Removal of Various Hazardous Materials Using a Multifunctional Biomass-Derived Hydroxyapatite (HAP) Catalyst and Its Antibacterial Effects
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of HAP Catalyst
2.2. Metal Cation Removal Efficiecny of HAP Catalyst
2.3. Phosphate Ion Removal Efficiecny
2.4. Antibacteiral Performance of HAP
3. Materials and Methods
3.1. Chemicals and Characterization
3.2. Synthesis of Biomass-Derived HAP Catalyst from Oyster Shell
3.3. Removal Efficiency of Various Metal Cation Species
- Standard conditions: The biomass-derived HAP powder (50 mg) was dispersed in a metal ion solution (50 mL) and stirred at RT for 24 h. The pH of the solution was adjusted to 6 using nitric acid (0.1 M) and sodium hydroxide solution (0.1 M), to create a stock solution with conditions comparable to wastewater.
- pH controlled conditions: pH 4, pH 5, and pH 7 solutions were prepared to recreate severe and realistic wastewater conditions. Each solution was generated in the same manner as in Experiment 1.
3.4. Removal Efficiency for Phosphate Ion
- Potassium antimonyl tartrate solution was mixed with potassium antimonyl(III) tartrate hydrate (6.8 mg) in distilled water (50 mL).
- An ammonium molybdate solution was prepared by combining ammonium molybdate tetrahydrate (1.5 g) with distilled water (50 mL).
- Ascorbic acid solution was prepared by combining ascorbic acid (0.88 g) with distilled water (50 mL).
3.5. Antimicrobial Test Using Gram-Netaive and Gram-Positive Bacteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandoval, A.; Hernández-Ventura, C.; Klimova, T.E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel 2017, 198, 22–30. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X. Total Concentrations and Sources of Heavy Metal Pollution in Global River and Lake Water Bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Aithani, D.; Saurav, D.; Siddiqui, Z.; Kumar, A.; Khillare, P.S. Source Apportionment, Pollution Assessment, and Ecological and Human Health Risk Assessment Due to Trace Metals Contaminated Groundwater along Urban River Floodplain. Groundw. Sustain. Dev. 2020, 11, 100445. [Google Scholar] [CrossRef]
- Rajkumar, H.; Naik, P.K.; Rishi, M.S. A New Indexing Approach for Evaluating Heavy Metal Contamination in Groundwater. Chemosphere 2020, 245, 125598. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Yue, Y.; He, W.; Jiang, F.; Lin, C.; David, Y.; Pui, H.; Liang, Y.; Wang, J. The Antibacterial Performance of Positively Charged and Chitosan Dipped Air Filter Media. Build. Environ. 2020, 180, 107020. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Z.; Zhu, Y.; Xu, W.; Li, H. Investigation of Dust Loading and Culturable Microorganisms of HVAC Systems in 24 Office Buildings in Beijing. Energy Build. 2015, 103, 166–174. [Google Scholar] [CrossRef]
- Dechow, M.; Shon, H.; Steinhanses, J. Concentrations of selected contaminants in cabin air of airbus aricrafts. Chemosphere 1997, 35, 21–31. [Google Scholar] [CrossRef]
- Jang, S.; Song, S.; Lim, J.H.; Kim, H.S.; Phan, B.T.; Ha, K. Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation. Catalysts 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Lindgre, T.; Norbӓck, D.; Wieslander, G. Perception of cabin air quiality in airline crew related to air humidification on intercontinental flights. Indoor Air 2007, 17, 204–210. [Google Scholar] [CrossRef]
- Srininasan, M.; Ferraris, C.; White, T. Cadmium and Lead Ion Capture with Three Dimensionally Ordered Macroporous Hydroxyapatite. Environ. Sci. Technol. 2006, 40, 7054–7059. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, B.M.W.P.K.; Williams, R.A. Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater. Chem. Eng. J. 2007, 132, 299–309. [Google Scholar] [CrossRef]
- Yarkandi, N.H. Removal of Lead (II) from Waste Water by Adsorption. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 207–228. [Google Scholar]
- Mahmud, H.N.M.E.; Hosseini, S.; Yahya, R.B. Polymer adsorbent for the removal of lead ions from aqueous solution. Int. J. Technol. Res. 2014, 11, 4–8. [Google Scholar]
- Mohammadi, S.Z.; Karimi, M.A.; Afzali, D.; Mansouri, F. Removal of Pb (II) from Aqueous Solutions Using Activated Carbon from Sea-Buckthorn Stones by Chemical Activation. Deslination 2010, 262, 86–93. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, K. Nanopore-Based Strategy for Sequential Separation of Heavy-Metal Ions in Water. Environ. Sci. Technol. 2018, 52, 5884–5891. [Google Scholar] [CrossRef]
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q. Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture. Chem. Eng. J. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.; Saeed, W.S.; Al-kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef] [Green Version]
- Park, K.H.; Choi, J.; Chun, J.; Kim, H.J.; Son, S.U. Low-Temperature Synthesis of Ultrathin Sb2S5 Nanofibers and Their Application as Highly Selective Pb-Adsorbents in Water. Chem. Commun. 2008, 14, 1659–1661. [Google Scholar] [CrossRef]
- Dabiri, S.M.H.; Rezaie, A.A.; Moghimi, M.; Rezaie, H. Extraction of Hydroxyapatite from Fish Bones and Its Application in Nickel Adsorption. BioNanoScience 2018, 8, 823–834. [Google Scholar] [CrossRef]
- Ibrahim, M.; Labaki, M.; Giraudon, J.; Lamonier, J. Hydroxyapatite, a Multifunctional Material for Air, Water and Soil Pollution Control: A Review. J. Hazard. Mater. 2020, 383, 121139. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M.C. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J. Taiwan Inst. Chem. Eng. 2012, 43, 125–131. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, D.; Wang, C.; Du, P.; Cheng, C.; Cheng, C. Survey of Rice Production Practices and Perception of Weedy Red Rice (Oryza Sativa f. Spontanea) in Taiwan. Weed Sci. 2020, 69, 526–535. [Google Scholar] [CrossRef]
- Awual, R.M. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. J. Clean. Prod. 2019, 228, 1311–1319. [Google Scholar] [CrossRef]
- Hautier, Y. General destabilizing effects of eutrophication on grassland productivity at multiple saptial scales. Nat. Commun. 2020, 11, 5375. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Tsang, D.C.W.; Cheng, K.; Sik, Y. Assembling Biochar with Various Layered Double Hydroxides for Enhancement of Phosphorus Recovery. J. Hazard. Mater. 2019, 365, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Kim, S.; Igalavithana, A.D.; Hashimoto, Y.; Choi, Y.; Mukhopadhyay, R.; Sarkar, B.; Ok, Y.S. Fe (III) Loaded Chitosan-Biochar Composite Fibers for the Removal of Phosphate from Water. J. Hazard. Mater. 2021, 415, 125464. [Google Scholar] [CrossRef]
- Ishikawa, K.; Ducheyne, P.; Radin, S. Determination of the Ca/P Ratio in Calcium- Deficient Hydroxyapatite Using X-ray Diffraction Analysis. J. Mater. Sci. Mater. Med. 1993, 4, 165–168. [Google Scholar] [CrossRef]
- Shimabayashi, S.; Fukuda, H.; Aoyama, T.; Nakagaki, M. Adsorption of phosphate ion by hydroxyapatite in water. Chem. Pharm. Bull. 1982, 30, 3074–3081. [Google Scholar] [CrossRef] [Green Version]
- Andrade, L.; Kelly, M.; Hynds, P.; Weatherill, J.; Majury, A.; Dwyer, O. Groundwater Resources as a Global Reservoir for Antimicrobial-Resistant Bacteria. Water Res. 2020, 170, 115360. [Google Scholar] [CrossRef]
- Motlagh, A.M.; Yang, Z.; Saba, H. Groundwater Quality. Water. Environ. Res. 2020, 92, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Ighalo, J.O.; Adeniyi, A.G.; Otoikhian, K.S. Recent advances in environmental protection of oil polluted surface and groundwater in the nigerian context. J. Eng. Exact Sci. 2020, 6, 416–420. [Google Scholar] [CrossRef]
- Shi, H.; Liu, F.; Xue, L. Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites. J. Membr. Sci. 2013, 437, 205–215. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Y.; Yu, W.; Li, R.; Wang, M.; Gao, Q.; Li, J.; Lin, H. Fabrication of hydrophilic and antibacterial poly(vinylidene fluoride) based separation membranes by a novel strategy combining radiation grafting of poly(acryl acid) (PAA) and electroless nickel plating. J. Colloid Interface Sci. 2019, 543, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wu, Y.; Shen, L.; Chen, J.; Lin, H. A novel strategy to develop antifouling and antibacterial conductive Cu/polydopamine/polyvinylidene fluoride membranes for water treatment. J. Colloid Interface Sci. 2018, 531, 493–501. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, W.; Wu, Y.; Zhou, C.; Li, L.; Liu, Z.; Dong, J.; Zhou, K. Antibacterial Behaviors of Cu2O Particles with Controllable Morphologies in Acrylic Coatings. Appl. Surf. Sci. 2019, 465, 279–287. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, J.; Zhang, J.; Lan, Q.; Dai, J.; Huang, Y.; Li, G.; Fan, Q.; Fan, X.; Zhou, Z. Shape-Controlled Synthesis of Cu2O Nanocrystals by One Pot Solution-Phase Reduction Process. Chem. Phys. Lett. 2017, 671, 154–160. [Google Scholar] [CrossRef]
- Lamkhao, S.; Phaya, M.; Jansakun, C.; Chandet, N.; Thongkorn, K.; Rujijanagul, G.; Bangrak, P.; Randorn, C. Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method. Sci. Rep. 2019, 9, 4015. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X. Antibacterial Bioactive Materials. Bioact. Mater. Med. Des. Appl. 2011, 97–123. [Google Scholar]
- Jang, S.; Jung, S.; Song, S.; Lee, S.; Lee, H.; Cho, E.; Lee, H.J.; Park, S.; Youn, B.; Park., K.H. Preparation and characterization of multifunctional nanofibers containing metal-organic frameworks and Cu2O nanoparticles: Particualte matter capture and antibacterial activity. Environ. Sci. Nano 2021, 8, 1226–1235. [Google Scholar] [CrossRef]
- Silva, T.H.; Mesquita-Guimarães, J.; Henriques, B.; Silva, F.S.; Fredel, M.C. The Potential Use of Oyster Shell Waste in New Value-Added by-Product. Resources 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.C.; Bello, P.M.; Bao, M.; Torrado, J.J. From Waste to Commodity: Transforming Shells into High Purity Calcium Carbonate. J. Clean. Prod. 2009, 17, 400–407. [Google Scholar] [CrossRef]
- Ruviaro, C.F.; Gianezini, M.; Brandão, F.S.; Winck, C.A.; Dewesl, H. Life Cycle Assessment in Brazilian Agriculture Facing Worldwide Trends. J. Clean. Prod. 2012, 28, 9–24. [Google Scholar] [CrossRef]
- Yu, J.; Kim, G. Reform measures for generation and treatment problems of fischery wastes and byproducts. Natl. Assem. Res. Serv. 2020, 118, 1–17. [Google Scholar]
- Onoda, H.; Nakanishi, H. Preparation of Calcium Phosphate with Oyster Shells. Nat. Resour. 2012, 3, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H.; Yoo, K.S.; Kim, H.G.; Lee, H.K.; Shon, B.H. Reuse of Waste Oyster Shells as a SO2/NOx Removal Absorbent. J. Ind. Eng. Chem. 2007, 13, 512–517. [Google Scholar]
- Kwon, H.B.; Lee, C.W.; Jun, B.S.; Yun, J.D.; Weon, S.Y.; Koopman, B. Recycling Waste Oyster Shells for Eutrophication Control. Resour. Conserv. Recycl. 2004, 41, 75–82. [Google Scholar] [CrossRef]
- Jeon, D.J.; Yeom, S.H. Recycling Wasted Biomaterial, Crab Shells, as an Adsorbent for the Removal of High Concentration of Phosphate. Bioresour. Technol. 2009, 100, 2646–2649. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A Review on C1s XPS-Spectra for Some Kinds of Carbon Materials. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Gomes, G.C.; Borghi, F.F.; Ospina, R.O.; López, E.O.; Borges, F.O.; Mello, A. Nd:YAG (532 nm) Pulsed Laser Deposition Produces Crystalline Hydroxyapatite Thin Coatings at Room Temperature. Surf. Coat. Technol. 2017, 329, 174–183. [Google Scholar] [CrossRef]
- Roychowdhury, T.; Bahr, S.; Dietrich, P.; Meyer, M.; Thißen, A.; Linford, M.R. Calcite (CaCO3), by near-Ambient Pressure XPS. Surf. Sci. Spectra 2019, 26, 014025. [Google Scholar] [CrossRef]
- Stötzel, C.; Müller, F.A.; Reinert, F.; Niederdraenk, F.; Barralet, J.E.; Gbureck, U. Ion Adsorption Behaviour of Hydroxyapatite with Different Crystallinities. Colloids Surf. B Biointerfaces 2009, 74, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ishigaki, K.; Miyake, M. Synthetic hydroxyapatites ans inroganic cation exchanges. J. Chem. Soc. Faraday Trans. 1984, 80, 3157–3165. [Google Scholar] [CrossRef]
- Miyake, M.; Ishigaki, K.; Suzuki, T. Structure Refinements of Pb2+ Ion-Exchanged Apatites by X-ray Powder Pattern-Fitting. J. Solid State Chem. 1986, 61, 230–235. [Google Scholar] [CrossRef]
- Sugiyama, S.; Fukuda, N.; Matsumoto, H.; Hayashi, H.; Shigemoto, N.; Hiraga, Y.; Moffat, J.B. Interdependence of Anion and Cation Exchanges in Calcium Hydroxyapatite: Pb2+ and Cl−. J. Colloid Interface Sci. 1999, 220, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Shashkova, I.L.; Rat’ko, A.I.; Kitikova, N.V. Removal of Heavy Metal Ions from Aqueous Solutions by Alkaline-Earth Metal Phosphates. Colloids Surf. A Physicochem. Eng. Asp. 1999, 160, 207–215. [Google Scholar] [CrossRef]
- Laperche, V.; Logan, T.J.; Gaddam, P.; Traina, S.J. Effect of apatite amedments on plant uptake of lead from contaminated soil. Environ. Sci. Technol. 1997, 31, 2745–2753. [Google Scholar] [CrossRef]
- Laperche, V.; Traina, S.J.; Gaddam, P.; Logan, T.J. Chemical and mineralogical characterizations of Pb in a containted soil: Reactions with synthetic apatite. Environ. Sci. Technol. 1996, 30, 3321–3326. [Google Scholar] [CrossRef]
- Chojnacka, K. Equilibrium and Kinetic Modelling of Chromium(III) Sorption by Animal Bones. Chemosphere 2005, 59, 315–320. [Google Scholar] [CrossRef]
- Ma, Q.Y. Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 1994, 28, 1219–1228. [Google Scholar] [CrossRef]
- Ma, Q.Y.; Logan, T.J.; Traina, S.J. Lead Immobilization from Aqueous Solutions and Contaminated Soils Using Phosphate Rocks. Environ. Sci. Technol. 1995, 29, 1118–1126. [Google Scholar] [CrossRef]
- Ruby, M.V.; Davis, A.; Nicholson, A. In Situ Formation of Lead Phosphates in Soils as a Method to Immobilize Lead. Environ. Sci. Technol. 1994, 28, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wright, J.V.; Conca, J.L.; Peurrung, L.M. Effects of PH on Heavy Metal Sorption on Mineral Apatite. Environ. Sci. Technol. 1997, 31, 624–631. [Google Scholar] [CrossRef]
- Zhang, P.; Ryan, J.A. Formation of Pyromorphite in Anglesite-Hydroxyapatite Suspensions under Varying pH Conditions. Environ. Sci. Technol. 1998, 32, 3318–3324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ryan, J.A.; Yang, J. In Vitro Soil Ph Solubility in the Presence of Hydroxyapatite. Environ. Sci. Technol. 1998, 32, 2763–2768. [Google Scholar] [CrossRef]
- Mobasherpour, I.; Salahi, E.; Pazouki, M. Removal of Nickel (II) from Aqueous Solutions by Using Nano-Crystalline Calcium Hydroxyapatite. J. Saudi Chem. Soc. 2011, 15, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Thom, N.T.; Thanh, D.T.M.; Nam, P.T.; Phuong, N.T.; Buess-Herman, C. Adsorption behavior of Cd2+ ions using hydroxyapatite (HAP) powder. Green Process. Synth. 2018, 7, 409–416. [Google Scholar] [CrossRef]
- Kadouche, S.; Zemmouri, H.; Benaoumeur, K.; Drouiche, N. Procedia Engineering Metal Ion Binding on Hydroxyapatite (HAP) and Study of the Velocity of Sedimentation. Procedia Eng. 2012, 33, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.T.; Jeong, G.H.; Shin, H.G. The Adsorption of Phosphate Son Using Hydroxyapatite Synthesized by Wastewater Sludge of Semiconductor Fabrication Process. J. Environ. Sci. 2002, 11, 257–262. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Park, K.; Song, S.; Lee, H.; Park, S.; Youn, B.; Park, K. Removal of Various Hazardous Materials Using a Multifunctional Biomass-Derived Hydroxyapatite (HAP) Catalyst and Its Antibacterial Effects. Water 2021, 13, 3302. https://doi.org/10.3390/w13223302
Jang S, Park K, Song S, Lee H, Park S, Youn B, Park K. Removal of Various Hazardous Materials Using a Multifunctional Biomass-Derived Hydroxyapatite (HAP) Catalyst and Its Antibacterial Effects. Water. 2021; 13(22):3302. https://doi.org/10.3390/w13223302
Chicago/Turabian StyleJang, Sanha, Kyeongmun Park, Sehwan Song, Haksoo Lee, Sungkyun Park, Buhyun Youn, and Kanghyun Park. 2021. "Removal of Various Hazardous Materials Using a Multifunctional Biomass-Derived Hydroxyapatite (HAP) Catalyst and Its Antibacterial Effects" Water 13, no. 22: 3302. https://doi.org/10.3390/w13223302
APA StyleJang, S., Park, K., Song, S., Lee, H., Park, S., Youn, B., & Park, K. (2021). Removal of Various Hazardous Materials Using a Multifunctional Biomass-Derived Hydroxyapatite (HAP) Catalyst and Its Antibacterial Effects. Water, 13(22), 3302. https://doi.org/10.3390/w13223302