N. Relationship of the clock-hour to 60-min and the observational day to 1440-min rainfall. Ind. J. Meteorol. Geophys. 1973, 24, 279–282. [Google Scholar]
- Natural Environment Research Council. Flood Studies Report; Natural Environmental Research Council: London, UK, 1975. [Google Scholar]
- Van Montfort, M.A.J. Sliding maxima. J. Hydrol. 1990, 118, 77–85. [Google Scholar] [CrossRef]
- Faiers, G.E.; Grymes, J.M.; Keim, B.D.; Muller, R.A. A re-examination of extreme 24 hour rainfall in Louisiana, USA. Clim. Res. 1994, 4, 25–31. [Google Scholar] [CrossRef]
- Van Montfort, M.A.J. Concomitants of the Hershfield factor. J. Hydrol. 1997, 194, 357–365. [Google Scholar] [CrossRef]
- Young, C.B.; McEnroe, B.M. Sampling adjustment factors for rainfall recorded at fixed time intervals. J. Hydrol. Eng. 2003, 8, 294–296. [Google Scholar] [CrossRef]
- Yoo, C.; Park, M.; Kim, H.J.; Choi, J.; Sin, J.; Jun, C. Classification and evaluation of the documentary-recorded storm events in the Annals of the Choson Dynasty (1392–1910), Korea. J. Hydrol. 2015, 520, 387–396. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Dialynas, Y.G.; Grimaldi, S. Hershfield factor revisited: Correcting annual maximum precipitation. J. Hydrol. 2016, 524, 884–895. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Casas-Castillo, M.C.; Fowler, H.J.; Wilkinson, S.M. Effect of temporal aggregation on the estimate of annual maximum rainfall depths for the design of hydraulic infrastructure systems. J. Hydrol. 2017, 554, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Corradini, C.; Wilkinson, S.M.; Fowler, H.J. Influence of temporal data aggregation on trend estimation for intense rainfall. Adv. Water. Resour. 2018, 122, 304–316. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 46–59. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Sen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Serinaldi, F.; Chebana, F.; Kilsby, C.G. Dissecting innovative trend analysis. Stoch. Environ. Res. Risk Assess. 2020, 34, 733–754. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Koutsoyiannis, D. Revealing hidden persistence in maximum rainfall records. Hydrol. Sci. J. 2019, 64, 1673–1689. [Google Scholar] [CrossRef]
- Iliopoulou, T.; Koutsoyiannis, D. Projecting the future of rainfall extremes: Better classic than trendy. J. Hydrol. 2020, 588. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Stochastics of Hydroclimatic Extremes—A Cool Look at Risk; Kallipos: Athens, Greece, 2021; 333p, ISBN 978-618-85370-0-2. [Google Scholar]
ID Number | Rain Gauge Station | Altitude (m a.s.l.) | UTM33 X (m) | UTM33 Y (m) | Available Data Period | ARDta (%) | ||
---|---|---|---|---|---|---|---|---|
ta = 1 min | ta = 60 min | ta = 1440 min | ||||||
1 | Abeto | 946 | 341,805 | 4,744,571 | 1951–2014 | 9.4 | 0.0 | 90.6 |
2 | Amelia | 321 | 287,959 | 4,714,829 | 1921–2017 | 19.2 | 20.5 | 60.3 |
3 | Arrone | 221 | 316,289 | 4,716,860 | 1921–2017 | 11.0 | 0.0 | 89.0 |
4 | Assisi | 408 | 305,799 | 4,771,442 | 1921–2001 | 0.0 | 45.2 | 54.8 |
5 | Attigliano | 64 | 277,495 | 4,711,022 | 1921–2015 | 11.8 | 0.0 | 88.2 |
6 | Bastia | 203 | 301,377 | 4,769,716 | 1922–2017 | 31.8 | 0.0 | 68.2 |
7 | Bevagna | 212 | 307,370 | 4,757,320 | 1921–2017 | 21.7 | 6.0 | 72.3 |
8 | Calvi dell’Umbria | 305 | 299,164 | 4,698,561 | 1951–2017 | 20.4 | 0.0 | 79.6 |
9 | Cascia | 604 | 338,477 | 4,731,592 | 1922–2017 | 19.6 | 0.0 | 80.4 |
10 | Castelluccio di Norcia | 1349 | 354,031 | 4,743,409 | 1921–2017 | 12.7 | 0.0 | 87.3 |
11 | Castiglione del Lago | 260 | 259,760 | 4,779,579 | 1921–2019 | 15.7 | 27.1 | 57.1 |
12 | Città di Castello | 304 | 277,643 | 4,815,738 | 1921–2019 | 36.4 | 29.9 | 33.8 |
13 | Compignano | 240 | 278,394 | 4,758,593 | 1922–2017 | 34.6 | 0.0 | 65.4 |
14 | Corciano | 306 | 280,871 | 4,776,204 | 1921–2019 | 16.4 | 0.0 | 83.6 |
15 | Ficulle | 440 | 260,144 | 4,747,480 | 1921–2015 | 10.8 | 0.0 | 89.2 |
16 | Foligno | 220 | 310,678 | 4,758,225 | 1916–2015 | 25.7 | 31.4 | 42.9 |
17 | Gualdo Tadino | 599 | 319,870 | 4,789,953 | 1921–2019 | 18.4 | 47.1 | 34.5 |
18 | Gubbio | 471 | 302,789 | 4,802,329 | 1921–2019 | 20.0 | 42.5 | 37.5 |
19 | Lago di Corbara | 128 | 273,640 | 4,731,014 | 1963–2019 | 34.0 | 0.0 | 66.0 |
20 | Massa Martana | 328 | 297,457 | 4,738,741 | 1921–2019 | 24.6 | 4.9 | 70.5 |
21 | Monte del Lago | 260 | 270,657 | 4,780,252 | 1923–2016 | 12.5 | 36.3 | 51.3 |
22 | Monteleone di Spoleto | 933 | 331,882 | 4,723,618 | 1953–2019 | 23.7 | 0.0 | 76.3 |
23 | Montelovesco | 634 | 290,484 | 4,798,142 | 1921–2019 | 41.2 | 0.0 | 58.8 |
24 | Narni Scalo | 109 | 298,381 | 4,713,916 | 1921–2019 | 33.7 | 0.0 | 66.3 |
25 | Nocera Umbra | 534 | 320,281 | 4,776,405 | 1921–2019 | 32.6 | 0.0 | 67.4 |
26 | Norcia | 691 | 345,042 | 4,740,189 | 1921–2019 | 24.4 | 0.0 | 75.6 |
27 | Orvieto | 311 | 263,178 | 4,733,559 | 1921–2015 | 21.3 | 46.1 | 32.6 |
28 | Perugia | 440 | 288,087 | 4,775,349 | 1921–2019 | 3.8 | 43.8 | 52.5 |
29 | Petrelle | 342 | 269,830 | 4,803,553 | 1921–2019 | 30.4 | 0.0 | 69.6 |
30 | Pianello | 233 | 302,003 | 4,779,669 | 1921–2019 | 22.6 | 0.0 | 77.4 |
31 | Ponte Nuovo | 174 | 290,491 | 4,765,144 | 1921–2019 | 21.7 | 7.2 | 71.1 |
32 | Prodo | 431 | 273,752 | 4,738,790 | 1921–2017 | 13.6 | 0.0 | 86.4 |
33 | San Gemini | 299 | 298,275 | 4,720,301 | 1921–2019 | 19.5 | 6.9 | 73.6 |
34 | San Savino | 260 | 271,170 | 4,776,468 | 1921–2018 | 32.0 | 0.0 | 68.0 |
35 | Sellano | 604 | 330,307 | 4,750,480 | 1951–2017 | 32.4 | 0.0 | 67.6 |
36 | Spoleto | 353 | 314,952 | 4,736,162 | 1921–2019 | 20.7 | 40.2 | 39.1 |
37 | Terni | 123 | 307,123 | 4,714,603 | 1921–2019 | 18.4 | 32.2 | 49.4 |
38 | Todi | 329 | 288,089 | 4,740,319 | 1921–2019 | 29.8 | 40.4 | 29.8 |
39 | Umbertide | 305 | 284,867 | 4,798,836 | 1921–2019 | 22.5 | 28.8 | 48.8 |
Year | Hd=24 h | Year | Hd=24 h | Year | Hd=24 h | Year | Hd=24 h |
---|---|---|---|---|---|---|---|
1921 | 65 | 1944 | 58.2 | 1973 | 43.4 | 1997 | 76.7 |
1922 | 49 | 1946 | 72 | 1974 | 40.4 | 1998 | 62.7 |
1923 | 55.6 | 1947 | 55 | 1975 | 89.8 | 1999 | 70.4 |
1924 | 45 | 1948 | 61 | 1976 | 72.4 | 2000 | 63 |
1925 | 48 | 1949 | 58 | 1977 | 40 | 2001 | 51.5 |
1926 | 56.4 | 1950 | 31.7 | 1978 | 54.2 | 2002 | 52.6 |
1927 | 34.2 | 1951 | 61 | 1979 | 53.4 | 2003 | 106.8 |
1928 | 55.7 | 1952 | 41 | 1980 | 66.8 | 2004 | 55.8 |
1929 | 74.2 | 1953 | 30.8 | 1981 | 59.8 | 2005 | 91.8 |
1930 | 83.4 | 1954 | 55 | 1982 | 77 | 2006 | 83.6 |
1931 | 79.1 | 1955 | 68.8 | 1984 | 101 | 2007 | 45.4 |
1932 | 57.2 | 1956 | 50.5 | 1985 | 44 | 2008 | 65.6 |
1933 | 64.6 | 1957 | 61 | 1986 | 58.6 | 2009 | 51 |
1934 | 71.4 | 1958 | 51 | 1987 | 68.4 | 2010 | 78 |
1935 | 67.8 | 1959 | 51.5 | 1988 | 62.6 | 2011 | 37.2 |
1936 | 59.8 | 1960 | 127.2 | 1989 | 91.4 | 2012 | 131.4 |
1937 | 74 | 1961 | 76 | 1990 | 78 | 2013 | 104.2 |
1938 | 33.4 | 1962 | 70 | 1991 | 47.8 | 2014 | 72.4 |
1939 | 44.8 | 1963 | 52 | 1992 | 60.6 | 2015 | 54.2 |
1940 | 48 | 1964 | 58.4 | 1993 | 64.4 | 2016 | 76.6 |
1941 | 44.6 | 1965 | 115.4 | 1994 | 87 | 2017 | 44.8 |
1942 | 57 | 1966 | 45.4 | 1995 | 51.1 | 2018 | 51.2 |
1943 | 60.8 | 1968 | 68.2 | 1996 | 78.1 | 2019 | 82.2 |
ta = 1 minute | |
ta = 1 hour | |
ta = 1 day |
Year | Hd=24 h | Year | Hd=24 h | Year | Hd=24 h | Year | Hd=24 h |
---|---|---|---|---|---|---|---|
1921 | 69.3 | 1950 | 32 | 1974 | 56.5 | 1998 | 113.2 |
1922 | 56 | 1951 | 77.3 | 1975 | 65.6 | 1999 | 88.2 |
1923 | 63.3 | 1952 | 51.4 | 1976 | 51.4 | 2000 | 42.2 |
1924 | 39.4 | 1953 | 50.2 | 1977 | 41.8 | 2001 | 54.6 |
1925 | 52.2 | 1954 | 48.2 | 1978 | 74.2 | 2002 | 83.1 |
1926 | 46.6 | 1955 | 45.8 | 1979 | 53 | 2003 | 41.7 |
1927 | 50.8 | 1956 | 52.6 | 1980 | 93.6 | 2004 | 47.4 |
1928 | 61 | 1957 | 48.4 | 1981 | 29 | 2005 | 70.6 |
1929 | 65 | 1958 | 45 | 1982 | 49.8 | 2006 | 41.1 |
1930 | 37.2 | 1959 | 57 | 1983 | 63 | 2007 | 36.8 |
1931 | 38.4 | 1960 | 124 | 1984 | 67.2 | 2008 | 55.6 |
1932 | 56 | 1961 | 82.8 | 1985 | 43.4 | 2009 | 83.3 |
1933 | 48.2 | 1962 | 55 | 1986 | 98.6 | 2010 | 65.1 |
1934 | 69.6 | 1963 | 88.5 | 1987 | 63.2 | 2011 | 37.5 |
1935 | 140.4 | 1964 | 90.8 | 1988 | 60 | 2012 | 67.5 |
1936 | 207 | 1965 | 84 | 1989 | 45.8 | 2013 | 45.8 |
1937 | 80 | 1966 | 42.2 | 1990 | 65.2 | 2014 | 67.9 |
1938 | 65.8 | 1967 | 64.2 | 1991 | 46.8 | 2015 | 39.5 |
1939 | 53.2 | 1968 | 97 | 1992 | 50.8 | 2016 | 55.2 |
1940 | 61.4 | 1969 | 103.4 | 1993 | 84.1 | 2017 | 47.8 |
1941 | 58 | 1970 | 38.2 | 1994 | 38.8 | 2018 | 44.2 |
1942 | 47 | 1971 | 36.5 | 1995 | 137.5 | 2019 | 58 |
1948 | 41.5 | 1972 | 46.6 | 1996 | 47.2 | ||
1949 | 51 | 1973 | 58 | 1997 | 118.2 |
ta = 1 minute | |
ta = 1 hour | |
ta = 1 day |
Year | Hd=24 h | Year | Hd=24 h | Year | Hd=24 h | |||
---|---|---|---|---|---|---|---|---|
“Uncorr.” Series | “Corr.” Series | “Uncorr.” Series | “Corr.” Series | “Uncorr.” Series | “Corr.” Series | |||
1921 | 70 | 78.4 | 1959 | 70.8 | 79.3 | 1989 | 52 | 52.1 |
1922 | 69 | 77.3 | 1960 | 87.3 | 87.5 | 1990 | 99.4 | 99.6 |
1923 | 150 | 168.1 | 1961 | 72.1 | 72.3 | 1991 | 61 | 61.1 |
1924 | 142 | 159.1 | 1962 | 79.3 | 79.5 | 1992 | 85.6 | 85.8 |
1925 | 62 | 69.5 | 1963 | 112 | 112.2 | 1993 | 60.8 | 60.9 |
1926 | 60 | 67.2 | 1964 | 113.6 | 113.8 | 1994 | 56.7 | 63.5 |
1927 | 58 | 65.0 | 1965 | 104 | 104.2 | 1995 | 58.5 | 65.6 |
1928 | 46.5 | 52.1 | 1966 | 52.9 | 53.0 | 1996 | 67.3 | 75.4 |
1929 | 70 | 78.4 | 1967 | 82.8 | 83.0 | 1997 | 61 | 68.4 |
1930 | 74 | 82.9 | 1968 | 65.6 | 65.7 | 1999 | 73 | 73.2 |
1931 | 53 | 59.4 | 1969 | 76 | 76.2 | 2000 | 48.6 | 48.7 |
1932 | 60 | 67.2 | 1970 | 38.7 | 38.8 | 2001 | 35.8 | 40.1 |
1933 | 70 | 78.4 | 1971 | 61.6 | 61.7 | 2002 | 54.6 | 54.6 |
1934 | 68 | 76.2 | 1972 | 51 | 51.1 | 2003 | 33.4 | 33.4 |
1935 | 140 | 156.9 | 1973 | 50.4 | 50.5 | 2004 | 43 | 43 |
1936 | 95 | 106.5 | 1974 | 42.6 | 42.7 | 2005 | 99.4 | 99.4 |
1937 | 73 | 81.8 | 1975 | 107 | 107.2 | 2006 | 42.7 | 42.7 |
1939 | 46 | 51.6 | 1976 | 98 | 98.2 | 2007 | 39.1 | 39.1 |
1940 | 58.4 | 65.4 | 1977 | 74.3 | 74.5 | 2008 | 45.6 | 45.6 |
1941 | 58.3 | 65.3 | 1978 | 54 | 54.1 | 2009 | 73.6 | 73.6 |
1949 | 68.4 | 68.5 | 1979 | 48.1 | 53.9 | 2010 | 52.6 | 52.6 |
1950 | 62.4 | 62.5 | 1980 | 68.2 | 68.3 | 2011 | 44.8 | 44.8 |
1951 | 85 | 85.2 | 1981 | 61.6 | 61.7 | 2012 | 64.6 | 64.6 |
1952 | 71.2 | 71.3 | 1982 | 63.2 | 63.3 | 2013 | 66.4 | 66.4 |
1953 | 43.4 | 48.6 | 1983 | 58.4 | 58.5 | 2014 | 78.2 | 78.2 |
1954 | 56.6 | 63.4 | 1984 | 73 | 73.2 | 2015 | 60.8 | 60.8 |
1955 | 56.5 | 63.3 | 1985 | 38.2 | 42.8 | 2016 | 54.4 | 54.4 |
1956 | 81 | 81.2 | 1986 | 78.4 | 78.6 | 2017 | 82.8 | 82.8 |
1957 | 60.9 | 68.3 | 1987 | 62.6 | 62.7 | 2018 | 79.2 | 79.2 |
1958 | 65.2 | 65.3 | 1988 | 36.6 | 36.7 | 2019 | 62 | 62 |
Value modified through Equation (5c) with ta = 1 hour | |
Value modified through Equation (5c) with ta = 1 day |
Rain Gauge Station | Linear Trend Slope (mm/year) | Mann-Kendall Test Statistic Z | ||
---|---|---|---|---|
“Uncorrected” Series | “Corrected” Series | “Uncorrected” Series | “Corrected” Series | |
Abeto | 0.0815 | 0.0196 | 0.79 | −1.97 |
Amelia | −0.0766 | −0.1913 | −0.59 | −1.45 |
Arrone | 0.0115 | −0.0333 | 0.29 | −0.19 |
Assisi | −0.0071 | −0.1097 | −0.41 | −1.15 |
Attigliano | −0.0212 | −0.0716 | −0.30 | −0.82 |
Bastia Umbra | −0.0211 | −0.1193 | 0.16 | −0.99 |
Bevagna | −0.0348 | −0.1158 | −0.84 | −1.81 |
Calvi dell’Umbria | 0.0227 | −0.0977 | 0.68 | −0.12 |
Cascia | 0.0751 | 0.0115 | 1.56 | 0.69 |
Castelluccio di Norcia | 0.4293 | 0.4150 | 1.97 | 1.69 |
Castiglione del Lago | 0.0907 | 0.0129 | 1.79 | 0.03 |
Città di Castello | 0.0413 | −0.0154 | 0.75 | 0.16 |
Compignano | 0.1458 | 0.0527 | 1.66 | 0.81 |
Corciano | −0.0419 | −0.1482 | −0.55 | −1.13 |
Ficulle | 0.0363 | −0.0271 | 0.31 | −0.04 |
Foligno | −0.0604 | −0.0059 | 0.34 | −0.64 |
Gualdo Tadino | 0.0237 | −0.0277 | 0.28 | −0.38 |
Gubbio | 0.1680 | 0.1114 | 2.16 | 1.25 |
Lago di Corbara | 0.2500 | 0.1026 | 1.46 | 0.84 |
Massa Martana | −0.1288 | −0.2280 | −1.54 | −2.48 |
Monte del Lago | 0.0639 | 0.0157 | 0.04 | −0.64 |
Monteleone di Spoleto | 0.0347 | −0.0958 | 1.58 | 0.63 |
Montelovesco | 0.2639 | 0.1857 | 3.11 | 1.95 |
Narni Scalo | 0.0082 | −0.1076 | −0.32 | −1.21 |
Nocera Umbra | 0.1103 | 0.0217 | 1.05 | −0.18 |
Norcia | 0.0490 | −0.0178 | 0.42 | −0.63 |
Orvieto | 0.0976 | 0.0572 | 1.43 | 0.74 |
Perugia | −0.1769 | −0.2129 | −1.72 | −1.99 |
Petrelle | −0.0551 | −0.1604 | 0.22 | −0.91 |
Pianello | 0.1181 | 0.0428 | 1.76 | 0.83 |
Ponte Nuovo | 0.0099 | −0.0697 | 1.03 | −0.47 |
Prodo | −0.0373 | −0.1039 | 0.38 | −0.17 |
San Gemini | −0.1220 | −0.2188 | −1.60 | −2.36 |
San Savino | −0.0285 | −0.1172 | −0.97 | −1.97 |
Sellano | −0.0315 | −0.1575 | −0.30 | −1.22 |
Spoleto | −0.2171 | −0.3159 | −2.08 | −3.16 |
Terni | 0.0368 | −0.0522 | 0.63 | −0.13 |
Todi | −0.0473 | −0.1102 | −0.15 | −1.09 |
Umbertide | 0.0576 | −0.0083 | 0.58 | −0.15 |
average | 0.0287 | −0.0485 | 0.39 | −0.50 |
standard deviation | 0.1190 | 0.1281 | 1.15 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morbidelli, R.; Saltalippi, C.; Dari, J.; Flammini, A. Effect of Time-Resolution of Rainfall Data on Trend Estimation for Annual Maximum Depths with a Duration of 24 Hours. Water 2021, 13, 3264. https://doi.org/10.3390/w13223264
Morbidelli R, Saltalippi C, Dari J, Flammini A. Effect of Time-Resolution of Rainfall Data on Trend Estimation for Annual Maximum Depths with a Duration of 24 Hours. Water. 2021; 13(22):3264. https://doi.org/10.3390/w13223264
Chicago/Turabian StyleMorbidelli, Renato, Carla Saltalippi, Jacopo Dari, and Alessia Flammini. 2021. "Effect of Time-Resolution of Rainfall Data on Trend Estimation for Annual Maximum Depths with a Duration of 24 Hours" Water 13, no. 22: 3264. https://doi.org/10.3390/w13223264
APA StyleMorbidelli, R., Saltalippi, C., Dari, J., & Flammini, A. (2021). Effect of Time-Resolution of Rainfall Data on Trend Estimation for Annual Maximum Depths with a Duration of 24 Hours. Water, 13(22), 3264. https://doi.org/10.3390/w13223264