Estimation of Heavy Metal Concentrations in the Water of Urban Lakes in the Russian Arctic (Murmansk)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Water Chemistry
3.2. Seasonal Variation
3.3. Assessment of the Level of Pollution of Water Bodies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Venäläinen, E.R. The Levels of Heavy Metals in Moose, Reindeer and Hares in Finlandresults of Twenty Years’ Monitoring. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, 2007. [Google Scholar]
- Klavins, M.; Potapovics, O.; Rodinov, V. Heavy Metals in Fish from Lakes in Latvia: Concentrations and Trends of Changes. Bull. Environ. Contam. Toxicol. 2008, 82, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Moiseenko, T.I.; Gashkina, N.A. Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: Influence of the aquatic environment and climate. Environ. Res. Lett. 2020, 15, 115013. [Google Scholar] [CrossRef]
- Kutsenko, S.A. Fundamentals of Toxicology; Foliant: Moscow, Russia, 2004; 570p. (In Russian) [Google Scholar]
- Trautmann, S.; Wolfe, B.A.; Jorgensen, P.; Tyers, M.; Gould, K.L.; McCollum, D. Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression. Curr. Biol. 2001, 11, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, P.-A.; Kashulin, N.A.; Terentjev, P.; Gjelland, K.; Koroleva, I.M.; Dauvalter, V.A.; Sandimirov, S.; Kashulin, A.; Knudsen, R. Heavy metal contents in whitefish (Coregonus lavaretus) along a pollution gradient in a subarctic watercourse. Environ. Monit. Assess. 2011, 182, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Shilova, N.A. Influence of Heavy Metals on Representatives of Freshwater Phyto- and Zooplankton under Conditions of Salinity. Ph.D. Thesis, Saratov State University Named after N.G. Chernyshevsky, Saratov, Russia, 2014. (In Russian). [Google Scholar]
- Bradl, H.B. Chapter 1 Source and Origins of Heavy Metals. In Heavy Metals in the Environment: Origin, Interaction and Remediation, 1st ed.; Bradl, H.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–27. [Google Scholar] [CrossRef]
- Kashulin, N.A.; Dauvalter, V.A.; Denisov, D.B.; Valkova, S.A.; Vandysh, O.I.; Terentjev, P.M.; Kashulin, A.N. Selected aspects of the current state of freshwater resources in the Murmansk Region, Russia. J. Environ. Sci. Health Part A 2017, 52, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Golovanova, O.A.; Malovskaya, E.A. Dynamics of pollution by ions of heavy metals of surface waters of the rivers of the Siberian region. Bull. Omsk. Univ. 2016, 3, 64–73. (In Russian) [Google Scholar]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals; Intech Open: London, Great Britain, 2018; pp. 115–133. [Google Scholar] [CrossRef] [Green Version]
- Osipova, L.A.; Kargin, S.A.; Ilyazova, F.S.; Veremeenko, O.V. Pollution of the waters of the Volga-Caspian basin with salts of heavy metals. Bull. ASTU 2008, 3, 126–131. (In Russian) [Google Scholar]
- Xia, W.; Wang, R.; Zhu, B.; Rudstam, L.G.; Liu, Y.; Xu, Y.; Xin, W.; Chen, Y. Heavy metal gradients from rural to urban lakes in central China. Ecol. Process. 2020, 9, 47. [Google Scholar] [CrossRef]
- Johnson, A.W.; Gutiérrez, M.; Gouzie, D.; McAliley, L.R. State of remediation and metal toxicity in the Tri-State Mining District, USA. Chemosphere 2016, 144, 1132–1141. [Google Scholar] [CrossRef]
- Rentz, R.; Öhlander, B. Urban impact on water bodies in the Luleå area, northern Sweden, and the role of redox processes. Hydrol. Res. 2012, 43, 917–932. [Google Scholar] [CrossRef]
- Dauvalter, V.; Moiseenko, T.; Kudryavtseva, L.; Sandimirov, S. Accumulation of heavy metals in Lake Imandra because of its pollution with industrial waste. Water Resour. 2000, 27, 279–287. [Google Scholar]
- Dauvalter, V.A.; Kashulin, N.A. Mercury Pollution of Lake Imandra Sediments, the Murmansk Region, Russia. Int. J. Environ. Res. 2018, 12, 939–953. [Google Scholar] [CrossRef]
- Alekin, O.A. Fundamentals of Hydrochemistry; Hydrometeoizdat: Leningrad, Russia, 1970; 444p. (In Russian) [Google Scholar]
- Moiseenko, T.I.; Gashkina, N. Zonal features of lake acidification. Water Resour. 2011, 38, 47–62. [Google Scholar] [CrossRef]
- Slukovskii, Z.; Dauvalter, V.; Guzeva, A.; Denisov, D.; Cherepanov, A.; Siroezhko, E. The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia. Water 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Clescerl, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for Examination for Water and Wastewater, 20th ed.; American Public Health Association USA: Washington, DC, USA, 1999; 2671p. [Google Scholar]
- Bazova, M.M. Specifics of the elemental composition of waters in environments with operating mining and ore-processing plants in the Kola North. Geochem. Int. 2017, 55, 131–143. [Google Scholar] [CrossRef]
- List of Fishery Standards: Maximum Permissible Concentrations (MPC) and Tentatively Safe Exposure Levels (TSEL) of Harmful Substances for Water of Water Bodies with A Fishery Purpose; VNIRO: Moscow, Russia, 2016; 134p. (In Russian)
- Ganor, E.; Altshuller, S.; Foner, H.A.; Brenner, S.; Gabbay, J. Vanadium and nickel in dustfall as indicators of power plant pollution. Water Air Soil Pollut. 1988, 42, 241–252. [Google Scholar] [CrossRef]
- Hernandez, H.; Rodriguez, R. Geochemical evidence for the origin of vanadium in an urban environment. Environ. Monit. Assess. 2011, 184, 5327–5342. [Google Scholar] [CrossRef] [PubMed]
- Sayet, Y.E.; Revich, B.A.; Yanin, E.P.; Smirnova, R.S.; Basharkevich, I.L.; Onishchenko, T.L.; Pavlova, L.N.; Trefilova, N.Y.; Achkasov, A.I.; Sarkisyan, S.S. Geochemistry of the Environment; Nedra: Moscow, Russia, 1990; 335p. (In Russian) [Google Scholar]
- Yanin, E.P.; Kuzmich, V.N.; Ivanitskiy, O.M. Regional natural heterogeneity of the chemical composition of land surface waters and the need to take it into account when assessing their ecological state and the intensity of technogenic pollution. Probl. Environ. Nat. Resour. 2016, 6, 3–72. (In Russian) [Google Scholar]
- Zoller, W.H.; Gordon, G.E.; Gladney, E.S.; Jones, A.G. The Sources and Distribution of Vanadium in the Atmosphere. In Trace Elements in the Environment; American Chemical Society: Washington, DC, USA, 1975; Chapter 3; pp. 31–47. [Google Scholar] [CrossRef]
- Agrawal, H.; Malloy, Q.G.; Welch, W.A.; Miller, J.W.; Cocker, D.R. In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos. Environ. 2008, 42, 5504–5510. [Google Scholar] [CrossRef] [Green Version]
- Peltier, R.E.; Lippmann, M. Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City. J. Expo. Sci. Environ. Epidemiol. 2009, 20, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; Mir: Moscow, Russia, 1989; 439p. (In Russian) [Google Scholar]
- Titov, A.F.; Kaznina, N.M.; Talanova, V.V. Heavy Metals and Plants; Karelian Scientific Center of the Russian Academy of Sciences: Petrozavodsk, Russia, 2014; 194p. (In Russian) [Google Scholar]
- Hwang, H.-M.; Fiala, M.; Park, D.; Wade, T.L. Review of pollutants in urban road dust and stormwater runoff: Part 1. Heavy metals released from vehicles. Int. J. Urban Sci. 2016, 20, 334–360. [Google Scholar] [CrossRef]
- Privalenko, A.N.; Balak, G.M.; Bagramova, E.K.; Zueva, V.D.; Pulyaev, N.N. Atomic absorption determination of the content of metals in oil fuels. Int. Tech. Econ. J. 2013, 5, 97–108. (In Russian) [Google Scholar]
- Romanovskaya, S.L. Study of The Influence of a Number of Natural and Anthropogenic Factors on The Chemical Composition of a Water Source and Drinking Water. Ph.D. Thesis, Ufa State Petroleum Technical University, Ufa, Russia, 2005. (In Russian). [Google Scholar]
- Lozovik, P.A.; Efremova, N.A.; Ryzhakov, A.V.; Borodulina, G.S.; Sabylina, A.V.; Zobkov, M.B.; Zaitsev, D.O.; Basova, S.V.; Kalmykov, M.V.; Perskaya, E.A.; et al. Analytical, Kinetic and Computational Methods in Hydrochemical Practice; Nestor-History: St. Petersburg, Russia, 2017; 272p. (In Russian) [Google Scholar]
- Belkina, N.A.; Subetto, D.A. Modern Sedimentogenesis of the Lakes of South Karelia. Geography: Development of Science and Education. In Proceedings of the Collective Monograph on Materials of the Scientific and Practical Conference LXXIII Gertsenovsky Readings, RSPU of A.I. Herzen, St. Petersburg, Russia, 22–25 April 2020; Volume 1, pp. 267–271. (In Russian). [Google Scholar]
- Dauval’Ter, V.A.; Il’Yashuk, B.P. Conditions of formation of ferromanganese nodules in the bottom sediments of lakes in the Baltic shield. Geochem. Int. 2007, 45, 615–619. [Google Scholar] [CrossRef]
- Gorlenko, V.M.; Dubinina, G.A.; Kuznetsov, S.I. Ecology of Aquatic Microorganisms; Nauka: Moscow, Russia, 1977; 289p. (In Russian) [Google Scholar]
- Shumilova, M.A.; Sadiullina, O.V.; Lebedeva, M.G.; Petrov, V.G. Distribution of manganese compounds as a pollutant of urban areas on the example of cities of the Urals. Bull. Udmurt Univ. Ser. Phys. Chem. 2013, 4, 33–38. (In Russian) [Google Scholar]
- Kashulin, N.A.; Dauvalter, V.A.; Sandimirov, S.S.; Sandimirov, S.S.; Terentyev, P.M.; Koroleva, I.M. Catalogue of Lakes in the Russian, Finnish and Norwegian Border Area; Kopijyva Oy: Jyvaskyla, Finland, 2008; 313p. [Google Scholar]
- Mortimer, C.H. The Exchange of Dissolved Substances between Mud and Water in Lakes. J. Ecol. 1942, 30, 147–201. [Google Scholar] [CrossRef]
- Galakhina, N.E.; Lozovik, P.A. Assessment of Water Pollution and Rationing Permissible Anthropogenic Impact on them by Toxic Substances. In Proceedings of the Modern Problems of Quaternary Geology and Geography of the North-West of the European Part of Russia and Neighboring Countries: Materials of a Scientific Session (with the Participation of Foreign Specialists) Dedicated to the 100th Anniversary of the Birth of Galina Sergeevna Biske, Petrozavodsk, Russia, 9–10 March 2017; pp. 102–105. (In Russian). [Google Scholar]
- Komulainen, S.F.; Lozovik, P.A.; Kruglova, A.N.; Baryshev, I.A.; Slastina, Y.L.; Galibina, N.A. The current state of the Syuskuyanjoki River (Lake Ladoga basin, Republic of Karelia). Proc. KarSC RAS 2017, 7, 19–33. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Lozovik, P.A.; Frumin, G.T. The current state and permissible biogenic loads on the Pskov-Peipsi Lake. Proc. KarSC RAS 2018, 3, 3–10. (In Russian) [Google Scholar]
Lakes | Geographic Coordinates | Area, km2 | Perimeter of the Lake, m | Maximum Length of the Lake, m | Depth, m | |
---|---|---|---|---|---|---|
Max. | Mean | |||||
Severnoe | 69.032664° N and 33.117487° E | 0.009 | 520 | 230 | 3.90 | 1.75 |
Ledovoe | 68.93313° N and 33.10451° E | 0.040 | 780 | 270 | 15.70 | 7.80 |
Okunevoe | 68.95012° N and 33.12734° E | 0.048 | 1270 | 550 | 5.60 | 2.30 |
Semenovskoe | 68.99080° N and 33.08851° E | 0.213 | 3200 | 730 | 11.30 | 2.40 |
Srednee | 68.98147° N and 33.12422° E | 0.248 | 1990 | 700 | 23.50 | 7.70 |
Yuzhnoe | 68.88469° N and 33.07660° E | 0.053 | 1130 | 430 | 11.30 | 3.05 |
Treugolnoe | 68.967875° N and 33.002587° E | 0.100 | 550 | 160 | 8.60 | 5.60 |
Elements | Semenovskoe | Ledovoe | Severnoe | Okunevoe | Srednee | Yuzhnoe | Treugolnoe | Background [22] | MPC Fish [23] |
---|---|---|---|---|---|---|---|---|---|
n | 9 | 4 | 3 | 3 | 4 | 3 | 2 | ||
V | 0.67 | 1 | |||||||
Cr | 0.50 | 70 | |||||||
Co | 0.47 | 10 | |||||||
Ni | 1.06 | 10 | |||||||
Cu | 0.94 | 1 | |||||||
Zn | 1.66 | 10 | |||||||
Mo | 0.55 | 500 | |||||||
Cd | 0.36 | 5 | |||||||
Sn | 0.50 | 112 | |||||||
Sb | 0.69 | – | |||||||
W | 0.61 | 0.8 | |||||||
Tl | 1.85 | 60 | |||||||
Pb | 0.47 | 6 | |||||||
Bi | 1.06 | – | |||||||
Mn | 2.09 | 10 | |||||||
Fe | 47.26 | 100 |
Cu | Ni | Pb | Fe | |
---|---|---|---|---|
Murmansk | 2.1 | 6.3 | 0.23 | 837 |
Russia | 5.2 | 41.6 | 0.26 | 98 |
Norway | 2.1 | 3.6 | 0.28 | 54 |
Finland | 0.9 | 1.5 | 0.09 | 434 |
Lake | WPIreg | Classification by WPIreg |
---|---|---|
Semenovskoe | 2.1 | Polluted |
Ledovoe | 3.7 | Heavily polluted |
Severnoe | 2.5 | Polluted |
Okunevoe | 3.6 | Heavily polluted |
Srednee | 3.7 | Heavily polluted |
Yuzhnoe | 1.1 | Moderately polluted |
Treugolnoe | 2 | Polluted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postevaya, M.A.; Slukovskii, Z.I.; Dauvalter, V.A.; Bernadskaya, D.S. Estimation of Heavy Metal Concentrations in the Water of Urban Lakes in the Russian Arctic (Murmansk). Water 2021, 13, 3267. https://doi.org/10.3390/w13223267
Postevaya MA, Slukovskii ZI, Dauvalter VA, Bernadskaya DS. Estimation of Heavy Metal Concentrations in the Water of Urban Lakes in the Russian Arctic (Murmansk). Water. 2021; 13(22):3267. https://doi.org/10.3390/w13223267
Chicago/Turabian StylePostevaya, Marina A., Zakhar I. Slukovskii, Vladimir A. Dauvalter, and Daria S. Bernadskaya. 2021. "Estimation of Heavy Metal Concentrations in the Water of Urban Lakes in the Russian Arctic (Murmansk)" Water 13, no. 22: 3267. https://doi.org/10.3390/w13223267
APA StylePostevaya, M. A., Slukovskii, Z. I., Dauvalter, V. A., & Bernadskaya, D. S. (2021). Estimation of Heavy Metal Concentrations in the Water of Urban Lakes in the Russian Arctic (Murmansk). Water, 13(22), 3267. https://doi.org/10.3390/w13223267