Temporal and Spatial Changes of Runoff Regime in the Yellow River Basin from 1956 to 2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Analysis of Intra-Annual Concentration of Hydrological Variables
2.2.2. Detection of Trends and Changing Points
2.2.3. Nonparametric Estimator of Climate Elasticity
2.2.4. Attribution of Climate Change and Human Activity on the Runoff
3. Results
3.1. Trend Detection of Runoff Regime
3.1.1. Annual Variation of Runoff
3.1.2. Intra-Annual Concentration of Runoff
3.2. Climate Elasticity Coefficient of the Annual Runoff
3.3. Attribution Analysis of Runoff Change
4. Discussion
4.1. Rationality of the Results of Attribution Analysis on Runoff Change
4.2. Spatial Heterogeneity of Runoff Change
4.3. Adaptive Management of Water Resources
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, L.; Heynen, M.; Pellicciotti, F. Freshwater Resources: Past, Present, Future. In International Encyclopedia of Geography; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–12. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118786352.wbieg0712.pub2 (accessed on 16 November 2021).
- Chang, H.; Gannett, M.; Tullos, D.; Moradkhani, H.; Copeland, B. Climate Change and Freshwater Resources in Oregon; Oregon Climate Impact Assessment: Corvalis, OR, USA, 2010. [Google Scholar]
- Wheater, H.S. Water Security—Science and management challenges. Proc. Int. Assoc. Hydrol. Sci. 2015, 366, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Elgaali, E.; Tarawneh, Z. Evaluation the Effects of Climate Change on the Flow of the Arkansas River—United States. Adv. Sci. Technol. Eng. Syst. 2021, 6, 65–74. [Google Scholar] [CrossRef]
- Hall, N.D.; Stuntz, B.B.; Abrams, R.H. Climate Change and Freshwater Resources. Nat. Resour. Environ. 2008, 22, 30–35. [Google Scholar]
- Post, D.A. Assessing the hydrological impacts of coal resource development: A case study from Australia. Vestn. St. Petersburg Univ. Earth Sci. 2021, 66, 91–106. [Google Scholar] [CrossRef]
- Rwd, A.; Rmh, B.; Saa, B.; Agb, C.; Br, D. Low streamflow trends at human-impacted and reference basins in the United States. J. Hydrol. 2019, 580, 124254. [Google Scholar] [CrossRef]
- Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G. Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation. Water Resour. Res. 2018, 54, 1252–1280. [Google Scholar] [CrossRef]
- Wei, Q.; Chi, Z.; Fu, G.; Chris, S.; Liu, Y. Impact of robustness of hydrological model parameters on flood prediction uncertainty. J. Flood Risk Manag. 2018, 12, e12488. [Google Scholar] [CrossRef] [Green Version]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2021, 13, 28. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, M.G.; Di, D.R.; Shi, W.Y. Separating the Impacts of Climate Change and Human Activities on Runoff: A Review of Method and Application. Water 2020, 12, 2201. [Google Scholar] [CrossRef]
- Du, J.; Shi, C.X. Effects of climatic factors and human activities on runoff of the Weihe River in recent decades. Quat. Int. 2012, 282, 58–65. [Google Scholar] [CrossRef]
- Du, M.; Mu, X.; Zhao, G.; Gao, P.; Sun, W. Changes in Runoff and Sediment Load and Potential Causes in the Malian River Basin on the Loess Plateau. Sustainability 2021, 13, 443. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Yong, B.; Singh, V.P.; Yang, X.; Yuan, F. Quantifying the effects of climate variability and human activities on runoff from the Laohahe basin in northern China using three different methods. Hydrol. Process. 2011, 25, 2492–2505. [Google Scholar] [CrossRef]
- Bren, L.; Hopmans, P. Paired catchments observations on the water yield of mature eucalypt and immature radiata pine plantations in Victoria, Australia. J. Hydrol. 2007, 336, 416–429. [Google Scholar] [CrossRef]
- Brown, A.E.; Lu, Z.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Zhang, Y.; Chiew, F.; Post, D.; Zheng, H.; Song, S. Coal Mining Impacts on Baseflow Detected Using Paired Catchments. Water Resour. Res. 2020, 56, e2019WR025770. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res. 2011, 47, W07526. [Google Scholar] [CrossRef]
- Budyko, M.I. The Heat Balance of the Earth′s Surface. Sov. Geogr. 1961, 2, 3–13. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, 2578–2584. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Analysis of impacts of climate variability and human activity on streamflow for a river basin in northeast China. J. Hydrol. 2011, 410, 239–247. [Google Scholar] [CrossRef]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Teng, J.; Chiew, F.H.S.; Vaze, J.; Marvanek, S.; Kirono, D.G.C. Estimation of climate change impact on mean annual runoff across continental Australia using Budyko and Fu equations and hydrological models. J. Hydrometeorol. 2012, 13, 1094–1106. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Dong, Z.; Tang, Q.; Lv, X.; Dong, G. Analysis of Natural Streamflow Variation and Its Influential Factors on the Yellow River from 1957 to 2010. Water 2018, 10, 1155. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhang, L.; Liu, C.; Shao, Q.; Fukushima, Y. Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s. Hydrol. Process. 2010, 21, 886–893. [Google Scholar] [CrossRef]
- Zhong, D.; Dong, Z.; Fu, G.; Bian, J.; Zhao, Y. Trend and change points of streamflow in the Yellow River and their attributions. J. Water Clim. Chang. 2020, 12, 136–151. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Wu, J.; Duan, Q. Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012. Ecol. Eng. 2016, 91, 566–573. [Google Scholar] [CrossRef]
- Gao, Q.; Zhao, Q.; Yang, M.; Zou, C. Impact of Climate Change and Land Use on Runoff in the Dawen River Basin, China. Appl. Ecol. Environ. Res. 2019, 17, 2849–2863. [Google Scholar] [CrossRef]
- Li, L.J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.W.; Jiang, D.J.; Li, J.Y.; Qin, D.Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. Int. J. 2007, 21, 3485–3491. [Google Scholar] [CrossRef]
- Lv, X.; Zuo, Z.; Ni, Y.; Sun, J.; Wang, H. The effects of climate and catchment characteristic change on streamflow in a typical tributary of the Yellow River. Sci. Rep. 2019, 9, 14535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, P.; Liu, W.; Guo, M. Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China. Theor. Appl. Climatol. 2014, 117, 293–301. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Liu, C.; Bai, P. Responses of runoff to climatic variation and human activities in the Fenhe River, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1293–1301. [Google Scholar] [CrossRef]
- Jiang, G.; He, L.; Jing, J. Water security evaluation in Yellow River basin. AIP Conf. Proc. 2018, 1994, 020059. [Google Scholar]
- Water, C. Yellow River Basin: Living with scarcity. Water Int. 2010, 35, 681–701. [Google Scholar] [CrossRef]
- Yang, D.; Ishidaira, H. Profile of the Yellow River Basin. In The Yellow River: Water and Life; World Scientific: Singapore, 2009. [Google Scholar]
- MWR. Yellow River Basin Hydrological Yearbook; Water Power Press: Beijing, China, 2017. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M.; Allen, R.G.; Pereira, L.S.; Martin, S. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Zhang, L.; Qian, Y. Annual distribution features of the yearly precipitation in China and their inter annual variations. Acta Meteorol. Sin. 2003, 17, 146–163. [Google Scholar]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Schaake, J.C. From climate to flow. In Climate Change and US Water Resources; U.S. Department of Energy Office of Scientific and Technical Information: New York, NY, USA, 1990. [Google Scholar]
- Hu, S.; Liu, C.; Zheng, H.; Wang, Z.; Yu, J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J. Geogr. Sci. 2012, 22, 895–905. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; FAO: New York, NY, USA, 1974. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Jinren, N.; Ling., J.; Yanan, Z.; Xiaoyong, L. Minimum water demand for ecosystem protection in the Lower Yellow River. J. Hydraul. Eng. 2002, 2002, 1–7. [Google Scholar]
- Zhang, J.; Chen, G.-C.; Xing, S.; Shan, Q.; Wang, Y.; Li, Z. Water shortages and countermeasures for sustainable utilisation in the context of climate change in the Yellow River Delta region, China. Int. J. Sustain. Dev. World Ecol. 2011, 18, 177–185. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.; Huang, S. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380–381, 169–179. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Liu, J.; Qiang, Z.; Duan, L. Decreased streamflow in the Yellow River basin, China: Climate change or human-induced? Water 2017, 9, 116. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Ye, B.; Liu, F.; Wang, J. Contributions of climate and human activities to changes in runoff of the Yellow and Yangtze rivers from 1950 to 2008. Sci. China Earth Sci. 2013, 56, 1398–1412. [Google Scholar] [CrossRef]
- Qiang, M.A.; Hui-Jun, J.; Bense, V.F.; Dong-Liang, L.U.O.; Marchenko, S.S.; Harris, S.A.; Yong-Chao, L. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Adv. Clim. Chang. Res. 2019, 10, 225–239. [Google Scholar] [CrossRef]
- Li, H.; Qin, T.; Wang, Z.; Qiu, Y.; Lei, X. Study on Management System of Inter-Basin Water Diversion Project—A Case Study of the Project of Drawing Water from Datong River into Huangshui River; IOP Publishing: Qingdao, China, 2018; p. 22047. [Google Scholar]
- Zhao, X.Y.; Li, W.; Yang, P.T.; Liu, S. Impact of livelihood capital on the livelihood activities of farmers and herdsmen on Gannan Plateau. Popul. Resour. Environ. 2011, 21, 111–118. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, H.; Shi, D.; Xu, P.; Elenga, H.I. Origin and formation mechanism of salty water in Zuli River catchment of the Yellow River. Water Environ. Res. 2019, 91, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Liang, W.; Liu, Y.; Wang, Y. Driving forces of changes in the water and sediment relationship in the Yellow River. Sci. Total Environ. 2017, 576, 453–461. [Google Scholar] [CrossRef]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic sediment discharge in the Hekou-Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef]
- Liu, X.; Yang, S.; Dang, S.; Luo, Y.; Li, X.; Zhou, X. Response of sediment yield to vegetation restoration at a large spatial scale in the Loess Plateau. Sci. China Technol. Sci. 2014, 57, 1482–1489. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Liu, L.l.; Li, D.; Wang, Y. Effects of human activities on hydrological components in the Yiluo River basin in middle Yellow River. Water 2019, 11, 689. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; LV, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
θ | 0° | 30° | 60° | 90° | 120° | 150° | 180° | 210° | 240° | 270° | 300° | 330° |
River Name | Control Section | Annual Runoff Change (mm/10a) | Statistical Z Value | River Name | Control Section | Annual Runoff Change (mm/10a) | Statistical Z Value |
---|---|---|---|---|---|---|---|
Yellow River | Jimai | 2.36 | 1.19 | Daheihe River | Qixiaying | −4.41 | −4.16 ** |
Maqu | −3.45 | −0.59 | Kuyehe River | Wenjiachuan | −2.45 | −3.08 ** | |
Tangnaihai | −2.71 | −0.27 | Qiushuihe River | Linjiaping | −6.26 | −3.60 ** | |
Guide | −3.99 | −0.97 | Sanchuanhe River | Houdacheng | −6.27 | −4.19 ** | |
Xunhua | −4.52 | −1.06 | Wudinghe River | Hengshan | −3.36 | −2.91 ** | |
Xiaochuan | −5.50 | −1.70 | Baijiachuan | −4.20 | −6.27 ** | ||
Lanzhou | −4.46 | −1.19 | Qingjianhe River | Yanchuan | −3.18 | −2.88 ** | |
Xiaheyan | −5.21 | −2.04 * | Fenhe River | Hejin | −5.92 | −4.66 ** | |
Shizuishan | −4.80 | −2.25 * | Malianhe River | Yuluoping | −1.42 | −2.48 * | |
Toudaoguai | −4.80 | −3.45 ** | Jinghe River | Yangjiaping | −6.85 | −4.45 ** | |
Sanmenxia | −6.05 | −4.94 ** | Zhangjiashan | −6.76 | −5.49 ** | ||
Xiaolangdi | −5.88 | −4.71 ** | Beiluohe River | Jiaokouhe | −1.70 | −2.78 ** | |
Huayuankou | −6.24 | −4.91 ** | Zhuangtou | −5.11 | −5.00 ** | ||
Lijin | −8.25 | −5.58 ** | Weihe River | Beidao | −7.28 | −4.29 ** | |
Daxiahe River | Shuangcheng | −11.07 | −3.03 ** | Linjiacun | −13.89 | −6.24 ** | |
Zheqiao | −19.17 | −4.27 ** | Xianyang | −13.78 | −4.37 ** | ||
Taohe River | Minxian | −19.37 | −3.53 ** | Huaxian | −7.82 | −3.64 ** | |
Hongqi | −12.88 | −2.80 ** | Yihe River | Longmenzhen | −28.99 | −4.47 ** | |
Datonghe River | Xiangtang | −4.89 | −2.17 * | Luohe River | Lingkou | −26.17 | −2.69 ** |
Huangshui River | Minhe | −2.81 | −0.09 | Baimasi | −18.03 | −3.56 ** | |
Zulihe River | Jingyuan | −1.50 | −3.78 ** | Yiluohe River | Heishiguan | −20.84 | −4.28 ** |
Qingshuihe River | Quanyanshan | 0.01 | 1.82 | Qinhe River | Wuzhi | −14.00 | −3.98 ** |
Kushuihe River | Guojiaqiao | 4.25 | 7.14 ** | Dawenhe River | Laiwu | −11.08 | 0.00 |
Kundulunhe River | Taerwan | −2.32 | −4.72 ** | Daicunba | −18.92 | −2.56 * |
River Name | Control Section | Statistical Z Value | River Name | Control Section | Statistical Z Value | River Name | Control Section | Statistical Z Value |
---|---|---|---|---|---|---|---|---|
Yellow River | Jimai | 2.51 * | Taohe River | Minxian | −4.16 ** | Malianhe River | Yuluoping | −1.92 |
Maqu | −1.6 | Hongqi | 0.12 | Jinghe River | Yangjiaping | −3.54 ** | ||
Tangnaihai | 1.31 | Datonghe River | Xiangtang | 1.93 | Zhangjiashan | −5.43 ** | ||
Guide | 6.25 ** | Huangshui River | Minhe | 1.69 | Beiluohe River | Jiaokouhe | −1.01 | |
Xunhua | 5.43 ** | Zulihe River | Jingyuan | 4.00 ** | Zhuangtou | −4.45 ** | ||
Xiaochuan | 2.88 ** | Qingshuihe River | Quanyanshan | 4.25 ** | Weihe River | Beidao | −4.20 ** | |
Lanzhou | 3.69 ** | Kushuihe River | Guojiaqiao | 7.35 ** | Linjiacun | −4.82 ** | ||
Xiaheyan | 3.68 ** | Kundulunhe River | Taerwan | −5.25 ** | Xianyang | −3.61 ** | ||
Shizuishan | 4.12 ** | Daheihe River | Qixiaying | −4.16 ** | Huaxian | 1.11 | ||
Toudaoguai | 2.98 ** | Kuyehe River | Wenjiachuan | −4.33 ** | Yihe River | Longmenzhen | −3.39 ** | |
Sanmenxia | −1.7 | Qiushuihe River | Linjiaping | −5.08 ** | Luohe River | Lingkou | −1.94 | |
Xiaolangdi | −1.15 | Sanchuanhe River | Houdacheng | −4.30 ** | Baimasi | −2.24 * | ||
Huayuankou | −1.3 | Hengshan | −2.07 * | Yiluohe River | Heishiguan | −3.03 ** | ||
Lijin | −5.06 ** | Wudinghe River | Baijiachuan | −7.28 ** | Qinhe River | Wuzhi | −2.36 * | |
Daxiahe River | Shuangcheng | −4.44 ** | Qingjianhe River | Yanchuan | −1.33 | Dawenhe River | Laiwu | 1.48 |
Zheqiao | −3.01 ** | Fenhe River | Hejin | −5.47 ** | Daicunba | 1.46 |
River Name | Control Section | Average Cd | Statistical Z Value | River Name | Control Section | Average Cd | Statistical Z Value |
---|---|---|---|---|---|---|---|
Yellow River | Jimai | 0.47 | −2.60 ** | Daheihe River | Qixiaying | 0.36 | −2.15 * |
Maqu | 0.46 | 0.07 | Kuyehe River | Wenjiachuan | 0.29 | −1.35 | |
Tangnaihai | 0.45 | −1.38 | Qiushuihe River | Linjiaping | 0.56 | −0.14 | |
Guide | 0.3 | −5.10 ** | Sanchuanhe River | Houdacheng | 0.3 | −1.15 | |
Xunhua | 0.3 | −4.92 ** | Wudinghe River | Hengshan | 0.33 | −5.25 ** | |
Xiaochuan | 0.27 | −5.06 ** | Baijiachuan | 0.15 | −0.13 | ||
Lanzhou | 0.3 | −5.62 ** | Qingjianhe River | Yanchuan | 0.43 | −1.72 | |
Xiaheyan | 0.29 | −5.89 ** | Fenhe River | Hejin | 0.4 | −0.52 | |
Shizuishan | 0.27 | −5.61 ** | Malianhe River | Yuluoping | −0.62 | 0.46 | |
Toudaoguai | 0.22 | −4.89 ** | Jinghe River | Yangjiaping | 0.37 | −2.62 ** | |
Sanmenxia | 0.26 | −3.56 ** | Zhangjiashan | 0.33 | −4.45 ** | ||
Xiaolangdi | 0.28 | −2.71 ** | Beiluohe River | Jiaokouhe | 0.33 | −2.28 * | |
Huayuankou | 0.29 | −3.47 ** | Zhuangtou | 0.31 | 0.38 | ||
Lijin | 0.32 | −0.46 | Weihe River | Beidao | 0.43 | −0.64 | |
Daxiahe River | Shuangcheng | 0.39 | 0.34 | Linjiacun | 0.34 | −4.20 ** | |
Zheqiao | 0.45 | 2.27 * | Xianyang | 0.42 | −0.11 | ||
Taohe River | Minxian | 0.4 | 1.66 | Huaxian | 0.42 | −1.3 | |
Hongqi | 0.38 | −2.02 * | Yihe River | Longmenzhen | 0.41 | −0.17 | |
Datonghe River | Xiangtang | 0.5 | −1.1 | Luohe River | Lingkou | 0.38 | −4.45 ** |
Huangshui River | Minhe | 0.37 | −1.29 | Baimasi | 0.38 | −0.46 | |
Zulihe River | Jingyuan | 0.55 | −4.55 ** | Yiluohe River | Heishiguan | 0.36 | −0.78 |
Qingshuihe River | Quanyanshan | 0.47 | −0.41 | Qinhe River | Wuzhi | 0.6 | 0.15 |
Kushuihe River | Guojiaqiao | 0.53 | −2.69 ** | Dawenhe River | Laiwu | 0.57 | −0.03 |
Kundulunhe River | Taerwan | 0.23 | 1.07 | Daicunba | 0.68 | 1.09 |
River Name | Control Section | Mutation Year | εP | εE | River Name | Control Section | Mutation Year | εP | εE |
---|---|---|---|---|---|---|---|---|---|
Yellow River | Jimai | 1998 | 0.44 | −0.56 | Daheihe River | Qixiaying | 1991 | 1.80 | −3.98 |
Maqu | 1994 | 1.29 | −0.80 | Kuyehe River | Wenjiachuan | 2005 | 0.95 | −1.65 | |
Tangnaihai | 1994 | 1.35 | −1.04 | Qiushuihe River | Linjiaping | 1979 | 1.88 | −3.11 | |
Guide | 1992 | 1.01 | −0.87 | Sanchuanhe River | Houdacheng | 1979 | 1.15 | −2.22 | |
Xunhua | 1990 | 0.94 | −0.90 | Wudinghe River | Hengshan | 2006 | 0.26 | −0.21 | |
Xiaochuan | 1987 | 1.17 | −1.12 | Baijiachuan | 1979 | 0.45 | −1.57 | ||
Lanzhou | 1986 | 1.08 | −1.07 | Qingjianhe River | Yanchuan | 2008 | 0.92 | −1.42 | |
Xiaheyan | 1987 | 1.19 | −1.16 | Fenhe River | Hejin | 1973 | 2.51 | −2.72 | |
Shizuishan | 1987 | 1.34 | −2.10 | Malianhe River | Yuluoping | 2005 | 1.29 | −1.29 | |
Toudaoguai | 1990 | 1.67 | −3.22 | Jinghe River | Yangjiaping | 1987 | 2.09 | −1.96 | |
Sanmenxia | 1990 | 1.90 | −3.15 | Zhangjiashan | 1999 | 2.10 | −2.60 | ||
Xiaolangdi | 1990 | 1.88 | −3.14 | Beiluohe River | Jiaokouhe | 2000 | 1.29 | −1.43 | |
Huayuankou | 1987 | 2.01 | −3.48 | Zhuangtou | 2005 | 1.71 | −2.90 | ||
Lijin | 1981 | 2.88 | −4.54 | Weihe River | Beidao | 1989 | 2.48 | −2.78 | |
Daxiahe River | Shuangcheng | 1991 | 1.79 | −1.79 | Linjiacun | 1996 | 2.72 | −2.88 | |
Zheqiao | 1991 | 1.97 | −2.61 | Xianyang | 1977 | 2.74 | −2.00 | ||
Taohe River | Minxian | 1989 | 1.74 | −1.22 | Huaxian | 1985 | 2.45 | −2.51 | |
Hongqi | 1990 | 1.88 | −1.13 | Yihe River | Longmenzhen | 1976 | 2.76 | −2.49 | |
Datonghe River | Xiangtang | 2006 | 0.59 | −0.72 | Luohe River | Lingkou | 1976 | 2.38 | −3.21 |
Huangshui River | Minhe | 1962 | 1.38 | −0.84 | Baimasi | 1986 | 2.04 | −2.23 | |
Zulihe River | Jingyuan | 2005 | 1.87 | −1.95 | Yiluohe River | Heishiguan | 1972 | 2.48 | −3.27 |
Qingshuihe River | Quanyanshan | 1994 | 1.25 | −1.20 | Qinhe River | Wuzhi | 1969 | 4.31 | −2.28 |
Kushuihe River | Guojiaqiao | 1975 | 0.25 | −0.13 | Dawenhe River | Laiwu | 2002 | 2.59 | −2.39 |
Kundulunhe River | Taerwan | 2011 | 1.94 | −0.74 | Daicunba | 2002 | 3.34 | −4.29 |
River Name | Control Section | Qobs1 | Qobs2 | Pobs1 | Pobs2 | Eobs1 | Eobs2 | ΔQC | ΔQH |
---|---|---|---|---|---|---|---|---|---|
Yellow River | Xiaheyan | 130.65 | 105.16 | 517.16 | 500.30 | 512.67 | 519.45 | 27.7% | 72.3% |
Shizuishan | 98.93 | 76.77 | 471.57 | 455.98 | 589.64 | 602.07 | 39.6% | 60.4% | |
Toudaoguai | 66.22 | 46.09 | 432.52 | 411.36 | 657.09 | 661.04 | 33.3% | 66.7% | |
Sanmenxia | 57.76 | 36.04 | 485.19 | 456.49 | 700.83 | 705.30 | 35.2% | 64.8% | |
Xiaolangdi | 57.84 | 36.43 | 486.90 | 457.89 | 702.73 | 705.92 | 34.1% | 65.9% | |
Huayuankou | 61.13 | 38.94 | 496.49 | 469.10 | 710.10 | 710.53 | 31.2% | 68.8% | |
Lijin | 53.24 | 26.34 | 500.75 | 481.14 | 725.17 | 717.59 | 13.0% | 87.0% | |
Daxiahe River | Shuangcheng | 136.71 | 98.50 | 541.15 | 530.88 | 435.99 | 483.99 | 82.5% | 17.5% |
Zheqiao | 147.34 | 82.66 | 544.62 | 534.72 | 434.81 | 483.02 | 74.1% | 25.9% | |
Taohe River | Minxian | 263.47 | 188.19 | 668.23 | 608.74 | 370.10 | 411.09 | 101.5% | −1.5% |
Hongqi | 204.84 | 150.54 | 624.53 | 579.38 | 392.94 | 433.61 | 95.5% | 4.5% | |
Datonghe River | Xiangtang | 191.53 | 171.26 | 418.65 | 453.37 | 544.33 | 545.67 | −44.5% | 144.5% |
Zulihe River | Jingyuan | 10.99 | 6.06 | 455.22 | 420.16 | 580.30 | 708.75 | 128.2% | −28.2% |
Kushuihe River | Guojiaqiao | 4.99 | 22.30 | 288.61 | 284.90 | 965.44 | 1011.49 | 2.9% | 97.1% |
Kundulunhe River | Taerwan | 14.07 | 2.71 | 322.09 | 303.94 | 1024.71 | 1009.97 | 12.2% | 87.8% |
Daheihe River | Qixiaying | 32.39 | 24.07 | 423.36 | 385.25 | 817.85 | 834.21 | 94.3% | 5.7% |
Kuyehe River | Wenjiachuan | 50.58 | 28.89 | 440.22 | 437.82 | 857.27 | 902.13 | 21.4% | 78.6% |
Qiushuihe River | Linjiaping | 56.40 | 28.40 | 537.63 | 527.52 | 853.73 | 945.10 | 74.1% | 25.9% |
Sanchuanhe River | Houdacheng | 70.89 | 44.44 | 532.64 | 520.51 | 853.73 | 945.10 | 70.7% | 29.3% |
Luhe River | Hengshan | 41.27 | 17.45 | 427.32 | 445.06 | 992.10 | 967.57 | −0.1% | 100.1% |
Wudinghe River | Baijiachuan | 47.65 | 32.30 | 392.87 | 399.47 | 830.17 | 877.48 | 25.4% | 74.6% |
Qingjianhe River | Yanchuan | 41.62 | 24.84 | 548.70 | 524.97 | 724.54 | 770.27 | 32.0% | 68.0% |
Fenhe River | Hejin | 44.39 | 17.26 | 554.96 | 510.92 | 779.60 | 778.72 | 32.0% | 68.0% |
Jinghe River | Yangjiaping | 59.06 | 35.82 | 625.63 | 566.88 | 666.17 | 728.23 | 96.3% | 3.7% |
Malianhe River | Yuluoping | 23.91 | 16.13 | 542.30 | 488.22 | 727.58 | 823.74 | 91.7% | 8.3% |
Jinghe River | Yangjiaping | 59.06 | 35.82 | 625.63 | 566.88 | 666.17 | 728.23 | 96.3% | 3.7% |
Zhangjiashan | 41.38 | 17.16 | 592.28 | 546.21 | 691.11 | 780.40 | 85.4% | 14.6% | |
Beiluohe River | Jiaokouhe | 28.01 | 21.27 | 581.21 | 548.39 | 656.20 | 674.58 | 47.0% | 53.0% |
Zhuangtou | 33.51 | 7.01 | 600.36 | 559.75 | 673.38 | 728.79 | 44.9% | 55.1% | |
Weihe River | Beidao | 56.95 | 30.17 | 569.95 | 505.71 | 557.45 | 568.90 | 71.5% | 28.5% |
Linjiacun | 77.97 | 28.92 | 588.48 | 515.28 | 552.47 | 581.59 | 77.9% | 22.1% | |
Xianyang | 115.34 | 66.50 | 637.41 | 585.81 | 606.98 | 569.57 | 23.3% | 76.7% | |
Huaxian | 75.34 | 51.11 | 630.72 | 574.52 | 626.72 | 605.68 | 41.7% | 58.3% | |
Yihe River | Longmenzhen | 220.27 | 108.55 | 802.60 | 737.93 | 830.89 | 816.66 | 35.4% | 64.6% |
Luohe River | Lingkou | 296.23 | 184.93 | 753.42 | 676.62 | 762.86 | 771.34 | 74.2% | 25.8% |
Baimasi | 167.37 | 100.50 | 619.56 | 564.88 | 763.76 | 733.10 | 22.6% | 77.4% | |
Yiluohe River | Heishiguan | 194.95 | 112.51 | 760.76 | 696.80 | 752.95 | 715.85 | 11.2% | 88.8% |
Qinhe River | Wuzhi | 121.94 | 42.73 | 695.39 | 603.47 | 810.34 | 761.18 | 66.4% | 33.6% |
Dawenhe River | Daicunba | 124.43 | 117.69 | 782.46 | 748.82 | 761.75 | 739.31 | 31.5% | 68.5% |
River Name | Study Period | Method | Contribution | Source | |
---|---|---|---|---|---|
Climate Change (%) | Human Activity (%) | ||||
Yellow River | 1960–2014 | Budyko framework | 17.5 | 82. 5 | Li, et al. [48] |
Yellow River | 1951–2012 | double mass curves (RA-DMC) | 8.3 | 91.7 | Kong, et al. [28] |
Yellow River | 1950–2008 | double mass curves (RA-DMC) | 16 | 84 | Wang, et al. [49] |
Weihe River | 1956–2006 | Variable Infiltration capacity (VIC) hydrological model | 28 | 72 | Chang, et al. [47] |
Weihe River | 1971–2006 | Stepwise regression model | 48.9 | 51.1 | Du, et.al [13] |
Fenhe River | 1956–2010 | Two-parameter monthly hydrological model | 40.7 | 59.3 | Zhang, et al. [33] |
Kuyehe River | 1951–2010 | Budyko framework | 30 | 70 | Lv, et al. [31] |
Wudinghe River | 1960–1997 | Rainfall–runoff models | 13 | 87 | Li, et al. [30] |
Beiluohe River | 1951–2010 | Budyko framework | 45 | 55 | Lv, et al. [31] |
Qinhe River | 1956–2010 | Dynamic water balance model (DWBM) | 59.3 | 40.7 | Li, et al. [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Liu, H.; Han, Y.; Zeng, Q.; Wang, J.; Hu, P. Temporal and Spatial Changes of Runoff Regime in the Yellow River Basin from 1956 to 2017. Water 2021, 13, 3298. https://doi.org/10.3390/w13223298
Yang M, Liu H, Han Y, Zeng Q, Wang J, Hu P. Temporal and Spatial Changes of Runoff Regime in the Yellow River Basin from 1956 to 2017. Water. 2021; 13(22):3298. https://doi.org/10.3390/w13223298
Chicago/Turabian StyleYang, Mingda, Huan Liu, Yuping Han, Qinghui Zeng, Jianhua Wang, and Peng Hu. 2021. "Temporal and Spatial Changes of Runoff Regime in the Yellow River Basin from 1956 to 2017" Water 13, no. 22: 3298. https://doi.org/10.3390/w13223298
APA StyleYang, M., Liu, H., Han, Y., Zeng, Q., Wang, J., & Hu, P. (2021). Temporal and Spatial Changes of Runoff Regime in the Yellow River Basin from 1956 to 2017. Water, 13(22), 3298. https://doi.org/10.3390/w13223298