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Abstract: A field experiment was conducted with soybean to observe evapotranspiration (ET) and
crop water stress index (CWSI) with three watering levels at Keszthely, Hungary, during the growing
seasons 2017–2020. The three different watering levels were rainfed, unlimited, and water stress
in flowering. Traditional and converted evapotranspirometers documented water stress levels in
two soybean varieties (Sinara, Sigalia), with differing water demands. ET totals with no significant
differences between varieties varied from 291.9 to 694.9 mm in dry, and from 205.5 to 615.6 mm in wet
seasons. Theoretical CWSI, CWSIt was computed using the method of Jackson. One of the seasons,
the wet 2020 had to be excluded from the CWSIt analysis because of uncertain canopy temperature,
Tc data. Seasonal mean CWSIt and Tc were inversely related to water use efficiency. An unsupervised
Kohonen self-organizing map (K-SOM) was developed to predict the CWSI, CWSIp based on easily
accessible meteorological variables and Tc. In the prediction, the CWSIp of three watering levels and
two varieties covered a wide range of index values. The results suggest that CWSIp modelling with
the minimum amount of input data provided opportunity for reliable CWSIp predictions in every
water treatment (R2 = 0.935–0.953; RMSE = 0.033–0.068 mm, MAE = 0.026–0.158, NSE = 0.336–0.901,
SI = 0.095–0.182) that could be useful in water stress management of soybean. However, highly
variable weather conditions in the mild continental climate of Hungary might limit the potential of
CWSI application. The results in the study suggest that a less than 450 mm seasonal precipitation
caused yield reduction. Therefore, a 100–160 mm additional water use could be recommended during
the dry growing seasons of the country. The 150 year-long local meteorological data indicated that
6 growing seasons out of 10 are short of precipitation in rainfed soybean.

Keywords: CWSI; evapotranspiration; K-SOM analysis; WUE; soybean; water stress

1. Introduction

Water stress seems likely to occur more often in the near future, leading to a real
challenge for global food supply [1]. Water stress in deficit irrigation treatments resulted
in lower soybean yield as compared to a fully irrigated one [2]. Reports have shown
that during flowering and pod filling stages soybean plants were extremely sensitive to
drought [3] causing flower fall, a reduced number of pods and decreased seed size. Water
stress imposed at the reproductive stage of soybean increased the biomass partitioning to
stems and roots, while partitioning to leaves and seed was drastically reduced on the area
of the Mississippi State University [4]. The reduced available water resulted in stomata
closure that arrested photosynthesis, adversely influencing different physiological and
biochemical processes in soybean [5]. The above authors observed a significant reduction
in soybean yield, up to 40%, at half field capacity. As soybean was considered a drought-
sensitive crop [6], soybean yield enhancement requires selection of varieties even under
variable climate conditions. Selecting new varieties with high grain yield but low water use
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may provide a new way to improve soybean yield performance even under water scarce
conditions [7].

Among many reports with varying complexity in the literature, including soil water
balance, residual energy budget, Bowen ratio modelling, lysimeters and eddy-covariance,
to develop accurate ET estimations for irrigation management purposes is strongly ad-
vised [8,9].

Enough available soil water intensifies the transpiration of leaves, producing a cooling
effect, which reduces the canopy temperature, Tc lower than that of the ambient air one,
Tac [10]. When the soil moisture becomes limited, to decrease transpiration water loss, the
Tc increases above the Tac. Therefore, an index, the canopy and ambient air temperature
differential (Tc-Ta) reflects the self-regulation ability of crops under water stress [11].
Jackson et al. [12] developed the theoretical crop water stress index, CWSIt, as a normalized
indicator to account for the varying environmental factors that may affect the (Tc-Ta);
the relationship between water stress and Tc. The assumption of Jackson et al. [12] is
based on the energy balance of crops. Agam et al. [13] reported the issue in the use of
theoretical CWSIt, as it is limited by the necessity of net radiation (Rn), aerodynamic
resistance (ra) and other model input parameters. In the empirical CWSI development, the
sensed Tc is normalized by using two baseline temperatures (upper limit: non-transpiring
canopy; lower limit: non-water-stressed baseline) [10]. To quantify the empirical CWSI,
the linear relationship for the temperature differential and vapor pressure deficit, VPD
was established. It has also been shown that Tc is crop growth stage- and climate zone-
dependent, in which the crop is being grown [14]. Maes and Steppe [15] and Jones [16]
called attention to the required “stable” weather conditions to measure Tc that is seldom
encountered under humid climate conditions. Despite these concerns, the CWSI is widely
used for different (biotic and abiotic) stress detections, irrigation timing as a quantitative
parameter to detect the influence of drought on crops.

The K-SOM (Kohonen self-organizing maps), based on artificial neural network algo-
rithms, is considered a simple tool for the organization of complex data according to their
similarities, providing pattern recognition [17]. Neurons are put in nodes of the lattices
that are selectively tuned to input patterns of a competitive learning process [18]. The unsu-
pervised K-SOM do not have specific input or output variables because all variables in the
input vector are also found in each unit of the output layer [19]. Thus, K-SOM can extract
useful information even from noisy data [20]. Kumar et al. [21] applied K-SOM to approach
empirical CWSI in Indian mustard to eliminate the need to obtain the base temperatures
required to calculate the empirical CWSI, which could otherwise be complicated.

From the early application of K-SOM using unsupervised algorithms, where data were
easily interpreted, and the clustering helped in identifying similarities in the dataset [19],
the SOM has also been advanced in prediction purposes even for water resource mod-
elling [21]. In this paper, the areas of applications in the estimation of soybean CWSI
are highlighted.

Soybean-water relation in the study may offer information for breeding programs in
identifying improved water stress tolerant varieties. Therefore, soybean yield enhancement
requires selection of tolerant and compatible cultivars in dry climate and low water supplies.
Enhancement of watering, WUE and soybean performance under water stress should be
a primary purpose for soybean breeders, in order to improve and stabilize seed yield.
This work contributes to mitigating water scarcity by providing new information about
irrigation timing for more successful drought management.

The study aims were to:

(i) quantify the soybean ET and WUE with three watering levels (non-limited, water
stressed and rainfed)

(ii) analyze two soybean varieties differing in their water demands
(iii) control the applicability of theoretical CWSIt under highly variable weather conditions

of Hungary
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(iv) test the K-SOM model in the CWSIp prediction by applying easily accessible meteoro-
logical and crop variables (Ta, RHc and Tc).

Due to difficult access of meteorological elements and parameters used in computing
theoretical CWSIt, only the Tac, Tc and RHc were included in the K-SOM CWSIp estimation.
These variables are easily accessible to users at any meteorological station. The major
drawback of applying CWSI is the restriction of making the required measurements just
around solar noon under clear-sky and calm weather conditions. The CWSIp visualized and
estimated by the K-SOM model seemed to be a rapid and robust solution for developing
a water-saving irrigation scheduling method. Although the biological meaning of crops
may be certain using K-SOM-projected CWSIp only. K-SOM-projected CWSIp may provide
an alternative to other CWSI estimations requiring a large amount of input data and
computation. According to the recommendation of Kumar et al. [20], the applicability of
K-SOM to predict soybean CWSIp in Hungarian temperate climate was accomplished. This
study is a further development in soybean CWSIt completed with K-SOM-based index
estimation and the short-term publications previously reported by the authors [22,23]. This
work may provide valuable information for international readers in the context of climate
change, such as increasing drought occurrence. These results could help in preparing
mitigation of future challenges related to missing PR.

2. Materials and Methods
2.1. Site Description, Agronomic Procedures, and Meteorological Observations

The four-season (2017–2020) field experiments were conducted on studying soybean
(Glycine max (L.) Merr.)-water relation, at the Agrometeorological Research Station of
Keszthely, ARS (latitude: 46◦44′ N, longitude: 17◦14′ E, elevation: 124 m above sea level), a
part of the Hungarian Meteorological Observational Network, run under the provision of
the World Meteorological Organization [24]. The climate of the region is mild continental
(Cfb) with warm, dry summers and fairly cold winters according to the Köppen-Geiger
classification [25], with seasonal mean Ta of 16.9 ◦C and seasonal PR sum of 384.3 mm
(climate norm between 1971 and 2000). Meteorological data sets were collected from
VAISALA automatic climate station of QLC-50 type (Vaisala, Helsinki, Finland) equipped
with a CM-3 pyranometer (Kipp & Zonen Corp., Delft, The Netherlands). The sensors,
except the anemometer, were placed at a standard height of 2 m above the ground surface
in the meteorological garden of the ARS. The height of the anemometer was at 10.5 m. The
wind speed was extrapolated to 2 m height in calculation of FAO-56 Penman-Monteith
reference evapotranspiration, ET0. Description of the computation can be read in Soós
and Anda [26]. In addition to standard meteorological observation, which data were used
in local weather and season characterization, air temperature, Tac and RHc were also
measured at about 1.5 m above the canopies by combined temperature-humidity sensors
(HP472AC combined probe, HD 2101.2, Delta OHM, Padova, Italy) with a log interval of 6 s,
at the same time as Tc readings were taken. Microsoft Office Excel 2010 was used to process
the data. These meteorological variables were used in theoretical CWSIt computation.

The dominant soil type was classified as a clay loam, Haplic cambisol (FAO 2006) with
a mean bulk density of 1150 kg m−3 in the top 1 m of the profile. Plant available water hold-
ing capacity to 1 m soil depth was 273 mm m−1. The pots of the evapotranspirometers were
also filled with the same soil from the upper layer of an adjacent field. Two indeterminate
soybean varieties, Sinara (Sin, water stress tolerant) and Sigalia (Sig, for “normal” water
use) were seeded in the end of April (2018) or in May (2017, 2019 and 2020) and, irrespective
of season, harvested in the first 10 days of each September. The selection of used varieties
was made based on the similarity of yield and crop cycle duration and contrasting water
demands. Plant density was 40 plant m−2, the inter-row spacing was 0.24 m. The density of
harvested population was estimated at about 25,000–30,000 plants ha−1. Crop growth and
agronomic procedures were controlled following the best management practice for soybean
prescribed by local agronomists of the University (Georgikon Campus of Keszthely).
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2.2. ET and WUE

Daily crop reference evapotranspiration rate, ET0 was computed by FAO-56 Penman-
Monteith equation [27]. To get net radiation (Rn) short-wave balance was computed by
on-site measured global radiation and albedo. The long-wave radiation was also calculated
by using the method of Allen et al. [27].

Thornthwaite-Mather type compensation evapotranspirometers provided unlimited
water supply, WW for soybean. The metal containers with a volume of 4 m3 (surface
area: 4 m2, depth of them: 1 m) were fixed in the soil. To have sufficient fetch in all
directions, representative of the watered soybean canopy being studied, the containers
were surrounded by daily irrigated soybean (at about 25 m radius). The measured daily ET
rates were expressed as a residual member from the water balance equation. The loss in
total water was calculated by summing daily evapotranspiration rates. In the water-stressed
crops, RO 50% water withdrawal was assured by closing the water supplier tap every
second day from R1 (beginning bloom) until R4-R5 (grain-filling stage) [28]. A detailed
description of the newly reconstructed evapotranspirometer is in Anda et al. [29]. In the RO,
the contribution of PR was excluded by means of mobile rainout shelters (2.5 m long, 4.5 m
wide, 2.5 m in height covered with 200 µm thick UV transparent polyethylene film). Three
replications provided unlimited and stressed water supplies to each variety. The third water
treatment was the rainfed, P. Due to the fixed establishment of the evapotranspirometer, the
experimental design was a complete block with three replications. The rainfed field, which
was about 0.5 ha in size and lay adjacent to the growing pots of the evapotranspirometers,
was divided into two sections with the two soybean varieties sown separately, in an area of
50 m (width) × 60 m (length) for each variety. Detailed information about the agronomic
procedures, the experimental layout as well as the evapotranspirometers’ conversion can
be read in pervious short-term publications of Anda et al. [22,23].

In addition to treatments in the containers of the evapotranspirometer, at maturity,
2 × 2 m subplots were highlighted in the adjacent field to get the seed yield of soybean.
Five replicates per variety were included in the analysis. The harvested pods were oven
dried at 65 ◦C for at least 48 h (until constant weight) to obtain pod dry weight. After
threshing pods by hand, seed weight was obtained and adjusted to 13% moisture. The
process was the same in each evapotranspirometer pot.

To calculate the WUE [kg m−3] for seed yield (y), the ratio of y and seasonal ET total
was applied:

WUE
[
kg m−3

]
=

y
[
kg m−2]

ΣET [m]
(1)

2.3. CWSIt and Tc Readings

The Tc readings were sensed with a hand-held infrared thermometer (RANGER II.
RTL, RAYTEK, Santa Cruz, CA, USA) which has a 2◦ field of view (FOW) and detects
radiation in the 8–14 µm waveband. The resolution of the thermometer was 0.1 ◦C. Obser-
vations were initiated at flowering (DOY: ~190–195) when the crops reached the 70–80%
canopy cover to avoid sensing the temperature of the soil and continued until the crops
maturated. The thermometer was held about 0.5–1 m above the canopy surface at an
oblique angle (≈30–40◦) below the horizontal. The thermometer sensor was calibrated
by the manufacturer. Tc samples were taken every 2 s, 20–25 readings were averaged for
each measurement, and this was repeated 3–5 times at high solar angles (local standard
time: 11 a.m.–3.00 p.m.) when the sky was completely cloudless (global radiation between
600–900 W m−2) with wind speed less than 2 m s−1 above the canopy. According to Pajero
and Irmak [30], each observation of Tc was detected from two directions (east and west)
and averaged to determine the mean Tc of the actual treatment. The emissivity of the
soybean was set at 0.96 [31].
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Measured Tc data were the basis in the CWSIt computation following the method
of [12]. CWSIt equals the ratio of measured evapotranspiration (ET) to reference evapotran-
spiration (ET0):

CWSIt = 1− ET
ET0

=
γ(1 + rc/ra)− γ

∆ + γ(1 + rc/ra)
(2)

where rc and ra are canopy and aerodynamic resistances (s m−1), γ is a psychrometric
constant [hPa K−1], and ∆ is the slope of saturated vapor pressure-temperature relation
[hPa K−1].

To calculate the resistance ratio rc/ra the following equation was applied:

rc

ra
=

γraRn/
(
ρcp
)
− (Tc − Tac)(∆ + γ)− (es(Tc)− e)

γ[(Tc − Tac)− raRn/
(
ρcp
)
]

(3)

where es(Tc) – e is the difference in saturation and actual vapor concentrations of air (hPa),
cp is heat capacity of air in constant pressure (J kg−1 K−1), p is air density (kg m−3), and Rn
is net radiation (W m−2). The ra was computed by the method of Thom and Oliver [32].

2.4. Kohonen Self-Organizing Maps (K-SOM)

The self-organizing map (SOM) is a type of neural network used for the visualization
and interpretation of large high-dimensional data sets [33]. The essence of SOM’s visual-
ization technique is to reduce dimensions of data and projects into a two-dimensional map.
SOM typically has two aspects: input data, and output data sets or map usually laid out as
a two-dimensional hexagonal lattice [34].

A SOM algorithm is usually implemented in three steps:

− selections of a specified number of neurons and random initialization of the weights
of the components for each neuron.

− performing iterative training where the nodes are adjusted in response to a set of training
vectors, so that the nodes approximately minimize an integrated distance criterion.

− map visualization where each node’s reference vector is projected in some fashion to
a lower dimensional space and plotted as a map [35,36].

During training phase, input data is presented to the algorithm and a SOM map is
created. Units close to each other on the map have similar input patterns.

After normalization, the training phase generated and updated the weight vectors
of the map. Model validation was important to determine the generalizability of K-
SOM. The BMU for each input vector was then determined during validation to predict
missing CWSI values (Figure 1). After the CWSI values were extracted from the BMU’s,
they were compared with their computed values to evaluate the performance of the
K-SOM predictions.

2.5. Statistics

The effect of the treatment, variety and season on the ET rate, and the WUE was
analyzed with three-way ANOVA. The starting model was the full model with all main
effects and all two- and three-way interactions. The pairwise comparisons of the eight
water-season combinations were compared with Tukey’s HSD test.

Differences between experimental groups were assessed using Student’s t test or
one-way analysis of variance (ANOVA) followed by Tukey’s HSD post hoc test. Two-tailed
one-sample t test was applied to compare the proportion of ET rate and WUE.
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Figure 1. Schematic representation of the input and output vectors in the self-organization map
K-SOM.

Regression analysis was applied to determine the relationship between ET, seed yield
and CWSIt. The goodness of curve fit was controlled by standard statistics as the R2

and RMSE.
To facilitate the presentation of the results, 95% confidence interval was calculated.
Boxplots were applied to show differences between the daily ET rates, WUE and CWSI

of soybean varieties, water treatments and seasons.
All statistical computations were implemented using SPSS software, version 24.0.
To investigate the performances for the model, different error measures including the

root mean square error (RMSE), mean absolute error (MAE), coefficient of determination
(R2), scatter index (SI) and Nash-Sutcliffe efficiency (NSE) were used:

RMSE =

√
∑n

i=1
(
CWSIt − CWSIp

)2

n
(4)

MAE =
∑n

i=1
∣∣CWSIp − CWSIt

∣∣
n

(5)
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R2 =
(∑n

i=1
(
CWSIt − CWSIt

)(
CWSIp − CWSIp

)
)

2

∑n
i=1
(
CWSIt − CWSIt

)2
∑n

i=1
(
CWSIp − CWSIp

)2 (6)

NSE = 1− ∑n
i=1
(
CWSIt − CWSIp

)2

∑n
i=1
(
CWSIt − CWSIpm

)2 (7)

SI =
RMSE

CWSIpm
(8)

where CWSIt, CWSIp theoretical and predicted CWSI values on the ith day, CWSIpm was
the mean value of CWSIp. The total number of testing patterns was denoted by n and i
represent the number of particular instances of the testing pattern.

The K-SOMs were developed in MATLAB 2019b using the SOM toolbox.

3. Results
3.1. Weather Conditions between 2017–2020

Keszthely, located in the Carpathian Basin, is expected to have variable inter- and
intra-annual weather conditions. The long-term seasonal total PR of 384.3 mm (1971–2000)
can be typified by highly variable and irregular seasonal PR events ranging from 290.1 to
680.6 mm. Of the four growing seasons investigated, two wet (2018 and 2020) and two dry
ones (2017 and 2019) could be distinguished (Table 1). 2017 and 2019 received 36.9 mm and
13.7 mm less PR, respectively, than the long-term average. Adding to the low seasonal PR
in 2017, more than 40% of it fell in September, out of the soybean’s growing period. The
growing seasons of 2018 (+93.4 mm) and 2020 (+31.7 mm) had positive rainfall anomalies
compared to climate norms. However, reduced, monthly PR totals during the 2017 growing
season were evenly distributed throughout the soybean season. In wet 2018 and 2020,
rainfall events were mostly concentrated between June and August, decreasing the monthly
vapor pressure deficits (VPD). In the warm summer of 2017, the highest VPD values were
observed between June and August. The seasonal mean Ta during the years 2017–2020
were 0.7–2.5 ◦C higher than the 30-yr average, except for April in 2017, and May in 2019
and 2020. Cooler springs 2017 and 2019 postponed the soybean seeding to the end of May.
Annual mean Ta in the wet 2020 tended to be the lowest among the studied seasons.

Table 1. Meteorological variables, monthly mean temperatures, relative humidity, vapor pres-
sure deficits and monthly precipitation sums measured at Agrometeorological Research Station of
Keszthely in the growing seasons 2017–2020. The climate norm represented the period between 1971
and 2000.

Apr May June July August September

Precipitation sums [mm] Total
Norm 50.5 59.6 78.5 73.5 65.1 57.1 384.30
2017 20.9 38.8 61.1 53.8 32.7 140.1 347.40
2018 13.4 68.4 101.2 78.9 87.1 128.7 477.70
2019 28.7 125.0 50.4 92.1 25.9 48.5 370.60
2020 14 45.6 93.0 81.9 152.4 29.1 416.00
Monthly mean air temperatures [◦C] Mean
Norm 10.5 15.7 18.7 20.5 20.1 15.7 16.87
2017 10.8 16.6 21.2 22.3 22.8 15.1 18.14
2018 15.3 18.8 20.5 21.7 22.6 16.9 19.32
2019 11.9 13.0 22.8 22.8 22.6 17.1 18.39
2020 11.8 14.4 19.3 21.1 21.8 17.1 17.59
Relative humidity [%] Mean
2017 67.4 71.0 70.1 68.3 66.8 81.9 70.9
2018 69.0 73.5 74.2 71.7 74.3 79.8 73.8
2019 70.1 80.2 74.1 69 76.9 77.8 74.7
2020 56.4 66.0 74.0 69.8 75.9 75.8 69.6
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Table 1. Cont.

Apr May June July August September

Vapour pressure deficit [hPa] Mean
Norm 0.39 0.53 0.61 0.71 0.64 0.37 0.54
2017 0.43 0.57 0.76 0.87 0.94 0.33 0.65
2018 0.55 0.59 0.64 0.76 0.72 0.38 0.61
2019 0.44 0.31 0.73 0.87 0.64 0.43 0.57
2020 0.61 0.57 0.59 0.77 0.65 0.48 0.61

3.2. Soybean Development, ET and WUE

Irrespective of the two weeks earlier seeding in 2018, soybean development regarding
the length of vegetation periods and phenological phases was similar across all treatments.
Soybean vegetation cycles ranged from 114 to 122 days. In accordance with results of
Montoya et al. [37], the water stress during flowering shortened the length of the veg-
etation cycle by 4–6 days. Soybean leaf senescence acceleration has been documented
under drought conditions together with photosynthesis and assimilates reduction by
Ergo et al. [38] in Manfredi, Argentina (31◦ N), during the growing seasons 2015–2016.

Daily mean ET rates for each treatment from emergence to maturity between 2017 and
2020 are presented in Figure 2. Four-season daily mean ET rates were 4.30 ± 0.94 mm day−1

for Sin WW, 4.22 ± 0.63 mm day−1 for Sig WW, 1.53 ± 1.21 mm day−1 for Sin RO and
1.58 ± 0.64 mm day−1 for Sig RO. Seasonal patterns of daily mean ET were similar to
each treatment for the observed growing seasons, however the daily ET rate values varied
among different treatments. Irrespective of treatment, low daily ET rates ranging from 0.1
to about 2 mm day−1 occurred during the vegetative stages (V). Maximum daily ET rates
between 4.1 (Sin RO in 2020) and 10.9 (Sig WW in 2017) mm during July (day of year, DOY:
190–200) coincided with the highest Ta and crop flowering as reported by Anapalli et al. [8].
Daily mean ET rates gradually decreased in below 1.0 mm toward the end of the Augusts.

Daily mean ET rates were influenced by season, S (p < 0.001), water, W (p < 0.001) and
one of their interactions S ×W (p < 0.001), with the exceptions, non-significant variety, V
(p = 0.409), interactions of V × S (p = 0.41), W × V (p = 0.528) and S × V ×W (p = 0.807)
effects on daily ET rates. The non-significant V × S interaction revealed that the response
of S on daily mean ET rates did not vary between varieties.

Total ET varied widely with treatments, from 291.9 (Sig RO) to 694.9 mm (Sin WW) in
2017, from 315.7 (Sig RO) to 615.6 mm (Sin WW) in 2018, from 328.8 (Sig RO) to 646.1 mm
(Sig WW) in 2019, and from 205.5 (Sin RO) to 419.7 mm (Sig WW) in 2020. Total ET0 values
for 2017, 2018, 2019 and 2020 growing seasons were estimated as 731.4 mm, 717.4 mm,
700.6 mm, and 510.9 mm, respectively.

In dry and wet growing seasons, the WUE varied from 0.70 ± 0.02 (Sig WW for
2017) to 1.0 ± 0.04 kg m−3 (Sin RO for 2017) and from 0.84 ± 0.03 (Sig WW for 2020) to
0.93 ± 0.07 kg m−3 (Sin RO for 2020), respectively, Figure 3. Figure 3 contains the dry
and wet seasons pooled. The highest and most stable WUEs were obtained from RO,
irrespective of weather conditions. The lowest WUE values were observed in WW during
2017. The size of CWSI and Tc were inversely related to the amount of water used.
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Considering the ANOVA results, the WUE was affected by the W (p < 0.001) and one
interaction of S ×W (p < 0.001). In accordance with results in daily mean ET rates, the
insignificance of variety, V (p = 0.71) and its interactions indicated that the effects of the S
and W for WUE in the two studied varieties were similar.

3.3. CWSI

The CWSI values were calculated during the solar noon (12.00–13.30 LMT) consistently
for all the treatments for three growing seasons (the fourth one was excluded from the
analysis) when the canopy cover exceeded 70–80%, from the beginning of July to mid-
August, to minimize the effect of soil temperature and change in canopy structure on the
Tc readings (Figure 4). Except for wet 2020, about every second day after canopy closure
was appropriate for Tc detection and computing CWSI during the three-season observation
period (2017: 32 out of 66 days, 2018: 27 out of 55 days and 2019: 28 out of 57 days).
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Figure 4. Seasonal mean of theoretical crop water stress index, CWSIt for soybean varieties Sinara (Sin) and Sigalia (Sig)
during the seasons between 2017 and 2019. WW, RO and P denoted unlimited, water stress and rainfed, respectively.

Seasonal mean CWSIs of WW were close to each other ranging from 0.13 ± 0.01 (Sin
in 2018) to 0.24 ± 0.01 (Sin in 2017) (Table 2). Water stress during flowering significantly
increased the seasonal mean CWSI values from 0.36 ± 0.20 (Sin RO, 2018) to 0.64 ± 0.02
(Sig RO, 2019). CWSI values from 0.20 ± 0.19 to 0.59 ± 0.11 in Sin P (2018) and Sig P (2017),
respectively, were ranging between well-watered and water-stressed soybean. Differences
in CWSI values between variable water supplies were easily noticed. However, there was
no difference in CWSI between the two varieties (their values were pooled in the analysis).
High PR amount during wet 2018 might be high enough to allow almost optimum water
supply, even in the rainfed. CWSI values decreased with decreasing Tc.
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Table 2. Seasonal mean canopy temperature (Tc), air temperatures 1.5 m above the canopy (Tac),
canopy- air temperature difference (Tc-Tac) and theoretical crop water stress index, CWSIt in the
growing seasons of 2017–2019. Abbreviations were as follows: WW—unlimited water, RO—water
stress conditions, P—rainfed, Sinara—Sin, Sigalia—Sig.

Tc Ta (Tc-Tac) CWSIt

2017
Sin WW 28.5 ± 2.27 28.5 0.0 0.24 ± 0.01
Sig WW 28.3 ± 2.21 29.2 −0.9 0.20 ± 0.07
Sin RO 31.2 ± 3.14 29.0 2.2 0.58 ± 0.09
Sig RO 30.7 ± 2.29 29.5 1.2 0.52 ± 0.10
Sin P 31.1 ± 3.35 30.1 1.0 0.55 ± 0.19
Sig P 32.0 ± 3.20 30.2 1.8 0.59 ± 0.11
2018
Sin WW 27.7 ± 2.07 28.2 −0.5 0.13 ± 0.01
Sig WW 28.3 ± 2.65 28.4 −0.1 0.21 ± 0.01
Sin RO 29.4 ± 3.42 28.3 1.1 0.36 ± 0.20
Sig RO 29.5 ± 3.01 28.5 1.0 0.40 ± 0.20
Sin P 28.3 ± 2.66 28.9 −0.6 0.20 ± 0.19
Sig P 28.3 ± 2.79 28.8 −0.5 0.21 ± 0.14
2019
Sin WW 27.8 ± 2.10 28.0 −0.2 0.17 ± 0.01
Sig WW 27.7 ± 2.08 28.2 −0.5 0.16 ± 0.01
Sin RO 30.5 ± 2.71 28.4 2.1 0.61 ± 0.02
Sig RO 30.2 ± 2.88 28.7 1.5 0.64 ± 0.02
Sin P 29.1 ± 2.55 28.7 0.4 0.41 ± 0.16
Sig P 28.8 ± 2.50 28.3 0.5 0.39 ± 0.14

Three-season mean CWSI was influenced by season, S (p < 0.001), water, W (p < 0.001)
and their interaction S × W (p < 0.001). The non-significant V (p = 0.08) interactions of
V ×W (p = 0.39), V × S (p = 0.10) and W × V × S (p = 0.86) on the CWSI revealed that the
response of the seasons and water levels did not differ among varieties.

The application of K-SOM in CWSI computation was based on accessible meteorologi-
cal variables that may contribute to a more accurate estimate of crop-water relationship
and/or irrigation timing. As was expected, the ANOVA results clearly show the CWSI dif-
ferences in the three water treatments, providing a wide range in K-SOM estimation. Low
CWSI (CWSI < 0.15–0.20) was mainly related to WW, irrespective of season. High values of
CWSI (~0.4–0.5) corresponded to water-stressed crops, which probability could be high in
rainfed in Hungary. CWSI can be estimated by monitoring and using the easily observable
meteorological elements (Tac and RHc), in addition to Tc sensing, to help professionals in
agricultural practice. Thus, farmers with less meteorological information can take steps to
address the negative impacts of drought in order to improve soybean yield and its stability.

The K-SOM, by using linear and non-linear data, was applied to evaluate whether the
pattern recognition capacity could be improved through validation obtained from the data
set. The quantization error (QE) is the mean to the distances between each input vector
and its BMU. The topographic error (TE) shows the proportion of all data vectors, to which
the first- and second-best matching units (BMUs) are not adjacent [39]. The QE and TE do
not have a default value, but the smaller the QE and TE, the better the model performance
is. In the best case the values tend to zero. In the study, the low values of QE (0.034) and
TE (0.593) were obtained with an output layer of 10 × 6 neurons (Table 3).
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Table 3. Characteristics of trained Kohonen-SOM model.

Characteristics Values

Normalization method variance : x′ = (x− x)/σx
Codebook 160 × 4
Map Size 10 × 6
Neighbourhood function Gaussian
Shape Sheet
Lattice Hexagonal
Final Topographic error (TE) 0.593
Final Quantization error (QE) 0.034

The component planes of the database show the correlation patterns between me-
teorological variables and CWSI. In Figure 5, each variable was presented by a grid of
60 neurons (maps) for different water treatments, with 6 vertical and 10 horizontal columns.
The similar color patterns in the maps demonstrated positive correlation between the
studied variables and CWSI. On the maps, the warm and cold colors indicate high and
low values, respectively. The identical color patterns on the maps demonstrated a positive
correlation between the study parameters.
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Figure 5. Component planes of the variables (Tc—canopy temperature, Tac—air temperature above the canopy,
RHc—relative humidity above the canopy) for crop water stress index, CWSIt.

The u-matrix (Figure 5) was a map, generated by the program, to show the relations
between the neighboring neurons. A light color between the neurons signifies that the
codebook vectors were close to each other in the input space, while dark colors meant large
distances [40]. The color gradient of the Tac component plane is significantly correlated
with the Tc component plane, some deviation is found only in the plane on the right
(Figure 5). The RHc component plane presents a negative correlation with the Tac and Tc
component planes, although it shows greater overlap with Tac (right plane) compared to
Tc. CWSI correlates with all three meteorological variables; high Tac and Tc and low RHc,
as well as medium RHc and high Tac values increase the CWSI value. Low RHc and Tac
values can be correlated with low CWSI values.
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4. Discussion

On several occasions in this study, on 50 days out of 62 (80.6%) throughout the sam-
pling period 2020, there were inappropriate weather conditions in the Tc data collection
(Tmax ≤ 25.0 ◦C; global radiation ≤ 20 MJ day−1, daily mean windspeed ≥ 2.5 m s−1, and
cloudiness about solar noon). Due to uncertain Tc results in treatment comparisons even
on the remaining sample days (19.4%), the CWSIt was disregarded in the analysis during
wet 2020. Most of the days with inaccurate Tc samplings coincided with decreases in global
radiation and were associated with cloudy and windy weather conditions around solar
noon. In a temperate humid climate, Jensen et al. [41] observed extreme fluctuations in
Tc attributed to temporal variability in global radiation, increased wind speed and to the
narrow range of prevailing values of VPD. The authors mentioned that under conditions
of low evaporative demand, Tc differences between water stressed and fully irrigated
crops approached zero even at severe crop water stress. The CWSI showed large fluctu-
ations under low VPD or with significant variation in weather conditions [42], although
Jackson et al. [11] found the stability of theoretical CWSIt advantageous in variable climate.

Under the constraint of declining PR due to the impacts of global warming and
sustainable agriculture, irrigation planning must be developed in the direction of water
saving and precision. Traditional irrigation planning methods are based on soil moisture
data, meteorological variables, and crop indicators. ET is a multivariate process influenced
by meteorological and biological variables. Tc, a biological indicator, was sensed remotely,
which is a non-destructive, simple, and fast way to provide a rapid estimate of crop water
supply level. Among meteorological variables involved in ET regulation, PR, solar radiation
(Ta), humidity (VPD, RH) and windspeed (u) were found mostly intercorrelated [43]. The
VPD, a critical weather variable, increases with increased Ta, and controls soybean ET
via stomatal regulation [9]. Lower Ta in April and May slightly increased initial ET rates.
Due to higher Ta and LAI values, the daily ET rates were characterized by rapid increases
from June to about mid-August. Because of leaf senescence from the middle of August,
mid-summer ET rates were followed by a gradual decrease towards September.

The lowest daily mean ET rates of 1.5 (Sin) and 1.6 (Sig) mm in RO, and 3.1 (Sin;
Sig) mm in WW were measured during the wet 2020. The highest daily mean ET rate
increments during the dry 2017 were 64.1% in Sin WW and 46.9% in Sig WW, compared to
those from the wet 2020. During the dry 2017, the daily mean ET rates for RO were 42.1
and 31.6% higher in Sin and Sig, respectively, relative to daily mean ET rates during 2020.

During the dry growing seasons, the ET total of Sin WW (mean, 664.8 ± 2.26 mm)
was similar to that of the ET total of Sig WW (mean, 651.8 ± 2.39 mm), hence there was no
detectable variety effect on soybean ET sum with unlimited watering. Similarly, during
those same arid growing seasons, the ET total of Sin RO (mean, 319.8 ± 1.72 mm) was not
statistically distinguishable from that of Sig RO (mean, 310.3 ± 1.69 mm). During the wet
seasons (2018 and 2020), we observed mean ET total decreases of 25.8% (p < 0.001) in Sin
WW and 26.8% (p < 0.001) in Sig WW, as compared to the ET sums in arid weather. At
the same time, 20.1% (p < 0.001; Sin RO) and 16.4% (p < 0.001; Sig RO) declines in four-
season mean ET sums were obtained from water stressed crops. Cumulative ET changed
seasonally and between water treatments within the same growing season. Seasonal
variations in cumulative ET were mainly the result of changed weather conditions, water
supply levels and biological factors. Among biological factors, the size of leaf-area plays
an important role. In the previous results we concluded that 50% water withdrawal at
the time of flowering significantly reduced the seasonal mean LAI of both varieties in
comparison to WW [23,44]. Irrespective of variety and season, declines in seasonal mean
LAI of RO were two-fold higher than that of the average LAI in rainfed [29]. More detailed
LAI results including temporal variation and leaf-area modelling were excluded from
the study; they were presented in the previous publications (see above). For all seasons,
unlimited watering during flowering always produced 67.8 (Sin) and 66.9% (Sig) higher
ET total compared to their water-stressed counterparts. Similar results have also been
obtained by Payero et al. [45] in West-Nebraska (41.4◦ N) for soybean ET at not limited soil
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water (630–641 mm) and water constraint restricted to reproductive development (310 mm).
Three-season mean ET totals of 640 and 389 mm for full and limitedly irrigated soybean
in central Nebraska reported by Schneekloth et al. [46] are also comparable to the results
in the study. Seasonal totals also showed that wet seasons had narrower range, while
dry seasons had wider range in cumulative ET, irrespective of variety. In humid seasons,
the difference in ET between the fully irrigated and deficit irrigated soybean was also the
smallest in Vojvodina, Serbia (44◦ N), in a three-season study [47]. The authors concluded
that in wet seasons, no irrigation of soybean was required in the temperate environment
of Serbia.

For the whole investigation period, ET totals of WW were 78.5 (humid seasons mean)
and 91.2% (dry seasons mean) of ET0. The ET sums of water stressed crops were 55.9 and
57.3% of ET0 for 2018 and 2020, and 2017 and 2019, respectively.

Regression analysis between the soybean yield, y [kg m−2] and ET total [m] showed a
quadratic relationship (y = −0.0042 × 2 + 4.573 − 763.43, R2 =0.9398, p < 0.001,
RMSE = 0.066 kg m−3) for combined data from 2017, 2018, 2019 and 2020. Therefore,
optimum water uses of 544.4 mm existed at the study site to maximize the yield. A some-
what lower ET total of 380 mm was observed by Gajic et al. [47] in Serbia, to guarantee
high yield in soybean. Candogan et al. [48] in Turkey (40◦ N) reported the same quadratic
relationship between ET and soybean yield, in a semi-humid environment. In contrast,
many studies demonstrated a linear relationship between ET and soybean yield, most of
them under arid or semi-arid weather conditions (Payero et al. [45] and Kirnak et al. [49]
both in Nebraska (41◦ N).

Considering previous observations of Montoya et al. [37], the ET sums and WUE were
strongly correlated. A previous study of Henry et al. [50] in Stuttgart, Germany, reported
that as water becomes limited, WUE improves. When varieties were pooled, during the
dry and wet growing seasons, 15.7 (p = 0.016) and 7.0% (p = 0.017) increments in WUE
of RO, respectively, were determined relative to WW. WUE values reported in the study
were comparable to those determined by Hussain et al. [51] for rainfed (0.7 kg ha−1 mm−1)
and water stressed soybean (0.46 kg ha−1 mm−1) in southwest Michigan, USA (42◦ N),
between 2009 and 2012. Higher WUE in the water-stressed soybean were likely associated
with a decline in photosynthesis due to water withdraw, evident from the increased Tc and
higher CWSI observed in the RO treatments. Photosynthesis, a process that contributes to
crop growth, development, as well as soybean yield is highly sensitive to water stress [52].
Wijewardana et al. [53] concluded that regardless of soybean cultivar, the decrease in
photosynthesis is mainly due to stomatal closure. No significant differences in WUE of RO
between varieties were found over the four-season study. During both dry and wet seasons,
the WUEs in RO were similar to those in rainfed ones (wet: p = 0.845; dry: p = 0.114). An
18.1% increase (p < 0.001) in the WUE of P was only observed in dry summer, relative to
values in WW. We expected that the WUE of WW during arid seasons would be greater
than those in wet seasons. Contrary to our expectations, the WUE values decreased by 7.2%
(p = 0.011) during arid seasons compared to those in the wet ones. As with WUE-seed yield,
variation in ET rather than yield explained most of the variation in WUE. The SDs of WUE
were always much lower in WW than in RO and P, which means that the additional water
balanced the WUE in case of unlimited watering, irrespective of the weather conditions.

CWSIt values were strongly influenced by different water supplies. In dry growing
seasons, mean CWSIt of RO and P reflected the increased water stress compared to stress
values of WW. It can be concluded that there was a negative correlation between the total
ET and seasonal mean (Tc-Tac), that is, the ET decreased with the increase in (Tc-Tac) with
different watering levels (see also Table 2). With unlimited water supply and in P during the
wet 2018, the seasonal mean (Tc-Tac) values were negative, and the variations in both CWSIt
and Tc were lower while ET was higher. Han et al. [42] commented that ET reduces Tc and
(Tc-Tac); and lower Tc maintains a green character of soybean and improves chlorophyll
retention, a mechanism to avoid crop drying, which contributes to higher photosynthetic
rate and more dry matter accumulation, producing higher yield. In addition to absolute Tc
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readings, the SD of Tc, as a derived index, could also be applied as a canopy indicator in
selecting better varieties to water stress tolerance.

This study attempted to identify the impact of CWSIt on soybean yield under well-
watered, rainfed and water stress conditions. As the CWSIt at solar noon during the
flowering and podding stages were stable and most relevant to soybean grain yield [42],
the calculated mean CWSIs from flowering were fitted with corresponding yields over the
seasons 2017–2019 (Figure 6). The three-season average CWSIt of 0.19 for WW produced
the highest seed yield. Similar CWSI values of 0.17 and 0.22 (2-year-study) have also
been reported for fully irrigated soybean by Candogan et al. [48] in Turkey (40◦ N). CWSI
concurred with a value of 0.2 for fully irrigated soybean, published by Nielsen [54] in the
Central Great Plains Research Station, USA (41◦ N). Over the three-season study, water
stress under flowering and rainfed conditions increased the CWSIt (RO = 0.52 ± 0.11;
p = 0.39 ± 0.16), reducing yield by about half. However, there was hardly enough variation
in CWSIt between rainfed and WW during the wet 2018 (see also Figure 4).
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Figure 6. Relationship between theoretical crop water stress index, CWSIt and soybean seed yield
of two varieties, Sinara (Sin) and Sigalia (Sig) grown under three watering levels (unlimited, water
withdrawn and rainfed) during the seasons between 2017–2019. A single linear function was used to
describe the relationship.

The larger the amount of available water to answer crop water demand, the higher the
expectable soybean grain yield. In accordance with the results of Singh et al. [55] in Nebraska
(41◦ N), for the period of 2018 and 2019, a linear equation described the relationship be-
tween seasonal mean CWSI and average yield [kg m−2] in soybean (y = −0.4663x + 0.5644;
R2 = 0.6671; RMSE = 0.252; p < 0.001). In this study, each 0.1 increase in CWSI above 0.19 at
about solar noon would on average reduce the soybean grain yield by about 0.50 kg m−2 in
2017–2019, which is 9.9, 18.0 and 13.1% of the yield for WW, RO, and P, respectively, when
combining data for all seasons. The CWSIt could explain 74.4% of the variation in yield
over the study period.

Therefore, this study concluded that reduced water received during soybean flowering
before yield components were established resulted in lower soybean yield. Similarly, Wei
et al. [56] discovered by pot experiment that drought at the flowering stage resulted in a
larger yield loss in soybean. Furthermore, Pajero and Irmak [30] concluded that more water
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provided early enough during the soybean vegetative period, well before yield components
were completed, also could produce higher grain yield.

The performance of the K-SOM model is computed through error statistics and X–Y
scatter plots (Figure 7). The error statistics of K-SOM model during testing (2019) and
training (2017 and 2018) periods are presented in Table 4. Error statistics indicated accurate
performance of the K-SOM model in predicting the CWSI for soybean.
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Figure 7. Comparison of theoretical and predicted CWSI values for the KSOM in the training and testing periods from
(a–c) and from (d–f), respectively.

Table 4. Testing statistics of KSOM model. The coefficient of determination (R2), root mean square
error (RMSE), scatter index (SI), Nash–Sutcliffe (NSE) of CWSI predictions.

R2 RMSE [mm] MAE NSE SI

Training period (2017–2018)
WW 0.973 0.019 0.017 0.961 0.101
RO 0.992 0.032 0.033 0.961 0.067
P 0.985 0.047 0.043 0.965 0.105
Testing period (2019)
WW 0.953 0.033 0.026 0.901 0.182
RO 0.935 0.046 0.158 0.336 0.095
P 0.946 0.068 0.083 0.617 0.152

The correlation between theoretical CWSIt and K-SOM prediction was high, ranging
from 0.935 to 0.992 during the model training and testing periods. Figure 7 showed the
X–Y scatter plots of the linear regression between theoretical and predicted CWSIp which
demonstrated a uniform scatter around the 1:1 line. The prediction accuracy by data-driven
K-SOM depends on its “learning” efficiency, the amount and range of used CWSIt during
training period. Lack of available CWSIt in some weather cases during training period
may produce “gaps” in the testing period (see Figure 7). Thus, performance of theoretical
and predicted CWSI values could be improved with an increased amount of input data
presenting wide range of CWSIt (different weather conditions). If missing CWSIt data in
the “gaps” were available, probably the K-SOM could learn more from them, improving the
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model projection accuracy. Table 4 also demonstrated the test statistics of each K-SOM in
terms of R2, RMSE, SI, and NS for all water treatments, in training (2017–2018) and testing
periods (2019). High R2 and low RMSE values indicated a close relationship between
data sets. Low values were observed for MAE, except for RO treatment in the testing
period. NSE values close to 1 were observed during the training period, regardless of water
supply. During the testing period, only WW treatment had a high NSE value, and RO and
P treatment showed a significant decrease. SI recorded the lowest values for RO treatment
in both the testing and training periods.

K-SOM method carried the advantage of studying the CWSIp identification, through
plane-plots and generated maps, in addition to interpreting non-linear relationships. The
aim of this study was the investigation of soybean-water relationship based on CWSIp
determination. Further analysis of K-SOM-based CWSIp including yield parameters,
soil moisture depletion and WUE can provide accurate information for effective irriga-
tion scheduling.

5. Conclusions

To prepare a comprehensive irrigation decision, three different watering levels were
designed (rainfed, unlimited, and water stress in flowering) focusing on the impact of water
withdrawal on ET and CWSIt during soybean flowering. The meteorological elements
completed with Tc data provided a basis in CWSI estimation. As the applicability of
Tc-based CWSIt is limited to certain “ideal” weather conditions such as calm and clear-
sky solar radiation [56], the humid season of 2020 was excluded from the analysis. The
CWSIt can be a useful tool for managing irrigation scheduling and water stress in the field,
although in various weather conditions, mainly during humid seasons, must be handled
with care when attempting to detect Tc.

This four-season investigation indicated that the two studied soybean varieties with
varied water demands hardly changed in their response to water stress during flowering,
as no modification connected to water requirement occurred.

If the provided water amount rose over 450 mm during the growing season, only
the ET increased but not the soybean yield. Soybean seed yield and PR results showed
that seasonal PR sums (2017: 347.4 mm and 2019: 370.6 mm) during the dry growing
seasons might be insufficient to achieve high seed yield. The long-term PR total (384 mm)
is also lower than that of the estimated soybean water demand based on CWSIt vs. ET
relationship, at Keszthely. During dry seasons the seed yield would be increased when
up to 100–160 mm of irrigation water is added. The results in this study in the temperate
climate of Hungary suggest that the use of CWSIt to schedule irrigation may only be
recommended during the arid growing seasons. In humid ones several limitations of Tc
sensing would prevent accurate CWSIt calculation and proper irrigation timing.

A unique neural network methodology, the Kohonen self-organizing map was applied
to visualize the CWSIp and its components. The training epochs and 6 × 10 topology
proved adequate for the separation of easily accessible meteorological elements impacting
the CWSI. The theoretical CWSIt and the K-SOM predicted one showed strong agreement
in the range 0.19–0.64, having R2 of at least 0. 934, irrespective of variety. This result is
promising, as the local rainfed values are inside the 0.2–0.6 index-range. The varieties were
considered stable in every watering level, without performance variation in the growing
seasons and watering levels.
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Abbreviations
The following abbreviations are used in the manuscript:

ANOVA one-way analysis of variance
ARS Agrometeorological Research Station
BMU Best Matching Unit
Cfb Köppen climate classification: oceanic climate with war summers
cp heat capacity of air in constant pressure, J kg−1 K−1

CWSI Crop Water Stress Index
CWSIp predicted CWSI
CWSIpm the mean value of CWSIp
CWSIt theoretical CWSI of Jackson et al.
DOY Day-Of-Year
es(Tc)–e the difference in saturation and actual vapor concentrations of air, hPa
ET evapotranspiration, mm day−1

ET0 FAO-56 Penman-Monteith reference evapotranspiration, mm day−1

ha acre, 10,000 m2

HSD Honestly Significant Difference
K-SOM Kohonen Self-Organizing Maps
LAI Leaf Area Index, m2 m−2

MAE Mean Absolute Error
NSE Nash-Sutcliffe Efficiency
p air density, kg m−3

p probability
P rainfed field treatment, mm day−1

PR precipitation, mm day−1

QE Quantization Error
R1 beginning bloom stage
R2 coefficient of determination
R4-R5 grain-filling stage
ra aerodynamic resistance, s m−1

RHc relative humidity above canopy, %
RMSE Root Mean Square Error
Rn net radiation, W m−2

RO water stressed treatment, mm day−1

S season
SD Standard Deviation
SI Scatter Index
Sig Sigalia (soybean var.)
Sin Sinara (soybean var.)
Ta seasonal mean temperature, ◦C
Tac temperature above canopy, ◦C
Tac the ambient air temperature, ◦C
Tc canopy temperature, ◦C
Tc-Ta canopy- air temperature difference, ◦C
TE Topographic Error
UV ultraviolet radiation, 10 nm–400 nm
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V variety
VPD Vapor Pressure Deficit, hPa
W water
WUE Water-Use Efficiency, kg m−3

WW unlimited water supply treatment, mm day−1

y yield, kg m−2

γ psychrometric constant, hPa K−1

∆ the slope of saturated vapor pressure-temperature relation, hPa K−1.

References
1. Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Chang. Rep. 2018, 4,

164–170. [CrossRef]
2. Aydinsakir, K. Yield and Quality Characteristics of Drip-Irrigated Soybean under Different Irrigation Levels. Agronomy 2018, 110,

1473–1481. [CrossRef]
3. Buezo, J.; Sanz-Saez, A.; Jose, M.F.; Soba, D.; Aranjuelo, I.; Esteban, R. Drought tolerance response of high-yielding soybean

varieties to mild drought: Physiological and photochemical adjustments. Physiol. Plant. 2019, 166, 88–104. [CrossRef]
4. Wijewardana, C.; Reddy, K.R.; Alsajri, F.A.; Irby, J.T.; Krutz, J.; Golden, B. Quantifying soil moisture deficit effects on soybean

yield and yield component distribution patterns. Irrig. Sci. 2018, 36, 241–255. [CrossRef]
5. Mannan, M.A.; Mia, S.; Halder, E.; Dijkstra, F.A. Biochar application rate does not improve plant water availability in soybean

under drought stress. Agr. Water Manag. 2021, 253, 106940. [CrossRef]
6. Mullet, J.E.; Whitsitt, M.S. Plant cellular responses to water deficit. Plant Growth Regul. 1996, 20, 119–124. [CrossRef]
7. Yang, M.H.; Jahufer, M.Z.Z.; He, J.; Dong, R.; Hoffmann, R.; Siddique, K.H.M.; Li, F.-M. Effect of traditional soybean breeding on

water use strategy in arid and semi-arid areas. Eur. J. Agron. 2020, 120, 126128. [CrossRef]
8. Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Wagle, P.; Gowda, P.H.; Sui, R. Quantifying soybean evapotranspiration using an eddy

covariance approach. Agric. Water Manag. 2018, 209, 228–239. [CrossRef]
9. Tallec, T.; Béziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crop’s water use efficiencies in a temperate climate: Comparison of

stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [CrossRef]
10. Idso, S.B.; Jackson, R.D.; Pinter, R.D.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental

variability. Agric. Meteorol. 1981, 24, 45–55. [CrossRef]
11. Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A re-examination of the crop water stress index. Irrig. Sci. 1988, 9, 309–317. [CrossRef]
12. Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981,

17, 1133–1138. [CrossRef]
13. Agam, N.; Cohen, Y.; Alchanatis, V.; Ben-Gal, A. How sensitive is the CWSI to changes in solar radiation? Int. J. Remote Sens. 2013,

34, 6109–6120. [CrossRef]
14. Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic modelling of the baseline temperatures for computation of the

crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Comput. Electron. Agric. 2018, 153, 102–114. [CrossRef]
15. Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in

agriculture: A review. J. Exp. Bot. 2012, 63, 695–709. [CrossRef]
16. Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric.

For. Meteorol. 1999, 95, 139–149. [CrossRef]
17. Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [CrossRef]
18. Ferde, M.; Costa, V.C.; Mantovaneli, R.; Wyatt, N.L.P.; Rocha, P.A.; Brandão, G.P.; de Souza, J.R.; Gimenes, A.C.W.; Costa, F.S.;

da Silva, E.G.P.; et al. Chemical characterization of the soils from black pepper (Piper nigrum L.) cultivation using principal
component analysis (PCA) and Kohonen self-organizing map (KSOM). J. Soils Sediments. 2021, 21, 3098–3106. [CrossRef]

19. Kohonen, T.; Oja, E.; Simula, O.; Visa, A.; Kangas, J. Engineering applications of the self-organizing map. Proc. IEEE 1996, 84,
1358–1384. [CrossRef]

20. Kumar, N.; Adeloye, A.J.; Shankar, V.; Rustum, R. Neural computing modelling of the crop water stress index. Agric. Water
Manag. 2020, 239, 106259. [CrossRef]

21. Kumar, N.; Rustum, R.; Shankar, V.; Adeloye, A.J. Self-organizing map estimator for the crop water stress index. Comput. Electron.
Agric. 2021, 187, 106232. [CrossRef]

22. Anda, A.; Soós, G.; Menyhárt, L.; Kucserka, T.; Simon, B. Yield features of two soybean varieties under different water supplies
and field conditions. Field Crops Res. 2020, 39, 549–566. [CrossRef]

23. Anda, A.; Simon, B.; Soós, G.; Teixeira da Silva, J.A.; Farkas, Z.S.; Menyhárt, L. Assessment of soybean evapotranspiration and
controlled water stress using traditional and converted evapotranspirometers. Atmosphere 2020, 11, 830. [CrossRef]

24. WMO (World Meteorological Organization). Guide to Meteorological Instruments and Methods of Observation, 8th ed.; WMO
Publications Board: Geneva, Switzerland, 2008.

25. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meterol. Z.
2006, 15, 259–263. [CrossRef]

http://doi.org/10.1007/s40641-018-0093-2
http://doi.org/10.2134/agronj2017.12.0748
http://doi.org/10.1111/ppl.12864
http://doi.org/10.1007/s00271-018-0580-1
http://doi.org/10.1016/j.agwat.2021.106940
http://doi.org/10.1007/BF00024008
http://doi.org/10.1016/j.eja.2020.126128
http://doi.org/10.1016/j.agwat.2018.07.023
http://doi.org/10.1016/j.agrformet.2012.07.008
http://doi.org/10.1016/0002-1571(81)90032-7
http://doi.org/10.1007/BF00296705
http://doi.org/10.1029/WR017i004p01133
http://doi.org/10.1080/01431161.2013.793873
http://doi.org/10.1016/j.compag.2018.08.009
http://doi.org/10.1093/jxb/ers165
http://doi.org/10.1016/S0168-1923(99)00030-1
http://doi.org/10.1016/j.neunet.2012.09.018
http://doi.org/10.1007/s11368-021-02966-3
http://doi.org/10.1109/5.537105
http://doi.org/10.1016/j.agwat.2020.106259
http://doi.org/10.1016/j.compag.2021.106232
http://doi.org/10.1016/j.fcr.2019.107673
http://doi.org/10.3390/atmos11080830
http://doi.org/10.1127/0941-2948/2006/0130


Water 2021, 13, 3306 20 of 21

26. Soós, G.; Anda, A. A methodological study on local application of the FAO-56 Penman-Monteith reference evapotranspiration
equation. Georg. Agric. 2014, 18, 71–85.

27. Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper; No. 56; FAO: Rome, Italy, 1998. [CrossRef]
28. Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University: Ames, IA, USA, 1977.
29. Anda, A.; Simon, B.; Soós, G.; Teixeira da Silva, J.A.; Kucserka, T. Crop-water relation and production of two soybean varieties

under different water supplies. Theor. Appl. Climatol. 2019, 137, 1515–1528. [CrossRef]
30. Payero, J.O.; Irmak, S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric. Water Manag. 2013, 129,

31–43. [CrossRef]
31. Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the

remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [CrossRef]
[PubMed]

32. Thom, A.S.; Oliver, H.R. On Penman’s equation for estimating regional evaporation. Q. J. R. Meteor. Soc. 1977, 103, 345–357.
[CrossRef]

33. Yotova, G.; Varbanov, M.; Tcherkezova, E.; Tsakovski, S. Water quality assessment of a river catchment by the composite water
quality index and self-organizing maps. Ecol. Indic. 2021, 120, 06872. [CrossRef]

34. Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Application of self-organizing maps for PCDD/F pattern recognition of
environmental and biological samples toevaluate the impact of a hazardous waste incinerator. Environ. Sci. Technol. 2010, 44,
3162–3168. [CrossRef] [PubMed]

35. Sang, H.; Gelfand, A.E.; Lennard, C.; Hegerl, G.; Hewitson, B. Interpreting self-organizing maps through space-time data models.
Ann. Appl. Stat. 2008, 2, 1194–1216. [CrossRef]

36. Souid, F.; Telahigue, F.; Agoubi, B.; Kharroubi, A. Isotopic behavior and self-organizing maps for identifying groundwater
salinization processes in Jerba Island, Tunisia. Environ. Earth Sci. 2020, 79, 175. [CrossRef]

37. Montoya, F.; García, C.; Pintos, F.; Otero, A. Effects of irrigation regime on the growth and yield of irrigated soybean in temperate
humid climatic conditions. Agric. Water Manag. 2017, 193, 30–45. [CrossRef]

38. Ergo, V.V.; Lascano, R.; Vega, C.R.C.; Parola, R.; Carrera, C.S. Heat and water stressed field-grown soybean: A multivariate study
on the relationship between physiological-biochemical traits and yield. Environ. Exp. Bot. 2018, 148, 1–11. [CrossRef]

39. Ritter, H.; Kohonen, T. Self-Organizing Semantic Maps. Biol. Cybern. 1989, 61, 241–254. [CrossRef]
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