Facile Synthesis of Cu-Zn Binary Oxide Coupled Cadmium Tungstate (Cu-ZnBO-Cp-CT) with Enhanced Performance of Dye Adsorption
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.1.1. Materials
2.1.2. Methods
Green Synthesis of Adsorbent
Physicochemical Characterization of Prepared Composite
Preparation of CR Stock Solutions and Colorimetric Analysis
Adsorption Studies
3. Results and Discussions
3.1. Characterization
Order | Crystal | Crystal System | Symmetry | Cell Dimensions | Space Group | Composition (%) | Characteristic Peaks and Corresponding Planes | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | β (°) | 2 Thetha (°) | Planes | ||||||
1. | CuO (Entry No. 96-901-5925) [20] | Tenorite | Monoclinic | 4.6832 | 3.4288 | 5.1297 | 99.309 | - | 25.5 | 27.5 32.5 32.9 35.3 38.7 48.8 51.8 56.4 61.6 66.1 66.5 68.1 | (002) (110) (−110, 110) (−111) (−200, 200) (−202) (112) (021) (−113) (−311) (−310, 310) (220, −220) |
2. | CdWO4 (Entry No. 96-100-1752) [21] | Wolframite | Monoclinic | 5.2089 | 5.8596 | 5.0715 | 91.519 | - | 43.1 | 16.7 23.2 28.9 29.5 30.6 35.5 38.8 47.6 50.5 56.9 59.9 | (010) (110) (−111) (111) (020) (002) (012) (022) (221) (013) (032) |
3. | ZnO (Entry No. 96-900-4179) [22] | Zincite | Hexagonal | 3.2494 | - | 5.2038 | - | P 63 m c | 31.5 | 31.8 34.5 36.4 47.4 56.7 63.0 66.5 68.9 | (100) (002) (101) (102) (110) (103) (200) (112) |
3.2. Adsorption Studies
3.2.1. Optimization of CR Adsorption Capacity of Cu-ZnBO-Cp-CT under Various Parameters
3.2.2. Thermodynamics of CR Adsorption onto the Cu-ZnBO-Cp-CT
3.2.3. Adsorption Isotherm of CR Adsorption onto the Cu-ZnBO-Cp-CT Surface
3.2.4. Adsorption Kinetics of CR Adsorption onto the Cu-ZnBO-Cp-CT Surface
3.2.5. Comparative Evaluation of CR Adsorption Capacity of Cu-ZnBO-Cp-CT
4. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shah, K. Biodegradation of azo dye compounds. Int. Res. J. Biochem. Biotechnol. 2014, 1, 5–13. [Google Scholar]
- Naseem, K.; Farooqi, Z.H.; Begum, R.; Irfan, A. Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J. Clean. Prod. 2018, 187, 296–307. [Google Scholar] [CrossRef]
- Derouich, G.; Younssi, S.A.; Bennazha, J.; Cody, J.A.; Ouammou, M.; El Rhazi, M. Development of low-cost polypyrrole/sintered pozzolan ultrafiltration membrane and its highly efficient performance for congo red dye removal. J. Environ. Chem. Eng. 2020, 8, 103809. [Google Scholar] [CrossRef]
- Arab, C.; Kurdi, R.E.; Patra, D. Efficient removal of Congo red using curcumin conjugated zinc oxide nanoparticles as new adsorbent complex. Chemosphere 2021, 276, 130158. [Google Scholar] [CrossRef] [PubMed]
- Mareedu, T.; Poiba, V.R.; Vangalapati, M. Green synthesis of iron nanoparticles by green tea and black tea leaves extract. Mater. Today Proc. 2021, 42, 1498–1501. [Google Scholar] [CrossRef]
- Malik, P.; Shankar, R.; Malik, V.; Sharma, N.; Mukherjee, T.K. Green chemistry based benign routes for nanoparticle synthesis. J. Nanopart. 2014, 2014, 302429. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, S.; Arulmozhi, P.; Kumar, N.; Sakthivel, B.; Kumar, S.P.; Praseetha, P.K. Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: Characterization and antimicrobial activities. Mater. Today Proc. 2020, 23, 73–80. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Ahmed, R.; Chaudhry, S.A. Green synthesis of f-CdWO4 for photocatalytic degradation and adsorptive removal of Bismarck Brown R dye from water. Water Res. Indus. 2019, 22, 100119. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Chaudhry, S.A.; Ahmad, R. Preparation of functionalized CuO nanoparticles using Brassica Rapa leave extract for water purification. Desalin. Water Treat. 2019, 164, 1–14. [Google Scholar] [CrossRef]
- Taneja, P.; Sharma, S.; Umar, A.; Mehta, S.K.; Ibhadon, A.O.; Kansal, S.K. Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles. Mater. Chem. Phys. 2018, 211, 335–342. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Xu, M.L.; Liu, B.; Wang, X.F.; Wang, S.H.; Sun, T. Preparation of zinc tungstate nanomaterial and its sonocatalytic degradation of meloxicam as a novel sonocatalyst in aqueous solution. Ultrason. Sonochem. 2020, 61, 104815. [Google Scholar] [CrossRef]
- Hang, T.T.M.; Vy, N.H.T.; Hanh, N.T.; Pham, T.D.; Yen, L.T.H. Facile synthesis of copper tungstate (CuWO4) for novel photocatalytic degradation of tetracycline under visible light. Sustain. Chem. Pharm. 2021, 21, 100407. [Google Scholar] [CrossRef]
- Shad, N.A.; Sajid, M.M.; Amin, N. Photocatalytic degradation performance of cadmium tungstate (CdWO4) nanosheets-assembly and their hydrogen storage features. Ceram. Int. 2019, 45, 19015–19021. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Nirala, R.K.; Vikrant, K.; Kim, K.H.; Ahmad, R.; Chaudhry, S.A. Facile green synthesis of ZnO–CdWO4 nanoparticles and their potential as adsorbents to remove organic dye. Environ. Poll. 2021, 271, 116401. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Su, W.; Hu, X.; Liu, H.; Sheng, M.; Zhou, Q. Synthesis and characterization of Fe-doped CdWO4 nanoparticles with enhanced photocatalytic activity. Mater. Res. Exp. 2019, 6, 035507. [Google Scholar] [CrossRef]
- Sethi, Y.A.; Panmand, R.P.; Kadam, S.R.; Kulkarni, A.K.; Apte, S.K.; Naik, S.D.; Kale, B.B. Nanostructured CdS sensitized CdWO4 nanorods for hydrogen generation from hydrogen sulfide and dye degradation under sunlight. J. Colloid Interface Sci. 2017, 487, 504–512. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Ahmad, R.; Linh, N.T.T.; Thai, V.N. CuO-ZnO-CdWO4: A sustainable and environmentally benign photocatalytic system for water cleansing. Environ. Sci. Pollut. Res. 2021, 28, 53793–53803. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Pearson’s Crystal Data. In Crystal Structure Database for Inorganic Compounds-Crystal Impact; GbR, Kreuzherrenstr: Bonn, Germany, 2021; Available online: http://www.crystalimpact.com/endeavour (accessed on 14 June 2021).
- Shafiee, M.; Reza, M.; Kargar, M.; Ghashang, M. Characterization and low-cost, green synthesis of Zn2+ doped MgO nanoparticles. Green Process. Synth. 2018, 7, 248–254. [Google Scholar] [CrossRef]
- Calos, N.J.; Forrester, J.S.; Schaffer, G.B. A crystallographic contribution to the mechanism of a mechanically induced solid-state reaction. J. Solid State Chem. 1996, 122, 273–280. [Google Scholar] [CrossRef]
- Daturi, M.; Borel, M.M.; Leclaire, A.; Savary, L.; Costentin, G.; Lavalley, J.C.; Raveau, B. Crystallographic and catalytic studies of a new solid solution CdMoxW1–xO4. J. Chim. Phys. 1996, 93, 2043–2053. [Google Scholar] [CrossRef]
- Kihara, K.; Donnay, G. Anharmonic thermal vibrations in ZnO. Can Mineral. 1985, 23, 647–654. [Google Scholar]
- Dawood, S.; Sen, T.K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Chaudhry, S.A. Nanohybrid composite Fe2O3-ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. J. Clean. Prod. 2019, 223, 849–868. [Google Scholar] [CrossRef]
- He, S.; Liu, X.; Yan, P.; Wang, A.; Su, J.; Su, X. Preparation of gemini surfactant/graphene oxide composites and their superior performance for Congo red adsorption. RSC Adv. 2019, 9, 4908–4916. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Chowdhury, S.; Tadashi, M. (Eds.) Insight into Adsorption Thermodynamics, Thermodynamics; InTech: London, UK, 2011; ISBN 978-953-307-544-0. Available online: http://www.intechopen.com/books/thermodynamics/insight-into-adsorption-thermodynamics (accessed on 23 August 2021).
- Foo, K.Y.; Hameed, B.H. Insights into the modelling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.F.; Ibrahim, A.M.; Abd El-Latif, M.M. Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination 2011, 278, 412–423. [Google Scholar] [CrossRef]
- Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Bazrafshan, A.A. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study. Ultrason. Sonochem. 2016, 32, 119131. [Google Scholar] [CrossRef] [Green Version]
- Vikrant, K.; Kim, K.H. Nanomaterials for the adsorptive treatment of Hg(II) ions from water. Chem. Eng. J. 2019, 358, 264–282. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, L.; Wen, S. Hierarchically porous SiO2/C hollow microspheres: A highly efficient adsorbent for Congo red removal. RSC Adv. 2018, 8, 19852. [Google Scholar] [CrossRef] [Green Version]
Order | Wave Number Assigned for Cu-ZnBO-Cp-CT (cm−1) | Corr. Peaks | Remarks | Reference |
---|---|---|---|---|
1. | 3421 | -OH str. | Appeared for plant extract | [14] |
2. | 1634 | -OH str. | ||
3. | 1450 | -C-H str. | ||
4. | 841 | Cd-O-W | Appeared for NPs | |
5. | 705 | W-O | ||
6. | 596 | Cu-O | ||
7. | 512 | Zn-O | ||
8. | 449 | Cd-O |
Order | Temperature, °C | ∆G° kJ mol−1 | ∆H° kJ mol−1 | ∆S° kJ mol−1 K−1 |
---|---|---|---|---|
1. | 30 | −12.0 | −175.2 | −0.54 |
2. | 40 | −5.7 | ||
3. | 50 | −1.2 |
Order | Temp., °C | Langmuir | Freundlich | Temkin | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qo mg g−1 | b L mg−1 | RL | ARE # | n | kF mg/g (L/mg)1/n | ARE # | AT | bT | ARE # | ||
1. | 30 | 19.6 | 0.95 | 0.10 | 30.1 | 3.90 | 9.61 | 5.63 | 100.8 | 1.05 | 13.2 |
2. | 40 | 14.8 | 0.40 | 0.20 | 10.8 | 3.10 | 5.20 | 4.07 | 9.17 | 1.05 | 4.30 |
3. | 50 | 13.8 | 0.17 | 0.40 | 5.50 | 1.90 | 2.44 | 13.0 | 1.53 | 0.85 | 6.43 |
Order | Kinetics Model | Parameters | Qe (Exp) = 7.8 mg g−1 |
---|---|---|---|
1. | Pseudo-first order | k1 min−1 | 0.03 |
2. | Qe (cal) mg g−1 | 11.5 | |
3. | ∆Q # | 3.62 | |
4. | R2 | 0.88 | |
5. | χ * | 0.31 | |
6. | Pseudo-second order | k2 | 0.04 |
7. | Qe (cal) mg g−1 | 10.6 | |
8. | ∆Q # | 2.75 | |
9. | R2 | 0.99 | |
10. | Χ * | 0.26 | |
14. | Weber-Morris | K1 | 0.68 |
15. | C1 | 0.04 | |
16. | R12 | 0.99 | |
17. | K2 | 0.003 | |
18. | C2 | 7.94 | |
19. | R2 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, B.; Alwan, B.A.; Siddiqui, S.I.; Ahmad, R.; Almesfer, M.; Khanna, M.K.; Mishra, R.; Ravi, R.; Oh, S. Facile Synthesis of Cu-Zn Binary Oxide Coupled Cadmium Tungstate (Cu-ZnBO-Cp-CT) with Enhanced Performance of Dye Adsorption. Water 2021, 13, 3287. https://doi.org/10.3390/w13223287
Fatima B, Alwan BA, Siddiqui SI, Ahmad R, Almesfer M, Khanna MK, Mishra R, Ravi R, Oh S. Facile Synthesis of Cu-Zn Binary Oxide Coupled Cadmium Tungstate (Cu-ZnBO-Cp-CT) with Enhanced Performance of Dye Adsorption. Water. 2021; 13(22):3287. https://doi.org/10.3390/w13223287
Chicago/Turabian StyleFatima, Bushra, Basem Al Alwan, Sharf Ilahi Siddiqui, Rabia Ahmad, Mohammed Almesfer, Manoj Kumar Khanna, Ruby Mishra, Rangnath Ravi, and Seungdae Oh. 2021. "Facile Synthesis of Cu-Zn Binary Oxide Coupled Cadmium Tungstate (Cu-ZnBO-Cp-CT) with Enhanced Performance of Dye Adsorption" Water 13, no. 22: 3287. https://doi.org/10.3390/w13223287
APA StyleFatima, B., Alwan, B. A., Siddiqui, S. I., Ahmad, R., Almesfer, M., Khanna, M. K., Mishra, R., Ravi, R., & Oh, S. (2021). Facile Synthesis of Cu-Zn Binary Oxide Coupled Cadmium Tungstate (Cu-ZnBO-Cp-CT) with Enhanced Performance of Dye Adsorption. Water, 13(22), 3287. https://doi.org/10.3390/w13223287