Effects of Arctic Warming on Microbes and Methane in Different Land Types in Svalbard
Abstract
:1. General Description of Microorganisms
2. General Information about High Arctic Svalbard
3. General Study of Microbes and the Environment in Kongsfjorden, Ny-Ålesund
4. Effects of Glacial Collapse and Melting on Microbes
5. General Studies of CH4-Correlated Microbes in Svalbard
6. Unanswered Questions about Microbial Correlations with CH4 in Svalbard Needing to Be Addressed
- (1)
- How will the microbial community in Svalbard change along with rapid Arctic warming and the environmental change? How does the microbial relationship change alongside?
- (2)
- How does the microbial relationship affect the realization of the ecological functions of microbiomes?
- (3)
- Is Svalbard a source or sink for CH4 in the future? What are the contributions of glacial/permafrost melting, meltwater, soil and microbial mediation to the whole concentration of CH4 in Svalbard?
- (4)
- What is the influence of microbiome changes in different media in CH4 cycling?
- (5)
- Does CH4 cycling changes in Svalbard greatly influence global CH4 change?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.; Zhang, F.; Lin, L.; Cai, M.; Yang, H.; Wang, X. Effects of the 2010 Chile and 2011 Japan tsunamis on the Antarctic coastal waters as detected via online mooring system. Antarct. Sci. 2012, 24, 665–671. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, F.; He, J.; Lee, S.H.; Qiao, Z.-Y.; Yu, Y. Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek 2013, 103, 1309–1319. [Google Scholar] [CrossRef]
- Zeng, Y.; Luo, W.; Li, H.; Yu, Y. High diversity of planktonic prokaryotes in Arctic Kongsfjorden seawaters in summer 2015. Polar Biol. 2021, 44, 195–208. [Google Scholar] [CrossRef]
- Alonso-Sáez, L.; Waller, A.S.; Mende, D.R.; Bakker, K.; Farnelid, H.; Yager, P.L.; Lovejoy, C.; Tremblay, J.É.; Potvin, M.; Heinrich, F.; et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl. Acad. Sci. USA 2012, 109, 17989–17994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Kennedy, N.; Richardson, A.E.; Egger, K.N.; Siciliano, S.D. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis. Can. J. Microbiol. 2016, 62, 485–491. [Google Scholar] [CrossRef]
- Lenhart, K.; Klintzsch, T.; Langer, G.; Nehrke, G.; Bunge, M.; Schnell, S.; Keppler, F. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 2016, 13, 3163–3174. [Google Scholar] [CrossRef] [Green Version]
- Klintzsch, T.; Langer, G.; Wieland, A.; Geisinger, H.; Lenhart, K.; Nehrke, G.; Keppler, F. Effects of Temperature and Light on Methane Production of Widespread Marine Phytoplankton. J. Geophys. Res. Biogeosciences 2020, 125, e2020JG005793. [Google Scholar] [CrossRef]
- Ye, W.; Wang, X.; Zhang, X.; Zhang, G. Methane production in oxic seawater of the western North Pacific and its marginal seas. Limnol. Oceanogr. 2020, 65, 2352–2365. [Google Scholar] [CrossRef]
- van Teeseling, M.C.; Jogler, C. Cultivation of elusive microbes unearthed exciting biology. Nat. Commun. 2021, 12, 75. [Google Scholar] [CrossRef]
- Becking, L.G.M.B. Geobiologie of Inleiding Tot De Milieukunde; Van Stockum WP & Zoon (in Dutch): The Hague, The Netherlands, 1934. [Google Scholar]
- Beijerinck, M.W. De Infusies En De Ontdekking Der Backteriën; Jaarboek van de Koninklijke Akademie voor Wetenschappen: Amsterdam, The Netherlands, 1913; Müller. (Reprinted in Verzamelde geschriften van M.W. Beijerinck, vijfde deel. pp. 119–140). [Google Scholar]
- Zhang, F.; Cao, S.; Gao, Y.; He, J. Distribution and environmental correlations of picoeukaryotes in an Arctic fjord (Kongsfjorden, Svalbard) during the summer. Polar Res. 2019, 38, 3390–3401. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, F.; He, J.; Ji, Z.; Zhou, Q. Water masses influence bacterioplankton community structure in summer Kongs-fjorden. Extremophiles 2020, 24, 107–120. [Google Scholar] [CrossRef]
- Bourriquen, M.; Mercier, D.; Baltzer, A.; Fournier, J.; Costa, S.; Roussel, E. Paraglacial coasts responses to glacier retreat and associated shifts in river floodplains over decadal timescales (1966–2016), Kongsfjorden, Svalbard. Land Degrad. Dev. 2018, 29, 4173–4185. [Google Scholar] [CrossRef]
- Svendsen, H.; Beszczynska-Møller, A.; Hagen, J.O.; Lefauconnier, B.; Tverberg, V.; Gerland, S.; Børre Ørbæk, J.; Bischof, K.; Papucci, C.; Zajaczkowski, M.; et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 2002, 21, 133–166. [Google Scholar]
- Bradley, J.A.; Anesio, A.M.; Arndt, S. Microbial and biogeochemical dynamics in glacier Forefields are sensitive to century-scale climate and anthropogenic change. Front. Earth Sci. 2019, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Cottier, F.; Tverberg, V.; Inall, M.; Svendsen, H.; Nilsen, F.; Griffiths, C. Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. J. Geophys. Res. Space Phys. 2005, 110, 12005. [Google Scholar] [CrossRef] [Green Version]
- Cottier, F.; Nilsen, F.; Inall, M.E.; Gerland, S.; Tverberg, V.; Svendsen, H. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys. Res. Lett. 2007, 34, 10607. [Google Scholar] [CrossRef] [Green Version]
- Muckenhuber, S.; Korosov, A.A.; Sandven, S. Open-source feature-tracking algorithm for sea ice drift retrieval from Senti-nel-1 SAR imagery. Cryosphere 2016, 10, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Wiencke, C.; Hop, H. Ecosystem Kongsfjorden: New views after more than a decade of research. Polar Biol. 2016, 39, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Lalande, C.; Moriceau, B.; Leynaert, A.; Geisinger, H.; Lenhart, K.; Nehrke, G. Spatial and temporal variability in export fluxes of biogenic matter in Kongsfjorden. Polar Biol. 2017, 39, 1–14. [Google Scholar] [CrossRef]
- Bischof, K.; Convey, P.; Duarte, P.; Gattuso, J.-P.; Granberg, M.; Hop, H.; Hoppe, C.; Jiménez, C.; Lisitsyn, L.; Martinez, B.; et al. Kongsfjorden as harbinger of the future arctic: Knowns, unknowns and research priorities. In The Ecosystem of Kongsfjorden, Svalbard; Springer International Publishing: Cham, Switzerland, 2019; pp. 537–562. [Google Scholar]
- Hop, H.; Falk-Petersen, S.; Svendsen, H.; Kwasniewski, S.; Pavlov, V.; Pavlova, O.; Søreide, J.E. Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog. Oceanogr. 2006, 71, 182–231. [Google Scholar] [CrossRef]
- Wassmann, P.; Kosobokova, K.N.; Slagstad, D.; Drinkwaterd, K.F.; Hopcrofte, R.R.; Mooref, S.E. The contiguos domains of Arctic Ocean dvection: Trails of life and death. Progr Oceanogr 2015, 139, 42–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F. Study and Analysis of prokaryotic communities and CH4 changes in the Arctic Kongsfjorden, Svalbar. Open Access J. Biog. Sci. Res. 2021, 8. [Google Scholar] [CrossRef]
- Hansen, G.A.; Eilertsen, H.C. Modelling the onset of phytoplankton blooms: A new approach. In Ecology of Fjords and Coastal Waters; Skjoldal, H.R., Hopkins, K.E., Erikstad, K.E., Leinas, H.P., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1995; pp. 73–83. [Google Scholar]
- Hegseth, E.N.; Tverberg, V. Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J. Mar. Syst. 2013, 113, 94–105. [Google Scholar] [CrossRef]
- Keck, A.; Wiktor, J.; Hapter, R.; Nilsen, R. Phytoplankton assemblages related to physical gradients in an Arctic, glacier-fed fjord in summer. ICES J. Mar. Sci. 1999, 56, 203–214. [Google Scholar] [CrossRef]
- Piwosz, K.; Walkusz, W.; Hapter, R.; Wieczorek, P.; Hop, H.; Wiktor, J. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol. 2009, 32, 549–559. [Google Scholar] [CrossRef]
- Piwosz, K.; Spich, K.; Całkiewicz, J.; Weydmann, A.; Kubiszyn, A.M.; Wiktor, J.M. Distribution of small phytoflagellates along an Arctic fjord transect. Environ. Microbiol. 2015, 17, 2393–2406. [Google Scholar] [CrossRef]
- Zhang, F.; He, J.; Jin, H.; Hao, Q.; Gao, Z.; Sun, H. Comparison of picoeukaryote community structures and their environmental relationships between summer and autumn in the southern Chukchi Sea. Extremophiles 2021, 25, 235–248. [Google Scholar] [CrossRef]
- Dalpadado, P.; Hop, H.; Rønning, J.; Gerland, S.; Tverberg, V.; Svendsen, H. Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. 2016, 39, 1765–1784. [Google Scholar] [CrossRef]
- Fang, Z.; Yongjun, T.; Jianfeng, H. Prevalence of a type of freshwater mixotrophic chrysophyte in a high Arctic maine ecosystem in a summer situation. Water 2021, 15, 2129, Accepted. [Google Scholar]
- Caroppo, C.; Pagliara, P.; Azzaro, F.; Miserocchi, S.; Azzaro, M. Late summer phytoplankton blooms in the changing polar environment of the kongsfjorden (Svalbard, Arctic). Cryptogam. Algologie 2017, 38, 53–72. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, W.; Xiao, T. Spatial and temporal distribution of tintinnid (Ciliophora: Tintinnida) communities in Kongsfjorden, Svalbard (Arctic), during summer. Polar Biol. 2014, 37, 291–296. [Google Scholar] [CrossRef]
- Gluchowska, M.; Kwasniewski, S.; Prominska, A.; Olszewska, A.; Goszczko, I.; Falk-Petersen, S.; Hop, H.; Weslawski, J.M. Zooplankton in Svalbard fjords on the Atlantic–Arctic boundary. Polar Biol. 2016, 39, 1785–1802. [Google Scholar] [CrossRef] [Green Version]
- Wharton Jr, R.A.; Vinyard, W.C.; Parker, B.C.; Drinkwaterd, K.F.; Hopcrofte, R.R.; Mooref, S.E. Berge Algae in cryoconite holes on the Canada Glacierin southern Victoria Land. Antarct. Phycol. 1981, 20, 208–211. [Google Scholar] [CrossRef]
- Christner, B.C.; Kvitko, B.H.; Reeve, J.N. Molecular molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconitehole. Extremophiles 2003, 7, 177–183. [Google Scholar] [CrossRef]
- Zumsteg, A.; Luster, J.; Göransson, H.; Smittenberg, R.H.; Brunner, I.; Bernasconi, S.M.; Zeyer, J.; Frey, B. Bacterial, Archaeal and Fungal Succession in the Forefield of a Receding Glacier. Microb. Ecol. 2012, 63, 552–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anesio, A.M.; Lutz, S.; Chrismas, N.A.M.; Benning, L.G. The microbiome of glaciers and ice sheets. Npj Biofilms Microbiomes 2017, 3, 10–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monger, B.C.; Landry, M.R. Flow cytometric analysis of marine bacteria with hoechst 33342. Appl. Environ. Microbiol. 1993, 59, 905–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, D.R.; Pollard, W.H. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol. 2004, 27, 66–74. [Google Scholar] [CrossRef]
- Shur, Y.L.; Jorgenson, M.T. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafr. Periglac. Process. 2007, 18, 7–19. [Google Scholar] [CrossRef]
- Altshuler, I.; Hamel, J.; Turney, S.; Magnuson, E.; Lévesque, R.; Greer, C.W.; Whyte, L.G. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ. Microbiol. 2019, 21, 3711–3727. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.; Van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Vary, P.; Johnson, M. Cell yields of bacteria grown on methane. Appl. Microbiol. 1967, 15, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Mauritz, M.; Bracho, R.; Celis, G.; Hutchings, J.; Natali, S.M.; Pegoraro, E.; Salmon, V.G.; Schädel, C.; Webb, E.E.; Schuur, E.A.G. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob. Chang. Biol. 2017, 23, 3646–3666. [Google Scholar] [CrossRef]
- Verville, J.; Hobbie, S.; Iii, F.S.C.; Hooper, D. Response of tundra CH4 and CO2 flux tomanipulation of temperature and vegetation. Biogeochemistry 1998, 41, 215–235. [Google Scholar] [CrossRef]
- Tarnocai, C.; Canadell, J.G.; Schuur, E.A.; Kuhry, P.; Mazhitova, G.; Zimov, S. Soil organic carbon pools in the northern cir-cumpolar permafrost region. Glob. Biogeochem. Cycles 2009, 23, GB2023. [Google Scholar] [CrossRef]
- Marushchak, M.E.; Pitkämäki, A.; Koponen, H. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob. Chang. Biol. 2011, 17, 2601–2614. [Google Scholar] [CrossRef]
- Stackhouse, B.T.; Vishnivetskaya, T.A.; Layton, A.; Chauhan, A.; Pfiffner, S.; Mykytczuk, N.C.; Sanders, R.; Whyte, L.G.; Hedin, L.; Saad, N.; et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 2015, 120, 1764–1784. [Google Scholar] [CrossRef]
- Mackelprang, R.; Saleska, S.R.; Jacobsen, C.S.; Nehrke, G.; Bunge, M.; Schnell, S. Permafrost Meta-Omics and Climate Change. Annu. Rev. Earth Planet. Sci. 2016, 43, 439–462. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, C.; Haugwitz, M.S.; Priemé, A.; Nielsen, C.S.; Elberling, B.; Michelsen, A.; Grogan, P.; Blok, D. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob. Chang. Biol. 2016, 23, 406–420. [Google Scholar] [CrossRef]
- Bush, T.; Diao, M.; Allen, R.J.; Benning, L.G. Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical pro-cesses an and microbial community dynamics. Nat. Commun. 2017, 8, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Karl, D.; Tilbrook, B. Production and transport of methane in oceanic particulate organic matter. Nat. Cell Biol. 1994, 368, 732–734. [Google Scholar] [CrossRef]
- Conrad, R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 1996, 60, 609–640. [Google Scholar] [CrossRef] [PubMed]
- Hoare, A.; Wang, H.; Meethil, A.; Abusleme, L.; Hong, B.-Y.; Moutsopoulos, N.M.; Marsh, P.D.; Hajishengallis, G.; Diaz, P.I. A cross-species interaction with a symbiotic commensal enables cell-density-dependent growth and in vivo virulence of an oral pathogen. ISME J. 2021, 15, 1490–1504. [Google Scholar] [CrossRef]
- Kieft, B.; Li, Z.; Bryson, S.; Crump, B.C.; Hettich, R.; Pan, C.; Mayali, X.; Mueller, R.S. Microbial community structure–function relationships in yaquina bay estuary reveal spatially distinct carbon and nitrogen cycling capacities. Front. Microbiol. 2018, 9, 1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, H.; Pei, S.; Zhan, L.; Ye, W. Effects of Arctic Warming on Microbes and Methane in Different Land Types in Svalbard. Water 2021, 13, 3296. https://doi.org/10.3390/w13223296
Zhang F, Zhang H, Pei S, Zhan L, Ye W. Effects of Arctic Warming on Microbes and Methane in Different Land Types in Svalbard. Water. 2021; 13(22):3296. https://doi.org/10.3390/w13223296
Chicago/Turabian StyleZhang, Fang, Han Zhang, Shaofeng Pei, Liyang Zhan, and Wangwang Ye. 2021. "Effects of Arctic Warming on Microbes and Methane in Different Land Types in Svalbard" Water 13, no. 22: 3296. https://doi.org/10.3390/w13223296
APA StyleZhang, F., Zhang, H., Pei, S., Zhan, L., & Ye, W. (2021). Effects of Arctic Warming on Microbes and Methane in Different Land Types in Svalbard. Water, 13(22), 3296. https://doi.org/10.3390/w13223296