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Abstract: The main challenge of this paper is to demonstrate that one of the most frequently con-
ducted analyses in the climate change field could be affected by significant errors, due to the use
of rainfall data characterized by coarse time-resolution. In fact, in the scientific literature, there are
many studies to verify the possible impacts of climate change on extreme rainfall, and particularly on
annual maximum rainfall depths, Hd, characterized by duration d equal to 24 h, due to the significant
length of the corresponding series. Typically, these studies do not specify the temporal aggregation,
ta, of the rainfall data on which maxima rely, although it is well known that the use of rainfall data
with coarse ta can lead to significant underestimates of Hd. The effect of ta on the estimation of trends
in annual maximum depths with d = 24 h, Hd=24 h, over the last 100 years is examined. We have
used a published series of Hd=24 h derived by long-term historical rainfall observations with various
temporal aggregations, due to the progress of recording systems through time, at 39 representa-
tive meteorological stations located in an inland region of Central Italy. Then, by using a recently
developed mathematical relation between average underestimation error and the ratio ta/d, each
Hd=24 h value has been corrected. Successively, commonly used climatic trend tests based on different
approaches, including least-squares linear trend analysis, Mann–Kendall, and Sen’s method, have
been applied to the “uncorrected” and “corrected” series. The results show that the underestimation
of Hd=24 h values with coarse ta plays a significant role in the analysis of the effects of climatic change
on extreme rainfalls. Specifically, the correction of the Hd=24 h values can change the sign of the trend
from positive to negative. Furthermore, it has been observed that the innovative Sen’s method (based
on a graphical approach) is less sensitive to corrections of the Hd values than the least-squares linear
trend and the Mann–Kendall method. In any case, the analysis of Hd series containing potentially
underestimated values, especially when d = 24 h, can lead to misleading results. Therefore, before
conducting any trend analysis, Hd values determined from rainfall data characterized by coarse
temporal resolution should always be corrected.

Keywords: rainfall data measurements; rainfall time resolution; extreme rainfall; annual maximum
rainfall depths; trend analysis

1. Introduction

It is well known that climate change is mainly due to greenhouse gas emissions from
human activities [1]. One of the most important consequences is the modification of the
hydrologic cycle with significant implications for water resources [2–5]. In the last century,
mean global surface temperatures showed an increase of approximately 1.1 ◦C [6] and,
based on the Clausius–Clapeyron relation, for each 1 ◦C increase in global temperature,
the precipitable water increases by ~7% [7,8], even though relative humidity appears
to decrease at high temperatures [1,8–10]. Moreover, it is expected that temperature
will increase near to the surface and will decrease in the upper troposphere, favoring
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atmospheric instability [11]. Considering that atmospheric warming and water vapor
trends also have local non-uniformity, the associated variation in average rainfall is typically
mutable over the planet [12].

Extreme precipitation is very erratic, and its trends are less spatially coherent than
those in average rainfall. On a global scale, there are significant unevenness and places
where heavy rainfall is increasing, seemingly prevailing over areas where they are decreas-
ing [13]. For example, [14] evaluated the long-term (1950–2018) trends in daily precipitation
extremes over more than 7000 stations, and found that 66% of them showed increasing
trends, and the remaining 34% showed decreasing trends. Furthermore, approximately
10% of stations (mainly in Europe, North America, and South Africa) showed a statistically
significant increasing trend, while only 2.1% of stations (in the western United States, Cana-
dian Prairies, and northern China) showed a significant decreasing trend. Reference [15]
studied changes in daily precipitation over the Australian continent (period 1966–2013).
They found an increase in daily precipitation during the second half of the observed period,
as compared to the first half. Considering the period 1950–2015 and using daily gridded
rainfall data (at 0.25-degree spatial resolution), [16] showed a significant rise in extreme
precipitation events over central India. Increasing daily rainfall trends have been found
also in west China [17], Bangladesh [18], South Korea [19], southern west Africa [20], and
parts of southeast Asia [21].

Clear evidence that temporal variations in the occurrence of extreme rainfall events
can be due to large-scale atmospheric and oceanographic oscillations, such as the North
Atlantic Oscillation (NAO) or El Niño-Southern Oscillation (ENSO), is described in the
scientific literature (e.g., [22–30]). Indicative analysis by [31] showed cyclic variations with
a period of 30–40 years, and concluded that trends over time periods of <40 years could be
ascribed to large-scale atmospheric changes.

Therefore, the analysis of trends in annual maximum rainfall depths, Hd, for a given
duration, d, should be performed only for long-term rainfall data recorded, for example,
from the earliest decades of the last century (see also [32]). Furthermore, analyses on
the Hd series for d < 1 h are rarely available since, in the last century, all rainfall data
have been recorded by adopting different temporal aggregations (or time resolutions), ta,
dependent on changes in the recording systems through time. Currently, rainfall amounts
are measured by tipping bucket sensors and recorded in a data-logger for each tip-time
associated with a fixed rainfall depth, but until the last decades of the 21st century they
were recorded only over paper rolls (pluviograph), generally with hourly ta [33,34]. In
addition, for many years, especially before the Second World War, only daily rainfalls are
available, recorded daily at a specific local time, and measuring the accumulated depth
during the previous 24 h [35].

On this basis it can be deduced that, before the advent of data-loggers, rainfall data
were always characterized by coarse temporal aggregation, with probable effects on anal-
yses based on their use [36–47]. In fact, in some cases, the correct values of Hd can be
significantly underestimated up to 50%, especially when d = 1 h and 24 h, due to the
high probability of the presence of values with ta/d = 1 [48]. Moreover, long series of Hd
values, together with a percentage of values obtained from continuous data (more recently
recorded), always contain a percentage of elements derived from data characterized by
coarse temporal aggregation, that are therefore potentially underestimated. This is problem-
atic since, as well as the replacement of stations, the use of various rain gauge types with
time and the change of surrounding near the equipment, could produce important effects
on associated analyses, including the determination of rainfall depth-intensity-frequency
curves [47] and trend evaluation of intense rainfalls [48].

By using some of the more common climatic trend tests characterized by very different
approaches (least-squares linear trend analysis, Mann–Kendall test, and Sen’s method) the
main objective of this paper is to evaluate the effect of time-resolution of rainfall data on
trend estimation for annual maximum depths with duration 24 h. We focus our attention
on the Hd series with d = 24 h as they are among the longest and most frequently available
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series for analyses of climate trends. However, similar analyses could be carried out for
different d.

Furthermore, another significant challenge that we launch with this paper, together
with the special issue that we promoted, consists in stimulating similar analyses conducted
in different geographical areas of the world.

2. Study Area and Rainfall Data

The study area (Umbria region, with a surface area of 8456 km2) is located in an
inland zone of central Italy, and is characterized by a complex orography along the eastern
boundary, where the Apennine Mountains exceed 2000 m a.s.l. In the central and western
areas, orography is mainly of hilly type, with elevations ranging from 100 to 800 m a.s.l.. A
wide percentage of the study area is included in the basin of Tiber River that crosses the
region from north to south-west receiving water from many tributaries, mainly located on
the hydrographic left side.

On the basis of observations made by the rain gauge network shown in Figure 1
and specified in Table 1, annual rainfall depth through the region ranges from 650 mm to
1450 mm, with mean value of about 900 mm. Higher monthly rainfall values generally
occur during the autumn-winter period, with floods caused by widespread rainfall.
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Figure 1. Morphology of the study area and rain gauges used in the analysis with identification numbers listed in
Table 1. The background Digital Elevation Model (DEM), whose spatial resolution is 25 m, is derived by the Copernicus
EU-DEM v1.1.

Table 1. Main characteristics of the selected rainfall stations. The geographic position is expressed in Universal Transvers
Mercator (UTM) coordinates computed by using the WGS84 ellipsoid model. ARDta is the percentage of available rainfall
data characterized by specific temporal aggregation, ta.

ID
Number

Rain Gauge
Station

Altitude
(m a.s.l.)

UTM33 X
(m)

UTM33 Y
(m)

Available
Data Period

ARDta (%)

ta = 1 min ta = 60 min ta = 1440 min

1 Abeto 946 341,805 4,744,571 1951–2014 9.4 0.0 90.6
2 Amelia 321 287,959 4,714,829 1921–2017 19.2 20.5 60.3
3 Arrone 221 316,289 4,716,860 1921–2017 11.0 0.0 89.0
4 Assisi 408 305,799 4,771,442 1921–2001 0.0 45.2 54.8
5 Attigliano 64 277,495 4,711,022 1921–2015 11.8 0.0 88.2
6 Bastia 203 301,377 4,769,716 1922–2017 31.8 0.0 68.2
7 Bevagna 212 307,370 4,757,320 1921–2017 21.7 6.0 72.3

8 Calvi
dell’Umbria 305 299,164 4,698,561 1951–2017 20.4 0.0 79.6
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Table 1. Cont.

ID
Number

Rain Gauge
Station

Altitude
(m a.s.l.)

UTM33 X
(m)

UTM33 Y
(m)

Available
Data Period

ARDta (%)

ta = 1 min ta = 60 min ta = 1440 min

9 Cascia 604 338,477 4,731,592 1922–2017 19.6 0.0 80.4

10 Castelluccio di
Norcia 1349 354,031 4,743,409 1921–2017 12.7 0.0 87.3

11 Castiglione
del Lago 260 259,760 4,779,579 1921–2019 15.7 27.1 57.1

12 Città di
Castello 304 277,643 4,815,738 1921–2019 36.4 29.9 33.8

13 Compignano 240 278,394 4,758,593 1922–2017 34.6 0.0 65.4
14 Corciano 306 280,871 4,776,204 1921–2019 16.4 0.0 83.6
15 Ficulle 440 260,144 4,747,480 1921–2015 10.8 0.0 89.2
16 Foligno 220 310,678 4,758,225 1916–2015 25.7 31.4 42.9
17 Gualdo Tadino 599 319,870 4,789,953 1921–2019 18.4 47.1 34.5
18 Gubbio 471 302,789 4,802,329 1921–2019 20.0 42.5 37.5

19 Lago di
Corbara 128 273,640 4,731,014 1963–2019 34.0 0.0 66.0

20 Massa
Martana 328 297,457 4,738,741 1921–2019 24.6 4.9 70.5

21 Monte del
Lago 260 270,657 4,780,252 1923–2016 12.5 36.3 51.3

22 Monteleone di
Spoleto 933 331,882 4,723,618 1953–2019 23.7 0.0 76.3

23 Montelovesco 634 290,484 4,798,142 1921–2019 41.2 0.0 58.8
24 Narni Scalo 109 298,381 4,713,916 1921–2019 33.7 0.0 66.3

25 Nocera
Umbra 534 320,281 4,776,405 1921–2019 32.6 0.0 67.4

26 Norcia 691 345,042 4,740,189 1921–2019 24.4 0.0 75.6
27 Orvieto 311 263,178 4,733,559 1921–2015 21.3 46.1 32.6
28 Perugia 440 288,087 4,775,349 1921–2019 3.8 43.8 52.5
29 Petrelle 342 269,830 4,803,553 1921–2019 30.4 0.0 69.6
30 Pianello 233 302,003 4,779,669 1921–2019 22.6 0.0 77.4
31 Ponte Nuovo 174 290,491 4,765,144 1921–2019 21.7 7.2 71.1
32 Prodo 431 273,752 4,738,790 1921–2017 13.6 0.0 86.4
33 San Gemini 299 298,275 4,720,301 1921–2019 19.5 6.9 73.6
34 San Savino 260 271,170 4,776,468 1921–2018 32.0 0.0 68.0
35 Sellano 604 330,307 4,750,480 1951–2017 32.4 0.0 67.6
36 Spoleto 353 314,952 4,736,162 1921–2019 20.7 40.2 39.1
37 Terni 123 307,123 4,714,603 1921–2019 18.4 32.2 49.4
38 Todi 329 288,089 4,740,319 1921–2019 29.8 40.4 29.8
39 Umbertide 305 284,867 4,798,836 1921–2019 22.5 28.8 48.8

For each selected station, we considered all the Hd=24 h values already obtained and
validated from the Regional Hydrographic Service (RHS) by using the available rainfall
data. It is important to note that recently, mainly since 1992, it has been possible to obtain
rainfall data recorded in data-loggers for each tip time associated with a fixed rainfall depth
(no more than 0.2 mm). In this case, each rainfall event was summarized by aggregating the
number of tips over a ta equal to 1 min. Nevertheless, for long time series, a considerable
amount of rainfall data was available with hourly recording system, as a consequence of the
paper rolls adoption. Furthermore, in the absence of other possibilities, daily information
derived from direct observation made each day at 9:00 a.m. was used. Two examples of
the Hd=24 h series used in this paper are shown in Tables 2 and 3 for the Gubbio and Todi
rain gauge stations, respectively. For all analyses carried out in this paper, 39 Hd=24 h time
series for the rain gauge stations reported in Table 1 were selected.
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Table 2. Annual maximum rainfall depths (in mm) for duration (d) equal to 24 h, Hd=24 h, derived
from data characterized by different aggregation times, ta. Gubbio rain gauge station.

Year Hd=24 h Year Hd=24 h Year Hd=24 h Year Hd=24 h

1921 65 1944 58.2 1973 43.4 1997 76.7
1922 49 1946 72 1974 40.4 1998 62.7
1923 55.6 1947 55 1975 89.8 1999 70.4
1924 45 1948 61 1976 72.4 2000 63
1925 48 1949 58 1977 40 2001 51.5
1926 56.4 1950 31.7 1978 54.2 2002 52.6
1927 34.2 1951 61 1979 53.4 2003 106.8
1928 55.7 1952 41 1980 66.8 2004 55.8
1929 74.2 1953 30.8 1981 59.8 2005 91.8
1930 83.4 1954 55 1982 77 2006 83.6
1931 79.1 1955 68.8 1984 101 2007 45.4
1932 57.2 1956 50.5 1985 44 2008 65.6
1933 64.6 1957 61 1986 58.6 2009 51
1934 71.4 1958 51 1987 68.4 2010 78
1935 67.8 1959 51.5 1988 62.6 2011 37.2
1936 59.8 1960 127.2 1989 91.4 2012 131.4
1937 74 1961 76 1990 78 2013 104.2
1938 33.4 1962 70 1991 47.8 2014 72.4
1939 44.8 1963 52 1992 60.6 2015 54.2
1940 48 1964 58.4 1993 64.4 2016 76.6
1941 44.6 1965 115.4 1994 87 2017 44.8
1942 57 1966 45.4 1995 51.1 2018 51.2
1943 60.8 1968 68.2 1996 78.1 2019 82.2

Legend:
ta = 1 minute
ta = 1 hour
ta = 1 day

Table 3. Annual maximum rainfall depths (in mm) for duration (d) equal to 24 h, Hd=24 h, derived
from data characterized by different aggregation times, ta. Todi rain gauge station.

Year Hd=24 h Year Hd=24 h Year Hd=24 h Year Hd=24 h

1921 69.3 1950 32 1974 56.5 1998 113.2
1922 56 1951 77.3 1975 65.6 1999 88.2
1923 63.3 1952 51.4 1976 51.4 2000 42.2
1924 39.4 1953 50.2 1977 41.8 2001 54.6
1925 52.2 1954 48.2 1978 74.2 2002 83.1
1926 46.6 1955 45.8 1979 53 2003 41.7
1927 50.8 1956 52.6 1980 93.6 2004 47.4
1928 61 1957 48.4 1981 29 2005 70.6
1929 65 1958 45 1982 49.8 2006 41.1
1930 37.2 1959 57 1983 63 2007 36.8
1931 38.4 1960 124 1984 67.2 2008 55.6
1932 56 1961 82.8 1985 43.4 2009 83.3
1933 48.2 1962 55 1986 98.6 2010 65.1
1934 69.6 1963 88.5 1987 63.2 2011 37.5
1935 140.4 1964 90.8 1988 60 2012 67.5
1936 207 1965 84 1989 45.8 2013 45.8
1937 80 1966 42.2 1990 65.2 2014 67.9
1938 65.8 1967 64.2 1991 46.8 2015 39.5
1939 53.2 1968 97 1992 50.8 2016 55.2
1940 61.4 1969 103.4 1993 84.1 2017 47.8
1941 58 1970 38.2 1994 38.8 2018 44.2
1942 47 1971 36.5 1995 137.5 2019 58
1948 41.5 1972 46.6 1996 47.2
1949 51 1973 58 1997 118.2

Legend:
ta = 1 minute
ta = 1 hour
ta = 1 day
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3. Methods

Each of the selected Hd=24 h series, hereinafter referred to as “uncorrected” because
they can contain some underestimated values (see also [47]), is used to verify the existence
of possible trend produced by climate change. Specifically, we considered the following
tests, selected as they are characterized by very different approaches: (1) least-squares linear
trend analysis; (2) non-parametrical Mann–Kendall test [49,50]; and (3) Sen’s method [51].

The least-squares method uses a straight line in order to fit the given points and it is
known as the method of linear or ordinary least squares. This line is found as the best fit
from which the sum of squares of the distances from the points is minimized. Equations
with certain parameters usually represent the results in this method. The method of
least squares actually defines the solution for the minimization of the sum of squares of
deviations or the errors in the result of each equation.

The non-parametrical Mann–Kendall test is commonly used in detecting trends of
variables in many fields. Statistic S can be calculated by the following:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(

xj − xk
)

(1)

with:

sgn
(
xj − xk

)
=


+1, i f

(
xj − xk

)
> 0

0, i f
(
xj − xk

)
= 0

−1, i f
(
xj − xk

)
< 0

(2)

and where n is the length of the sample, xk and xj are from k = 1, 2, . . . , n − 1 and j = k + 1,
. . . , n. If n is bigger than 8, statistic S approximates to normal distribution. The mean of S
is 0 and the variance of S can be acquired as follows:

var(S) =
n(n− 1)(2n + 5)

18
(3)

Then, the test statistic Z is denoted by:

Z =


S−1√
var(S)

, i f S > 0

0, i f S = 0
S+1√
var(S)

, i f S < 0
(4)

If Z > 0, it indicates an increasing trend, and vice versa. Given a confidence level
α, the sequential data would be supposed to experience statistically significant trend if
|Z| > Z(1 − α/2), where Z(1 − α/2) is the corresponding value of P = α/2 following the
standard normal distribution. In this study, a 0.05 confidence level was used.

Finally, the innovative trend analysis proposed by Sen (2012) is based on a sub-section
time series plot on a Cartesian coordinate system. In this method, recently criticized by [52],
a time series is divided into two equal parts that are separately sorted in ascending order.
Then, the first sub-series is located on the X-axis, and the second sub-series is located on
the Y-axis. If the investigated data are collected on the 1:1 line, then there is no trend. If
data fall above the 1:1 line or below the 1:1 line, then an upward trend or a downward
trend in the time series, respectively, exists [51].

We note that these three very common tests could be representative to many oth-
ers. Furthermore, since they are characterized by very different approaches, they could
potentially offer different results.

Successively, the above-mentioned tests were repeated on a new version of the same
series (hereinafter referred to as “corrected”), where the underestimation error due to the
coarse time resolution of historical rainfall data was eliminated/minimized by using an
average correction identically applied to all Hd values characterized by the same ratio
ta/d. We note that an alternative correction approach, based on a sophisticated stochas-
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tic method, would produce very similar results with respect to the simple deterministic
approach used here [48]. Note that this last result cannot be easily generalized to any
other analysis [10,53,54]. With the aim of applying the correction, the average underesti-
mation errors, Ea%, have been determined through the relations proposed earlier by [47],
expressed by:

Ea% = 6.14
(

ta

d

)2
+ 5.69

ta

d
[%] d ≤ 30 min (5a)

Ea% = 6.7
(

ta

d

)2
+ 4.72

ta

d
[%] 30 min < d < 180 min (5b)

Ea% = 5.2
(

ta

d

)2
+ 5.57

ta

d
[%] d ≥ 180 min (5c)

4. Results and Discussion

As previously mentioned, initially the Hd=24 h series were corrected through the use
of Equation (5c) proposed by [47]. For correction, we could use any of the relationships
proposed by [36–46], but there is no reason to assume that this choice could have a signifi-
cant effect on the results we present. As an example, Table 4 shows the Hd=24 h series of the
Spoleto station, both in the original version (“uncorrected”) and in the “corrected” version.

Table 4. Annual maximum rainfall depths (in mm) for duration (d) equal to 24 h, Hd=24 h, in the original version (“uncorr.”)
and in the modified version through Equation (5c) (“corr.”). Spoleto rain gauge station.

Year
Hd=24 h

Year
Hd=24 h Year Hd=24 h

“Uncorr.”
Series

“Corr.”
Series

“Uncorr.”
Series

“Corr.”
Series

“Uncorr.”
Series

“Corr.”
Series

1921 70 78.4 1959 70.8 79.3 1989 52 52.1
1922 69 77.3 1960 87.3 87.5 1990 99.4 99.6
1923 150 168.1 1961 72.1 72.3 1991 61 61.1
1924 142 159.1 1962 79.3 79.5 1992 85.6 85.8
1925 62 69.5 1963 112 112.2 1993 60.8 60.9
1926 60 67.2 1964 113.6 113.8 1994 56.7 63.5
1927 58 65.0 1965 104 104.2 1995 58.5 65.6
1928 46.5 52.1 1966 52.9 53.0 1996 67.3 75.4
1929 70 78.4 1967 82.8 83.0 1997 61 68.4
1930 74 82.9 1968 65.6 65.7 1999 73 73.2
1931 53 59.4 1969 76 76.2 2000 48.6 48.7
1932 60 67.2 1970 38.7 38.8 2001 35.8 40.1
1933 70 78.4 1971 61.6 61.7 2002 54.6 54.6
1934 68 76.2 1972 51 51.1 2003 33.4 33.4
1935 140 156.9 1973 50.4 50.5 2004 43 43
1936 95 106.5 1974 42.6 42.7 2005 99.4 99.4
1937 73 81.8 1975 107 107.2 2006 42.7 42.7
1939 46 51.6 1976 98 98.2 2007 39.1 39.1
1940 58.4 65.4 1977 74.3 74.5 2008 45.6 45.6
1941 58.3 65.3 1978 54 54.1 2009 73.6 73.6
1949 68.4 68.5 1979 48.1 53.9 2010 52.6 52.6
1950 62.4 62.5 1980 68.2 68.3 2011 44.8 44.8
1951 85 85.2 1981 61.6 61.7 2012 64.6 64.6
1952 71.2 71.3 1982 63.2 63.3 2013 66.4 66.4
1953 43.4 48.6 1983 58.4 58.5 2014 78.2 78.2
1954 56.6 63.4 1984 73 73.2 2015 60.8 60.8
1955 56.5 63.3 1985 38.2 42.8 2016 54.4 54.4
1956 81 81.2 1986 78.4 78.6 2017 82.8 82.8
1957 60.9 68.3 1987 62.6 62.7 2018 79.2 79.2
1958 65.2 65.3 1988 36.6 36.7 2019 62 62

Legend:
Value modified through Equation (5c) with ta = 1 hour
Value modified through Equation (5c) with ta = 1 day
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Then, we fitted a least-squares linear trend to the Hd=24 h in both versions, “uncor-
rected” and “corrected”, considering all 39 selected stations. For the “uncorrected” Hd=24 h
series, the number of positive least-square linear trends, equal to 23, outnumbers the nega-
tive ones, equal to 16 (see also Table 5). Opposite results were obtained for the “corrected”
Hd=24 h series, as cases with negative least-square linear trends become equal to 27, whereas
the positive ones become 12.

Table 5. Slope (in mm/year) of the least-squares linear regressions and Mann–Kendall test statistic Z of annual maximum
rainfall depths for the selected stations and for duration 24 h, for the “uncorrected” and “corrected” series. For the
Mann–Kendall test statistic Z, in bold the cases with significant trend.

Rain Gauge
Station

Linear Trend Slope (mm/year) Mann-Kendall Test Statistic Z

“Uncorrected” Series “Corrected” Series “Uncorrected” Series “Corrected” Series

Abeto 0.0815 0.0196 0.79 −1.97
Amelia −0.0766 −0.1913 −0.59 −1.45
Arrone 0.0115 −0.0333 0.29 −0.19
Assisi −0.0071 −0.1097 −0.41 −1.15

Attigliano −0.0212 −0.0716 −0.30 −0.82
Bastia Umbra −0.0211 −0.1193 0.16 −0.99

Bevagna −0.0348 −0.1158 −0.84 −1.81
Calvi dell’Umbria 0.0227 −0.0977 0.68 −0.12

Cascia 0.0751 0.0115 1.56 0.69
Castelluccio di Norcia 0.4293 0.4150 1.97 1.69
Castiglione del Lago 0.0907 0.0129 1.79 0.03

Città di Castello 0.0413 −0.0154 0.75 0.16
Compignano 0.1458 0.0527 1.66 0.81

Corciano −0.0419 −0.1482 −0.55 −1.13
Ficulle 0.0363 −0.0271 0.31 −0.04
Foligno −0.0604 −0.0059 0.34 −0.64

Gualdo Tadino 0.0237 −0.0277 0.28 −0.38
Gubbio 0.1680 0.1114 2.16 1.25

Lago di Corbara 0.2500 0.1026 1.46 0.84
Massa Martana −0.1288 −0.2280 −1.54 −2.48
Monte del Lago 0.0639 0.0157 0.04 −0.64

Monteleone di Spoleto 0.0347 −0.0958 1.58 0.63
Montelovesco 0.2639 0.1857 3.11 1.95
Narni Scalo 0.0082 −0.1076 −0.32 −1.21

Nocera Umbra 0.1103 0.0217 1.05 −0.18
Norcia 0.0490 −0.0178 0.42 −0.63
Orvieto 0.0976 0.0572 1.43 0.74
Perugia −0.1769 −0.2129 −1.72 −1.99
Petrelle −0.0551 −0.1604 0.22 −0.91
Pianello 0.1181 0.0428 1.76 0.83

Ponte Nuovo 0.0099 −0.0697 1.03 −0.47
Prodo −0.0373 −0.1039 0.38 −0.17

San Gemini −0.1220 −0.2188 −1.60 −2.36
San Savino −0.0285 −0.1172 −0.97 −1.97

Sellano −0.0315 −0.1575 −0.30 −1.22
Spoleto −0.2171 −0.3159 −2.08 −3.16
Terni 0.0368 −0.0522 0.63 −0.13
Todi −0.0473 −0.1102 −0.15 −1.09

Umbertide 0.0576 −0.0083 0.58 −0.15

average 0.0287 −0.0485 0.39 −0.50
standard deviation 0.1190 0.1281 1.15 1.16

Figure 2 shows a comparison between “uncorrected” and “corrected” annual max-
imum rainfall depths for duration 24 h regarding Terni station. As can be seen, the
“uncorrected” series shows a positive trend, while the “corrected” series linear trend is
negative. This is mainly due to the fact that many old Hd=24 h values were underestimated,
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due to being derived by daily observations, while in the last decades the original Hd=24 h
values have been determined without errors by using rainfall data recorded in data-loggers
for each tip time associated with a fixed rainfall depth equal to 0.1 or 0.2 mm. Then, from
a geometric point of view, if older values increase due to corrections and the most recent
ones remain unchanged, the linear regression will be characterized by a decreasing slope.
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Figure 2. Time sequence of “uncorrected” and “corrected” annual maximum rainfall depths for duration 24 h, Hd=24 h, with
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from rainfall data with the indicated aggregation time, ta. During the period 1936–2001 Hd=24 h values have been obtained
from rainfall data with variable ta. Available data within the period 1921–2019.

Figure 3 shows the same comparison of Figure 2 between “uncorrected” and “cor-
rected” Hd=24 h series for a restricted number of representative stations. It can be seen that,
in some cases, such as that of Figure 3h regarding San Savino station, the least-square linear
trend was also negative before correction with Equation (5c), with slope of the linear re-
gression equal to −0.0285 mm/year. However, after correction, the negative trend becomes
exacerbated (slope of the linear regression equal to −0.1172 mm/year).

With the main purpose to obtain useful and intuitive graphic representations of the
linear trend slopes for both “uncorrected” and “corrected” series, Figure 4 shows the
frequency of a reasonable number of slope classes, while in Figure 5 positive and negative
slope values have been located in the geographic position of each rain gauge station.

Figure 4 highlights that a Gaussian probability function could be adequate to represent
the distribution of linear trend slope values independently if “uncorrected” or “corrected”
series are considered, with the average value changing from positive (0.0287) in the case of
the “uncorrected” series to negative (−0.0485) for the “corrected” series. As it can also be
deduced in Table 5, the two standard deviations are almost indistinguishable.

Figure 5 highlights that, within the Umbria region, there are no geographic areas most
affected by specific trends, both when considering the “uncorrected” or “corrected” series.

The analysis of the 39-time series was successively performed by the non-parametric
Mann–Kendall test. For the “uncorrected” series, by using a significance level equal to 0.05,
the percentage without significant trends is approximately 90%, with one series (Spoleto)
characterized by a significant negative trend, and three series (Castelluccio di Norcia,
Gubbio and Montelovesco) by a significant positive trend (see Table 5). After the correction,
the Mann–Kendall test evidenced six cases with a significant negative trend (Abeto, Massa
Martana, Perugia, San Gemini, San Savino and Spoleto), and no positive cases. Therefore,
for the Mann–Kendall test, the transition from “uncorrected” and “corrected” Hd=24 h series
produces different results and conclusions.
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Figure 3. Time sequence of “uncorrected” and “corrected” annual maximum rainfall depths for
duration 24 h, Hd=24 h, with the respective linear trends, for the following stations: (a) Umbertide;
(b) Calvi dell’Umbria; (c) Ficulle; (d) Monteleone di Spoleto; (e) Narni Scalo; (f) Norcia; (g) Ponte
Nuovo; and (h) San Savino. Available data within the period 1921–2019.
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Similarly to that which has already emerged using the most classic analyses, Sen’s
method also produces different results when applied to the “uncorrected” and “corrected”
annual maximum rainfall depths series. As an example, Figure 6 shows the results of
the method for both the “uncorrected” and “corrected” Hd=24 h series observed at San
Savino station. As can be seen in Figure 6a, the “uncorrected” series shows a no trend
condition, because all values are close to 1:1 line and cross it several times, while in
Figure 6b, the “correct” series evidences a clear monotonic decreasing trend (details on the
results interpretation can be found in [51]).

Water 2021, 13, x FOR PEER REVIEW 13 of 18 
 

 

Similarly to that which has already emerged using the most classic analyses, Sen’s 
method also produces different results when applied to the “uncorrected” and “cor-
rected” annual maximum rainfall depths series. As an example, Figure 6 shows the results 
of the method for both the “uncorrected” and “corrected” Hd=24 h series observed at San 
Savino station. As can be seen in Figure 6a, the “uncorrected” series shows a no trend 
condition, because all values are close to 1:1 line and cross it several times, while in Figure 
6b, the “correct” series evidences a clear monotonic decreasing trend (details on the results 
interpretation can be found in [51]). 

 
(a) 

 
(b) 

Figure 6. Trend conditions according to Sen’s method for the annual maximum rainfall depths for 
San Savino station and duration equal to 24 h: (a) “uncorrected” series; and (b) “corrected” series. 
Available data within the period 1921–2018. 

It is interesting to note Sen’s method appears less sensitive to the Hd underestimation, 
due to the rainfall coarse temporal aggregation than classical linear regression and Mann–
Kendall methods. This depends by the graphical approach on which the method is based. 
The example of the series regarding Norcia station is emblematic. Moving from the 

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180

Th
e 

se
co

nd
 h

al
f

The first half

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180

Th
e 

se
co

nd
 h

al
f

The first half

Figure 6. Trend conditions according to Sen’s method for the annual maximum rainfall depths for
San Savino station and duration equal to 24 h: (a) “uncorrected” series; and (b) “corrected” series.
Available data within the period 1921–2018.

It is interesting to note Sen’s method appears less sensitive to the Hd underestimation,
due to the rainfall coarse temporal aggregation than classical linear regression and Mann–
Kendall methods. This depends by the graphical approach on which the method is based.
The example of the series regarding Norcia station is emblematic. Moving from the
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“uncorrected” series to the “corrected” series, both the linear trend slope and the Mann–
Kendall test statistic Z change from positive to negative values (see Table 5). Instead, as
shown in Figure 7, Sen’s method suggests that both “uncorrected” and “corrected” series
are non-monotonically increasing.
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Figure 7. Trend conditions according to Sen’s method for the annual maximum rainfall depths
for Norcia station and duration equal to 24 h: (a) “uncorrected” series; and (b) “corrected” series.
Available data within the period 1921–2019.

All the results we have presented refer to a region of central Italy. We believe that
they can be generalized to any other geographical area of the world, since it is widely
demonstrated that the problem of the Hd underestimation is dependent on the technological
evolution of rainfall recording systems, with all places showing similarity. In any case, we
hope that this work can stimulate other case studies.

Even outside of the scope of this paper, it can be stated that, recently, in a study region
located in central Italy, extreme rainfall events characterized by duration 24 h have not
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clearly and significantly deviated to trends observed 50–80 years ago. Therefore, despite
in this region the effects of climate change having produced a continuous decrease in the
annual rainfall amount and a significant increase of annual and monthly air temperature,
these proclamations that try to attribute to climatic changes also the responsibility for
the worrying hydrological and geological instability of the regional territory are not at
all justified.

5. Conclusions

In the scientific literature, it is possible to find many analyses conducted to assess
whether climate change has influenced the trends of the annual maximum rainfall depths
with a duration of 24 h. Although it is well known that the Hd values obtained from rainfall
data characterized by coarse temporal resolution can be significantly underestimated, the
aforementioned analyses have been always conducted without taking into account the
data origin.

The main objective of this paper was to evaluate the effect of time-resolution of rainfall
data on Hd=24 h series trend estimation.

A representative number of rain gauge stations working perfectly for approximately a
century with available Hd=24 h series, validated by the Regional Hydrographic Service, was
carefully chosen.

All selected series, referred to as “uncorrected” since there were certainly some data
containing some underestimated values [47], were used to verify the existence of possible
trend due to climate change. For this purpose, we considered the very common least-
squares linear trend analysis, the non-parametrical Mann–Kendall test, and the Sen’s
method. Successively, the same series were modified through the procedure proposed
by [47], with the purpose of eliminating/minimizing the underestimations, obtaining the
so-called “corrected” series.

The underestimation errors due to coarse time-resolution of rainfall data produce
significant effects on the least-squares linear trend analysis (based on a geometric approach)
of the Hd=24 h values. Specifically, since a prevalence of increasing and decreasing trends for
“uncorrected” and “corrected” series, respectively, was observed, the correction procedure
can change the sign of the trend. For the non-parametric Mann–Kendall test (based on a
statistical approach) with a significance level 0.05, using the selected 39 “uncorrected” time
series, only one case was characterized by a significant negative trend, while three cases
exhibited a significant positive trend. After the corrections, cases with negative trends
became six, and there were no cases with a positive trend. Finally, the innovative Sen’s
method (based on a graphical approach) has been noted to be less sensitive to corrections of
the Hd values than the least-squares linear trend and the Mann–Kendall method. However,
its results on the Hd=24 h series were also affected by the correction.

Overall, it can be concluded that the analysis of Hd series containing potentially
underestimated values, especially when d = 24 h, can lead to misleading results. Therefore,
before conducting any trend analysis, Hd values determined from rainfall data characterized
by coarse temporal resolution should always be corrected with appropriate procedures
suggested by the scientific literature. This correction could be neglected in the analysis
performed by using the temporal scale of rainfall records [55].

The analysis conducted in this work may have the limit of considering rainfall data
from only one geographical area of the world. There is no reason to assume that choosing
only the case study of Umbria instead of many different case studies could have a significant
effect on the results we presented. In any case, in the future we hope to find in the scientific
literature similar analyses from many other territories.
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