
water

Article

Incorporating Advanced Scatterometer Surface and Root Zone
Soil Moisture Products into the Calibration of a Conceptual
Semi-Distributed Hydrological Model
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Incorporating Advanced

Scatterometer Surface and Root Zone

Soil Moisture Products into the

Calibration of a Conceptual

Semi-Distributed Hydrological

Model. Water 2021, 13, 3366.

https://doi.org/10.3390/w13233366

Academic Editor: Aizhong Ye

Received: 12 October 2021

Accepted: 25 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Land and Water Resources Management, Slovak University of Technology,
81005 Bratislava, Slovakia; adam.brziak@stuba.sk (B.A.); jan.szolgay@stuba.sk (J.S.);
silvia.kohnova@stuba.sk (S.K.); kamila.hlavcova@stuba.sk (K.H.)

2 Centre for Water Resource Systems, TU Wien, 1040 Vienna, Austria; parajka@hydro.tuwien.ac.at (J.P.);
mrtongrui@gmail.com (R.T.); isabella.pfeil@geo.tuwien.ac.at (I.P.)

3 Institute of Hydraulic Engineering and Water Resources Management, TU Wien, 1040 Vienna, Austria
4 Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria;

Mariette.Vreugdenhil@geo.tuwien.ac.at
5 Institute of Hydrology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84104 Bratislava, Slovakia;

sleziak@uh.savba.sk
* Correspondence: martin.kuban@stuba.sk

Abstract: The role of soil moisture is widely accepted as a significant factor in the mass and energy
balance of catchments as a controller in surface and subsurface runoff generation. The paper examines
the potential of a new dataset based on advanced scatterometer satellite remote sensing of soil
moisture (ASCAT) for multiple objective calibrations of a dual-layer, conceptual, semi-distributed
hydrological model. The surface and root zone soil moisture indexes based on ASCAT data were
implemented into calibration of the hydrological model. Improvements not only in the instrument
specifications, i.e., better temporal and spatial sampling, but also in the higher radiometric accuracy
and retrieval algorithm, were applied. The analysis was performed in 209 catchments situated
in different physiographic and climate zones of Austria for the period 2007–2018. We validated
the model for two validation periods. The results show that multiple objective calibrations have a
substantial positive effect on constraining the model parameters. The combined use of soil moisture
and discharges in the calibration improved the soil moisture simulation in more than 73% of the
catchments, except for the catchments with higher forest cover percentages. Improvements also
occurred in the runoff model efficiency, in more than 27% of the catchments, mostly in the watersheds
with a lower mean elevation and a higher proportion of farming land use, as well as in the Alpine
catchments where the runoff is not significantly influenced by snowmelt and glacier runoff.

Keywords: ASCAT; semi-distributed hydrological model; surface soil moisture; root zone soil
moisture; multiobjective calibration; HBV model

1. Introduction

Recently, various reviews have evaluated the hydrological aspects of using remotely-
sensed soil moisture information. The potential of estimating soil moisture through remote
sensing [1–6] and the use of satellite soil moisture data for climatic and hydrological uses
was tackled in [7–11]. Numerical weather predictions, land surface and climate model
assessments, monitoring of drouths, modelling of runoff, and forecasting of floods are the
most critical applications that benefit from satellite soil moisture retrievals. No additional
review of these aspects will be given here, nor will future opportunities be analyzed in this
study. In the paper, we focus on the potential associated with using a particular remotely-
sensed soil moisture product and its derivatives in rainfall runoff models. Recent advances
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in the techniques of soil moisture observation, which were covered in [12], particularly
remote sensing by passive and active microwaves, have increased the accessibility of soil
moisture datasets both locally and regionally. That includes a new ASCAT Soil Water Index
(SWI) data product.

It differs from the traditional ASCAT SWI operational product derived by the TU
Wien Soil Moisture Retrieval approach [13], which the Copernicus Global Land Service
distributes. This experimental SWI data product profits from a new vegetation param-
eterization used in the retrieval algorithm of the ASCAT surface soil moisture data [14].
It also includes a better spatial representation resulting from a new directional resampling
method based on data from the Sentinel-1 Synthetic Aperture Radar (SAR) [12].

In rainfall-runoff modelling three main areas rely on the use of satellite data on
soil moisture: antecedent soil moisture estimation for event-based rainfall-runoff model
initializations (e.g., [15–18]), data assimilation for real time applications (e.g., [19–24]),
and the multi-objective calibration of continuous hydrological models, which is the main
topic of this paper. The rationale behind calibrating multi-objective hydrological models
with ground data and satellite soil moisture data is that even though the models and
data sources have clear limitations, they are not defined in exactly the same way. Their
combination may therefore help reduce the uncertainties associated with estimates of
catchment states and outputs.

Reduction in uncertainty and improvement of predictions in hydrological modelling
by multiple objective calibrations that helped constrain hydrological models was demon-
strated in many studies (for an overview, see, e.g., [25]). Many studies (such as [25–31])
have combined calibrating hydrological models to runoff and soil moisture variables. The
usage of additional information usually resulted in improvements in representing the
spatial and temporal patterns of the catchment’s states and fluxes. However, that did not
necessarily result in improving the efficiency of simulating runoff.

Generally speaking, these papers proved that using the scatterometer data for the
model calibration can improve the match between the simulated and measured soil mois-
ture in the conceptual and physically-based models.

A few studies also tested a combination of several variables in multiple objective
calibrations [32–37] and determined that combining different data, particularly in data-
poor regions, reduced the uncertainty in the model parameters in general. As shown
in [35], the use of different soil moisture products had an interesting positive impact on the
identifiability of the parameters of the snow module, too. However, based on its review of
the scientific literature, [11] concluded that the conditions when benefits can be reached
from the inclusion of information on satellite soil moisture to runoff modelling (both for
data assimilation and model calibration) still need to be further clarified. While in some
studies modest to noteworthy improvements through the inclusion of satellite data were
reported, deterioration of the performances was often noted, too. These were related in [11]
to the inherent uncertainty and problems associated with the use of satellite data (e.g.,
in the Soil Water Index method techniques [7]) and to the hydrological modelling itself. It
was recommended to tailor the satellite data and request modelers to adapt models for the
use of satellite data. This could include updating the model structure that mainly considers
one soil storage element representing a single layer of soils and is often lumped spatially.
This idea calls for an additional surface soil layer store representing the moisture close to
the land surface and also considering spatially distributing soil properties. An increase in
the spatial and temporal resolution of the satellite products was also called for. Long time
series of soil moisture data (e.g., longer than ten to15 years) were recommended for use by
hydrologists to evaluate the benefits of including such data in analyses [7].

This paper intends to respond to these conclusions and, in several ways, it goes beyond
existing studies. In [12], the authors used the SWI ASCAT product of the root-zone soil
moisture for the calibration of the TUW 15-parameter single soil layer model for the same
Austrian catchments that we use for our work. In our paper, we use the SWI ASCAT root
zone and SWI ASCAT surface moisture product. In the TUW model, 18 parameters (3 new
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parameters for the surface layer) were considered for a dual soil layer structure. We also
attempted to use a finer spatial resolution of the ASCAT product for both layers of the soil
moisture estimates based on the data reported in [12]. A comparison of the soil moisture
estimates was performed for different land uses and elevation zones, which allowed
inferences to be made about the value of scatterometer data for hydrological modelling.

2. Materials

In this study, 209 Austrian catchments, based on a selection from previous studies such
as [25,38], were used for the analysis. The catchments’ areas vary between 13.7 (Micheldorf,
Krems River,) to 6214 km2 (Bruck an der Mur unter Muerz, Mur River) with a median
of 167.3 km2.The mean elevation varies between 353 to 2939 m a.s.l. with a median of
1010 m a.s.l. The percentage of the forest cover is between 0 and 94.6%, and the agricultural
soil cover has a range from 0 up to 92.9%. The mean daily air temperature was between
−2.83 ◦C for the Alpine catchments and up to 10.30 ◦C in the Lowland catchments. The
location of the selected catchments is in Figure 1.
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Figure 1. Location of the 209 Austrian catchments selected. The red dots denote the group of Lowland
catchments and blue triangles the Alpine catchments.

The catchments’ characteristics were obtained from various sources. The mean daily
potential global solar radiation and morphology characteristics, i.e., elevations, roughness
index, and slopes were derived from a digital elevation model of Austria. The sunshine
index was estimated using the R.sun function in GIS-GRASS for 1 × 1 km2 raster. Land
use information was extracted from the Copernicus Land Monitoring Service and the
CORINE land cover datasets for the year 2006. The High-Resolution Layers (HRL) are
raster-based datasets, which provide information about different land cover characteristics
and are complementary to land-cover mapping (e.g., CORINE 2006) datasets. The soil-
related data, field capacity, and saturated hydraulic conductivity were obtained from the
High-Resolution Global Map of Soil Hydraulic Properties dataset [39], which provides
global maps of the mean values and standard deviations of soil hydraulic parameters
based on the Kosugi water retention model in a 1 km resolution for surface soil (0–5 cm).
These are estimated from the Kosugi K3 pedotransfer function model (using sand, silt, clay
percentages, and bulk density as the inputs) based on the surface soil of the SoilGrids 1 km
data set [40]. All these characteristics were interpolated into elevation zones of 200 vertical
meters (the first elevation zone starts at 0 m a.s.l. and ends at 200 m a.s.l.). The list of basic
characteristics is presented in Table 1.
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Table 1. Basic catchment characteristics.

Information Attribute Abbrev. Unit Min. Max. Median

Area Area A km2 13.7 6214.0 167.3

Elevation

Mean elevation MELE m a.s.l. 353 2940 1011
Mean slope SL % 1.7 43.9 18.8

Elevation range ER m 80 3072 1279
Roughness index MRI − 0.15 0.65 0.38

Land use
Forest percentage FP % 0.0 94.6 46.9

Agriculture percentage AP % 0.0 92.9 16.3

Climate
Mean annual precipitation MAP mm 728 2302 1274

Mean air temperature MAT ◦C -2.8 10.3 7.4

Input data for the precipitation and air temperatures from the Spartacus database [41],
for the period 2007–2014 were used for the calibration. These data were also interpolated
into the hypsometrical elevation zones of 200 vertical meters. Discharge data in the
daily time step used for calibration, from the period 2007–2014 were collected from the
209 gauged stations and provided by the Austrian Hydrographic Service. The discharges
in all of these catchments are not influenced by dams or hydropower plants. According to
the availability of the data, the validation of the model parameters was done for the period
2015–2016 for the runoff and 2015–2018 for the soil moisture. A total of 189 catchments
were validated (65 Alpine and 124 Lowland catchments).

The potential evapotranspiration (EP) was estimated with a modified Blaney-Criddle
equation [42]:

EP = −1.55 + 0.96× (8.128 + 0.457× T)× SD
Sy
× 100 [mm] (1)

where:

T—is the mean daily temperature of the catchments (◦C),
SD—is the potential duration of sunshine during the day (hours),
Sy—mean annual sum of the potential duration of sunshine (hours),
SD/Sy—sunshine index (−).

The SD and Sy values were calculated from a digital relief model in GISS GRASS with
the r sun function (1 × 1 kmgrid).

The Spartacus climate data were obtained from spatially-distributed climate datasets
with a high temporal resolution that extend over several decades [41,43]. The daily pre-
cipitation grids have a spacing of 1 km, extend back to 1961, and have been continuously
updated. They are constructed according to a classic two-tier analysis involving separate
interpolations for the mean monthly precipitation and daily relative anomalies. The former
was accomplished by kriging with topographic predictors (external drift kriging) utilizing
1249 stations [43]. The temperature grids were from a gridded dataset of the minimum and
maximum daily temperatures covering Austria at a 1 km resolution, which extends back to
1961 as the precipitation dataset.

In [41], an interpolation method was adapted to estimate altitudinal temperature
profiles, which also accounts for the spatial representativeness of the station measure-
ments data. In addition, it accounts for the complex and highly variable air temperature
distributions in the high mountains. One hundred and fifty station series in Austria and
neighboring countries were homogenized (where available) to cover the entire study period
and used as the basis of the spatial analysis. Data gaps were also filled.

To improve the soil component reaction of the catchments, the same new experimental
data of the Soil Water Index (SWI) were used from the experimental version of the Metop
ASCAT Surface Soil Moisture v2 product as in Tong [12]. The original ASCAT surface soil
moisture dataset at 12.5 km spatial resolution (before disaggregation to 500 × 500 m) is
based on a new parametrization for the correction of vegetation [44], which has shown
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better results for Austria [45]. The process of disaggregation consists of a directional
resampling method using a connection between regional (12.5 km) and local (0.5 km) scale
Sentinel-1 backscatter observations, which retain temporally stable soil moisture patterns
that are also reflected in the radar backscatter measurements [1]. This product consists of
the surface and root zone soil moisture represented by the Soil Water Index (SWI), which
is determined by an exponential filter introduced by [1], and [46,47], with characteristic
time delays (T). The T value represents the reduction of the infiltration of the soil moisture
dynamics, with higher T values corresponding to a higher degree of reduction. In order
that information on short-term conditions is not lost due to soil moisture dynamics still
present in the deeper soil layers, T must be carefully chosen. The study [2] compared the
ASCAT SWI dataset on in situ soil moisture and found that SWI better agrees with in situ
soil moisture from deeper layers than the original set of soil surface moisture data. In
addition, the authors they associated the T-value with the soil depth layers and found that
the T-values 10 and 20 led to the highest correlations in the shallow subsurface (about
0–20 cm). To avoid losing short-term soil moisture dynamics, a value of T = 10 days was
selected in this study. Moreover, for excluding invalid ASCAT measurements affected by
snow and frozen soil, the soil moisture is masked by the soil temperature and ECMWF
snow cover data from Copernicus Climate Service (ERA5-Land, when soil temperatures at
a depth of 0–7 cm are below 1 ◦C or the snow cover exceeds 30% pixels.

The ASCAT product used in our study contains data for the period 2007–2018 for two
soil layers (the surface soil and root zone soil layer). The ASCAT data were interpolated
from the 500 × 500 m grid to the same elevation zones as the other input data.

3. Methods
3.1. Conceptual Dual-Layer Hydrological Model

For the rainfall-runoff modelling in the 209 Austrian catchments, the TUW_dual con-
ceptual dual-layer hydrological model as a package in R studio [25], was applied. The
TUW hydrological model, which follows the structure of the HBV model, was developed
at the Vienna University of Technology by [25], as a lumped or semi-distributed conceptual
rainfall-runoff model. It works in a daily or shorter time step and consists of snow, soil
moisture, and flow routing routines. The snow submodel represents the processes of the
accumulation and melting of the snow in a catchment. The soil moisture submodel repre-
sents the processes of the accumulation of water in the soil and evaporation of water from
the soil. The flow routing submodel represents the processes of the runoff transformation.
Compared to the original TUW model, the TUW_dual hydrological model [25], has a dual
representation of the soil layer. The soil submodel is divided into two parts, i.e., the surface
soil layer and the root zone soil layer. The soil storage is represented by a thin surface soil
layer (dQskin Figure 2) on the surface and sits on top of the root soil reservoir.
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Figure 2. General schematic of the dual-layer soil moisture accounting scheme introduced in the
TUW_dual model [25]. Reproduced with permission from [Juraj Parajka], [Matching ERS scatterome-
ter based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over
Austria, Hydrol. Earth Syst. Sci., 13, 259–271, 2009]; published by [www.hydrol-earth-syst-sci.net/13
/259/2009/, accessed on 24 November 2021].

The surface soil reservoir is fed by rain and melted snow. If the Lskin capacity is
reached, the dQskin flow is divided into two parts: (1) dQ becomes the direct runoff, and
(2) dSs increases the root soil moisture Ss. The water in the surface soil moisture reservoir
is reduced by a fraction of the actual evaporation, AETskin = (1 − ϕ) AET, where AET is
the actual evaporation, and the parameter ϕ subdivides the AET into evaporation from the
AETmain root and AETskin surface soil layer. The bidirectional moisture flux Qm connects
the surface and root soil reservoir. Qm is assumed to be a linear function of the vertical soil
moisture gradient ∆m:

Qm = ∆m × αm, (2)

where αm is a transfer parameter. If the soil moisture of the surface layer is greater than the
soil moisture of the root layer, percolation from the top to the root soil layer (Qm > 0) occurs.
If the surface soil moisture is lower than the soil moisture of the root layer, the capillary
ascent from the root to the surface layer occurs (Qm < 0). The vertical soil moisture gradient
is defined as the difference between the relative soil moisture in the surface soil reservoir
and that in the root soil reservoir, i.e.,:

∆m =
Sskin
Lskin

− Ss

Ls
(3)

where Sskin is the surface soil moisture; Lskin is the capacity of the surface soil reservoir;
and Ss and Ls are the moisture levels and the capacity of the root soil reservoir.

The dual-layer soil moisture accounting scheme uses three parameters for the surface
soil layer: the fc_skin-field capacity, i.e., maximum soil moisture storage of the surface
skin layer, α-transfer parameter, and ϕ—parameter for the fraction of the actual evapotran-
spiration. The root zone soil layer contains the following parameters: Lprat: the limit for
potential evaporation, FC: the field water capacity, and BETA: the nonlinear parameter for
runoff production. For more information, see, [25]. The list of TUW dual model parameters
with their ranges is summarized in Table 2.

www.hydrol-earth-syst-sci.net/13/259/2009/
www.hydrol-earth-syst-sci.net/13/259/2009/
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Table 2. TUW_dual model parameters with their ranges for 209 Austrian catchments [25]. Reproduced with permission
from [Juraj Parajka], [Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer
hydrologic model over Austria, Hydrol. Earth Syst. Sci., 13, 259–271, 2009]; published by [www.hydrol-earth-syst-sci.net/
13/259/2009/, accessed on 24 November 2021].

Abbreviation Description of the Model Parameters Parameter Range

1. SCF factor correcting snow measurements (0.9–1.5 (−))
2. DDF degree day factor for snowmelt (0.0–5.0 (mm/◦C/day))

3. Tr temperature threshold, above which precipitation is considered liquid (1.0–3.0 (◦C))
4. Ts temperature threshold, below which precipitation is considered solid (−3.0–1.0 (◦C))

5. Tm temperature threshold, above which snowmelt occurs (−2.0–2.0 (◦C))
6. Lprat parameter limiting potential evaporation (0.0–1.0 (–))

7. FC maximum soil moisture storage index, field capacity (0–600 (mm))
8. BETA parameter governing runoff generation (0.0–20.0 (–))

9. k0 storage coefficient governing very fast runoff response (0.0–2.0 (days))
10. k1 storage coefficient governing fast runoff response (2.0–30.0 (days))
11. k2 storage coefficient governing slow runoff response (30.0–250 (days))

12. lsuz threshold parameter storage state for initiation of the very fast runoff response (1.0–100 (mm))
13. cperc constant percolation rate (0.0–8.0 (mm/day))
14. bmax maximum base at low flows (0.0–30.0 (days))
15. croute free scaling parameter for routing (0.0–50.0 (days2 /mm)
16. fc_skin field capacity, i.e., maximum soil moisture storage of the surface layer (0.1–10 (mm))

17. α non-linearity coefficient of runoff generation (0.7–0.95 (−))
18. φ parameter for the fraction of the actual evaporation (5–15 (−))

3.2. Calibration

For the calibration and multi-objective calibration parameters of the TUW_dual model,
the Differential Evolution algorithm (DEoptim) [48], was applied. The TUW_dual model
was calibrated to 4 different objective functions (OF): OFQ based on runoff Q, OFQ+SR
based on the runoff and soil moisture in the root layer, OFQ+SS based on the runoff and soil
moisture in the surface layer, and OFQ+SR+SS based on the runoff and soil moisture both in
the root and surface layers.

The individual objective functions of OFQ for the runoff, OFSR for the soil moisture in
the root layer, and OFSS for the soil moisture in the surface layer were calculated using a
combination of the Nash-Sutcliffe efficiency coefficient NSE (Nash and Sutcliffe) [49], and
the logarithmic NSE, where OF = (NSE + LogNSE)/2. In the objective functions OF the
simulated values of the runoff Qsim, soil moisture in the surface layer SMsim (surface) and
in the root soil layer SMsim (root) were compared with the measured runoff Qobs and the
measured soil moisture SWIroot and SWIsurface from the ASCAT data.

Different weights for the individual objective functions OFQ, OFSR, and OFSS were set
in the multi-objective functions:

OFQ+SR = OFQ × wQ + OFSR × wSR, (4)

OFQ+SS = OFQ × wQ + OFSS × wSS, (5)

OFQ+SR+SS = OFQ × wQ + OFSR × wSR + OFSS × wSS, (6)

where wQ, wSR and wSS are the weights. In OFQ+SR and OFQ+SS, the values of the weights
wQ, wSR and wSS are 1/2, and in OFQ+SR+SS, the values of the weights wQ, wSR and wSS
are 1/3, [12,50]. This choice is based on Tong’s [12] paper, where it was also detected that
the calibration weight for runoff > 0.3 provides solid calibration results of (RME > 0.7).

For the estimation of the runoff model efficiency (RME), we used a combination of the
Nash–Sutcliffe efficiency coefficient (NSE) and the logarithmic NSE:

RME =
(NSE + logNSE)

2
, (7)

www.hydrol-earth-syst-sci.net/13/259/2009/
www.hydrol-earth-syst-sci.net/13/259/2009/
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NSE = 1− Σn
i=1(Qobs −Qsimi)

2

Σn
i=1

(
Qobsi −Qobs

)2 , (8)

logNSE = 1−
Σn

i=1
(
logQobs − logQsimi

)2

Σn
i=1

(
logQobsi − log Qobs

)2 , (9)

where Qsim, Qobs are the simulated and observed runoff; Qobs is the average of the
observed flow.

The volume error (VE) of the runoff estimation was calculated by:

VE =
∑n

i=1 Qi
sim −∑n

i=1 Qi
obs

∑n
i=n Qi

obs
(10)

The efficiency of the model to simulate soil moisture was assessed by the correlation
between the relative values of the simulated soil moisture for the root and top zones
SMsim(root) and SMsim(surface) and the measured values of the SWIroot and SWIsurface soil
moisture from the ASCAT data:

Correlation (R SWIroot) =

(SMsim (root)

FC
× 100

)
and SWIroot, (11)

Correlation (R SWIsurface) =

(SMsim (surface)

fcsurface
× 100

)
and SWIsurface, (12)

4. Results
4.1. Calibration

Firstly, we calibrated the TUW dual model for the 209 Austrian catchments in the
period 2007–2014 only to runoff Q. Secondly, the multi-objective calibration was run for
the three versions of the objective function: OFQ+SR, OFQ+SS, and OFQ+SR+SS. With the best
sets of the model parameters, the daily values of the soil moisture in both the surface and
root soil layers were simulated for each individual catchment and the period 2007–2014.

The cumulative distribution functions (CDFs) of the values of the runoff model effi-
ciency (RME), runoff volume error (VE), and correlation coefficient R between the simulated
(SMsim) and measured (SWI) soil moisture in the root and surface layers for the two groups
of catchments (71 Alpine and 138 Lowland catchments) are compared in Figure 3. The
medians of the values of the runoff model efficiency, runoff volume error, and correlation
coefficients are summarized in Table 3.

Table 3. Medians of the runoff model efficiency values, runoff volume error, and correlation coefficients between simulated
and measured surface and root soil moisture for the two groups of catchments (71 Alpine and 138 Lowland catchments) in
the calibration period 2007–2014.

Calibration
Variant

(2007–2014)

RME VE (-) R
Surface Soil Moisture

R
Root Soil Moisture

Alpine Lowland Alpine Lowland Alpine Lowland Alpine Lowland

Cal. to Q 0.83 0.75 −0.05 0.02 0.02 0.37 0.23 0.49

Cal. to Q + SS 0.81 0.74 −0.05 0.02 0.40 0.49 0.36 0.49

Cal. to Q + SR 0.81 0.74 −0.05 0.02 0.18 0.38 0.43 0.54

Ca. to Q + SS + SR 0.81 0.73 −0.04 0.03 0.41 0.48 0.44 0.54



Water 2021, 13, 3366 9 of 19

Water 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

calibration for the soil moisture (Cal to Q + SS, Cal to Q + SR, and Cal to Q + SS + SR) also 
slightly decreases the values of RME both in the Alpine and Lowland catchments. These 
results are confirmed in Table 3, where the median of RME varies from 0.83 to 0.81 in the 
Alpine catchments and from 0.75 to 0.73 in the Lowland catchments.  

In the Alpine catchments, an underestimation of the simulated volumes of the runoff 
is visible; the median of the values of VE in Table 3. varies from −0.05 to −0.04. These 
results could be caused by an underestimation of the snow precipitation in the Alpine 
catchments, but generally, the VE values are relatively low. In the Lowland catchments, 
the simulated volumes of the runoff are slightly overestimated; the median of the VE val-
ues varies from 0.02 to 0.03.  

 
Figure 3. Cumulative distribution functions (CDFs) of the values of the runoff model efficiency (top 
left), runoff volume error (top right), and correlation coefficients between the simulated and meas-
ured surface soil moisture (bottom left) and root soil moisture (bottom right) in the calibration pe-
riod 2007–2014. CDFs are plotted for the four calibration variants. The red and blue lines show the 
calibration variants for the group of 138 Lowland (red) and 71 Alpine catchments (blue), respec-
tively. 

From the CDFs of the correlation coefficients between the simulated and measured 
soil moisture both in the surface and root soil layers, it is evident that in the case of the 
calibration only for the runoff, the values of the correlation coefficients are very low in the 

Formatted: Don't snap to grid

Figure 3. Cumulative distribution functions (CDFs) of the values of the runoff model efficiency
(top left), runoff volume error (top right), and correlation coefficients between the simulated and
measured surface soil moisture (bottom left) and root soil moisture (bottom right) in the calibration
period 2007–2014. CDFs are plotted for the four calibration variants. The red and blue lines show the
calibration variants for the group of 138 Lowland (red) and 71 Alpine catchments (blue), respectively.

From the CDFs in Figure 3, it can be seen that in all the cases of the calibration
variants, the values of RME are higher for the Alpine than for the Lowland catchments.
The calibration for the soil moisture (Cal to Q + SS, Cal to Q + SR, and Cal to Q + SS + SR)
also slightly decreases the values of RME both in the Alpine and Lowland catchments.
These results are confirmed in Table 3, where the median of RME varies from 0.83 to 0.81 in
the Alpine catchments and from 0.75 to 0.73 in the Lowland catchments.

In the Alpine catchments, an underestimation of the simulated volumes of the runoff
is visible; the median of the values of VE in Table 3. varies from −0.05 to −0.04. These
results could be caused by an underestimation of the snow precipitation in the Alpine
catchments, but generally, the VE values are relatively low. In the Lowland catchments, the
simulated volumes of the runoff are slightly overestimated; the median of the VE values
varies from 0.02 to 0.03.

From the CDFs of the correlation coefficients between the simulated and measured
soil moisture both in the surface and root soil layers, it is evident that in the case of the
calibration only for the runoff, the values of the correlation coefficients are very low in the
Alpine catchments. The median of the values of the correlation coefficients for the surface
soil layer is only 0.02 and 0.23 for the root soil layer. The calibration for the soil moisture
improved the results in the case of the calibration both for the runoff, surface, and root soil
moisture (Cal to Q + SS + SR); the median of the correlation coefficients increased to 0.41
for the surface soil layer and to 0.44 for the root soil layer. In the Lowland catchments, the
values of the correlation coefficients between the simulated and measured soil moisture are
much higher. In the case of the calibration only for the runoff, the median of the correlation
coefficients is 0.37 for the surface soil layer and 0.49 for the root soil layer. In the case of the
calibration for the runoff and both the surface and root soil moisture (Cal to Q + SS + SR),
the median of the values of the correlation coefficients increased to 0.48 for the surface and
0.54 for the root soil layer.
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4.2. Validation of the Model Efficiency
4.2.1. Validation of the Runoff Model Efficiency for the Period 2015–2016

In the validation of the runoff for 2015–2016, we validated the model parameters
from the calibration period and four variants of the objective functions. The cumulative
distribution functions of the values of the runoff model efficiency (RME) and volume error
(VE) are compared in Figure 4. The medians of the values of RME, VE, and correlation
coefficients between the simulated and measured soil moisture of the surface and root soil
layers are introduced in Table 4.
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Figure 4. Cumulative distribution functions (CDFs) of the values of the runoff model efficiency
(surface left) and runoff volume error (surface right) in the validation period 2015–2016. The CDFs
were plotted for four calibration variants of the objective functions. The red and blue lines show the
calibration variants for the group of 124 Lowland (red) and 65 Alpine catchments (blue), respectively.

Table 4. Medians of the values of the runoff model efficiency (RME) and runoff volume error (VE) for the four calibration
variants and two groups of catchments (65 Alpine and 124 Lowland) in the validation period 2015–2016.

Calibration Variant
RME (−) VE (−)

Alpine Lowland Alpine Lowland

Runoff (Q) 0.80 0.67 −0.05 −0.04
Q + SS 0.76 0.67 −0.07 −0.03
Q + SR 0.77 0.68 −0.04 −0.01

Q + SS + SR 0.76 0.67 −0.07 −0.03

The validation results confirmed the sufficient efficiency of the model with the cali-
brated parameters to simulate runoff in the validation period. Again, the values of RME
are better for the Alpine than for the Lowland catchments. Similarly, as in the calibration
period, the parameters calibrated for the soil moisture (Cal to Q + SS, Cal to Q + SR, and
Cal to Q + SS + SR) slightly decreased the values of RME in the Alpine catchment and did
not change the results of RME in the Lowland catchments. The medians of the values of
RME for the Alpine catchments are a little lower than in the calibration period and vary
from 0.80 to 0.76. For the Lowland catchments, the medians of RMEs have a value of 0.67.
The medians of the values of the volume error vary from −0.05 to −0.07 in the Alpine
catchments and from −0.04 to −0.01 in the Lowland catchments. Although in both the
Alpine and the Lowland catchments, the volume of runoff was slightly underestimated, in
the case of the Lowland catchments, the parameters calibrated also for the soil moisture
slightly decrease the volume errors.

4.2.2. Validation of the Soil Moisture for the Period 2015–2018

In the validation for the period 2015–2018, we validated the model parameters only
for the soil moisture due to the fact that we did not have measured runoff data available
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for the period 2017–2018. Therefore, we compared the correlation coefficients between the
simulated (SMsim) and measured ASCAT (SWI) soil moisture values, Figure 5.
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Figure 5. Cumulative distribution functions (CDFs) of the correlation coefficients of surface soil
moisture (bottom left) and of the root zone soil moisture (bottom right) in the validation period
2015–2018. The CDFs are plotted for the four calibration variants. The red and blue lines show the
calibration variants for the group of 124 Lowland (red) and 65 Alpine catchments (blue), respectively.

When comparing the correlation coefficients between the simulated and measured soil
moisture, we again detected better results in the Lowland than in the Alpine catchments
and an improvement using the model parameters from a multi-objective calibration. In the
surface soil layer, the median of the correlation coefficients increased from 0.01 (calibration
only for the runoff) to 0.43 (the calibration to runoff, surface and root soil moisture) in the
Alpine catchment and from 0.33 (calibration only for the runoff) to 0.48 (the calibration
for the runoff, surface and root soil moisture) in the Lowland catchments. In the root soil
layer, the median of the correlation coefficients increased from 0.36 (calibration only for the
runoff) to 0.53 (the calibration for the runoff, surface and root soil moisture) in the Alpine
catchments and from 0.40 (calibration only for the runoff) to 0.49 (the calibration for the
runoff, surface, and root soil moisture) in the Lowland catchments, see Table 5.

Table 5. Medians of the correlation coefficients of the surface and root soil moisture for the two groups of catchments
(65 Alpine and 124 Lowland catchments) in the validation period 2015–2018.

Calibration Variant
Median of R of Surface Soil Moisture Median of R of Root Soil Moisture

Alpine Lowland Alpine Lowland

Runoff (Q) 0.01 0.33 0.36 0.40
Q + SS 0.43 0.46 0.48 0.46
Q + SR 0.27 0.33 0.54 0.54

Q + SS + SR 0.43 0.48 0.53 0.49

4.3. Improvement of the Model Efficiency
4.3.1. Improvement in the Calibration

In our comparison of the correlation coefficients R between the simulated and mea-
sured soil moisture, which were separate for the root zone and surface zone, we detected
that the calibration for the soil moisture increased the values of R. The improvement mostly
depended on which measured ASCAT soil moisture values (root or surface) were used in
the calibration process and subsequently in the correlations. From the results documented
in Table 6, it is seen that for the variants of the multi-objective calibration for the runoff and
both surface and root soil moistures 71 (100%) of the Alpine and 137 (99%) of the Lowland
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catchments improved in the correlation coefficients between the simulated and measured
surface soil moisture, and 68 (96%) of the Alpine and 130 (94%) of the Lowland catchments
improved in the correlation coefficients between the simulated and measured root soil
moisture. In general, almost all of the catchments have shown improved calibration results.

Table 6. The number of improved catchments in the correlations of the surface soil (SS) and root soil (SR) moisture, in
209 catchments in the calibration period 2007–2014.

Number of Improved Catchments R SS Alpine (71) Lowland (138)

(Num.) (%) (Num.) (%)

Q + SS 69 97 138 100
Q + SR 56 79 73 53

Q + SR + SS 71 100 137 99
Number of Improved Catchments R SR Alpine (71) Lowland (138)

(Num.) (%) (Num.) (%)

Q + SS 39 55 87 63
Q + SR 71 100 136 99

Q + SR + SS 68 96 130 94

4.3.2. Improvement in the Validation

Comparing the values of RME from the validation of the runoff and period 2015–2016,
we detected that the parameters of the model calibrated both for the runoff and soil moisture
did not improve the medians of the values of RME either in the Alpine or the Lowland
catchments. However, improvement in the individual values of RMEs was indicated in
some Lowland catchments, where the RMEs increased in 49 (40%) catchments for the
calibration variant Q + SS, in 62 (50%) catchments for the calibration variant Q + SR, and in
47 (38%) catchments for the calibration variant Q + SS + SR (Table 7).

Table 7. The number/percentage of improved Alpine and Lowland catchments in the RMEs in the
validation period 2015–2016.

Runoff Model
Efficiency (RME) 189

Catchments 2015–2016

Number of Improved
Catchments RME Alpine (65) Lowland (124)

(Num.) (Num.) (%) (Num.) (%)

Q + SS 56 7 11 49 40

Q + SR 68 6 9 62 50

Q + SS + SR 51 4 6 47 38

When comparing the correlation coefficients R, we detected that similar to the cali-
bration, the categorization between the Alpine and Lowland groups of catchments did
not play as important a role as expected. The improvement depends on which soil layer
(surface or root) is used for the validation (see Table 7).

The improvement in correlation between the simulated and measured soil moisture
was detected for the majority of both groups of catchments. For the variants of the parame-
ter calibrated for the runoff and both surface and root soil moisture, the improvement in R
for the surface soil moisture was in 63 (97%) Alpine and in 110 (89%) Lowland catchments,
and the improvement in R for root soil moisture was in 54 (83%) Alpine and in 110 (89%)
Lowland catchments, Table 8 and Figure 6.
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Table 8. Correlation coefficients between the simulated and measured soil moisture in the surface and root soil layers for
189 catchments in the validation period 2015–2018, and comparison of the number of improved Alpine (65) and Lowland
(124) catchments in the correlation coefficients.

Number of Improved Catchments R SS Alpine (65) Lowland (124)

(Num.) (%) (Num.) (%)

Q + SS 58 89 99 80
Q + SR 56 86 83 67

Q + SS + SR 63 97 110 89

Number of Improved Catchments R SR Alpine (65) Lowland (124)

(Num.) (%) (Num.) (%)

Q + SS 45 69 98 79
Q + SR 57 88 110 89

Q + SS + SR 54 83 110 89
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to improvement compared to Q, between the simulated and measured surface and root soil moisture
in the validation periods 2015–2016 and 2015–2018, respectively the (blue) Alpine catchments and
(red) Lowland catchments.

In addition, we evaluated the improvement in the values of RME, R SS and R SR in
the validation period, concerning selected catchment topographical and land use character-
istics: MELE- mean elevation (m a.s.l.), SL- the slope of the terrain (%), FP—the percentage
of the forest coverage (%), and AP- the percentage of the agricultural lands (%). The
description of these characteristics is in Table 1 in Chapter 2. Based on this evaluation,
all catchments were divided into classes where the assimilation of the SWI improved the
values of RME, RR SS and R SR (the classes are marked with (+)), and the classes where
these values were not improved (the classes are marked with (−)). For each class of the
catchments, the number and percentage of the catchments and the medians of the selected
catchment characteristics (MELE, SL, FP and AP) are shown in Table 9.

From the results in Table 9, it is seen that the assimilation of the SWI in the model
calibration improved the RMEs in the catchments with a lower mean catchment elevation
(the median of MELE ranges from 738.5 to 754.9 m a.s.l), a lower mean slope of the terrain
(the median of SL ranges from 10.44 to 12.43%), and with a higher percentage of agricultural
land (the median of AP ranges from 26.8 to 38.1%). In the contrary, the improvements
were not indicated in the catchments with a higher mean catchment elevation (the median
of MELE ranges from 1270.9 to 1335.4 m a.s.l), a higher mean slope of the terrain (the
median of SL ranges from 23.61 to 24.73%) and a lower percentage of agricultural land
(the median of AP ranges from 10.9 to 11.4%). An improvement in the values of RME
only slightly depends on the percentage of forest coverage. The percentage of forest cover
and the percentage of agricultural land plays an essential role in the improvement of the
soil moisture simulations. The values of R SR were improved in the catchments with a
lower mean slope of the terrain (the median of SL ranges from 16.06 to 18.54%), a lower
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percentage of forest coverage (the median of FP ranges from 45.3 to 46.3%) and with a
higher percentage of agricultural land (the median of FP ranges from 18.2 to 20.1%). The
improvement of R SR was not indicated in the catchment with a higher mean slope of the
terrain (the median of SL ranges from 23.4 to 24.7%), a higher percentage of forest coverage
(the median of FP ranges from 63.1 to 78.4%) and with a lower percentage of agricultural
land (the median of FP ranges from 5.9 to 8.0%). The similar results we also indicated in
the improvements in the values of R SS.

Table 9. The medians of the catchment characteristics where the values of RME, R SS and RSR were improved (+) and were
not improved (−).

Discharge Simulation for the Period 2015–2016

RME [Num.] [%] Imp./Not Imp. MELE SL FP AP
Q + SS 56 30 (+) 754.9 12.43 53.8 26.8 1 ↑ lower value
Q + SR 68 36 (+) 738.5 10.44 45.5 31.2 2

Q + SS + SR 51 27 (+) 744.5 10.83 50.9 38.1 3 average
Q + SS 133 70 (−) 1270.9 23.61 46.3 11.4 4
Q + SR 121 64 (−) 1335.4 24.73 46.9 10.9 5

Q + SS + SR 138 73 (−) 1279.4 23.84 46.4 11.3 6 ↓ higher value
Soil moisture correlation for period 2015–2018

R SS [Num.] [%] imp./not imp. MELE SL FP AP
Q + SS 144 76 (+) 1076.9 19.36 45.5 16.3
Q + SR 135 71 (+) 1192.9 21.83 46.3 15.3

Q + SS + SR 166 88 (+) 1101.9 20.20 46.5 15.7
Q + SS 45 24 (−) 1020.7 19.73 67.6 9.1
Q + SR 54 29 (−) 892.0 17.04 52.8 16.3

Q + SS + SR 23 12 (−) 941.1 18.54 78.6 9.1
Soil moisture correlation for period 2015–2018

R SR [Num.] [%] imp./not imp. MELE SL FP AP
Q + SS 137 73 (+) 940.2 16.06 45.3 20.1
Q + SR 159 84 (+) 1067.3 18.54 46.3 18.2

Q + SS + SR 160 85 (+) 1006.9 17.95 46.3 18.5
Q + SS 52 27 (−) 1204.5 24.67 63.1 8.0
Q + SR 30 16 (−) 1016.5 23.38 78.4 5.9

Q + SS + SR 52 27 (−) 1105.4 23.49 64.7 7.3

5. Discussion

By testing the quality of the ASCAT data, we detected the missing data in the winter
months (probably due to the snow cover), which is typical of this type of data as seen in
other works [10,51]. However, from the spring to the autumn months, the ASCAT data
coverage was stable without any missing or error data.

The results of the calibration for the four calibration variants (for the runoff, the runoff
and surface soil moisture, the runoff and root soil moisture, and the runoff and both surface
and root soil moisture) confirmed that the efficiency of the model to simulate runoff is
higher in the Alpine than in the Lowland catchments. These results may be due to the
semi-distributed structure of the TUW_dual model, which allows for the better simulation
of the runoff in the catchments with higher altitudinal zonality and higher dynamics of
surface and subsurface flows than in the Lowland catchments. The same findings were
obtained in [51]. The calibration for the soil moisture also slightly decreased the RMEs in
both groups of catchments. As for the volume error values, in the Alpine catchments, an
underestimation of the simulated volumes of the runoff is visible; the median of VE values
varied from −0.05 to −0.04. These results could be caused by an underestimation of the
snow precipitation in the Alpine catchments or by processes of melting glaciers that are
not considered in the model structure. In the Lowland catchments, the volume of runoff
was slightly overestimated; the median of VE values varied from 0.02 to 0.03. Generally,
the VE values in both groups of the catchments were relatively low.
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The efficiency of the model to simulate soil moisture with the parameters calibrated
only for the runoff was very low in the Alpine catchments. However, the combined use of
soil moisture and runoff in the calibration improved the soil moisture simulation in the
majority of the catchments, except for the catchments with higher forest cover percentages,
where the reason for the lower quality of satellite soil moisture products is dense vegetation.
The limitation of the quality of satellite soil moisture products in forested areas is mentioned
in [20,52].

When compared to the Alpine catchments, a more significant improvement of the
hydrological model efficiency to simulate soil moisture was achieved in the lowlands,
which can be related to the higher quality of the ASCAT soil moisture retrievals in contrast
to the high mountains. This can also be related to the lower spatial variability in the
soil texture and land cover categories, the milder slopes, and moderate variations in the
elevations (see Table 9).

The results of the validation confirmed the sufficient efficiency of the model with
calibrated parameters to simulate runoff and soil moisture in the validation periods. In
the validation of the runoff, the RME values are again better for the Alpine than for the
Lowland catchments. Similarly, as in the calibration period, the calibration for the soil
moisture slightly decreases the values of RME in the Alpine catchments. In the Lowland
catchments, the calibration for the soil moisture did not change the results of the RME. The
validation of the soil moisture again confirmed better results in the Lowland than in the
Alpine catchments and improved soil moisture simulations using the model parameters
from the multi-objective calibration (in comparison with the calibration only for the runoff)
in both groups of the catchments.

In general, with the assimilation of the scatterometer soil moisture, we detected a
considerable improvement in the soil moisture simulation versus the measured SWI as
in [11,12,16,20,25]. The findings of this paper are consistent with the paper by [12,25]. In
Tong et al. [12] the same type of the ASCAT soil moisture data was used, however, only
SWI for the root zone was implemented. In that paper, the ASCAT product of the SWI
root was applied for the calibration of the TUW model with 15 parameters for the same
209 Austrian catchments as in our paper. In Tong’s [12] paper, with different calibration
weights in the objective functions for the runoff it was detected that the calibration weight
for runoff >0.3 provide stable calibration results (RME > 0.7). This is in accordance with our
study where we applied the weight 0.33 for runoff with sufficient results of the RME We
also compared the improved catchments from Tong’s simulations (Q + SR) and improved
catchments from our simulations (Q + SS, Q + SR, Q + SR + SS). In comparing the RMEs
and correlation coefficients of the soil moisture, we detected that the improvement was
in the same type of catchments, i.e., the catchments with a lower mean elevation and a
higher percentage of agricultural land. When we compared the amounts of the improved
catchments in RMEs for the same weights of the runoff and SWI in the objective functions,
we detected approximately the same amounts of improved catchments. The novelty of our
paper in comparison to [12] is using both surface and root zone soil moisture S1-ASCAT
data that led to better soil moisture simulations.

In Parajka et al. [25], surface soil moisture observations by an ERS scatterometer with
simulations of a conceptual hydrological model with two soils moisture levels (dual-layer
model) were compared for 148 Austrian catchments in the period 1991–2000. Higher-
level soil moisture values observed by the scatterometer were generally lower than those
simulated by the model. The combined use of the ERS scatterometer-based soil moisture
and measured runoff in the calibrations delivered more robust model parameter estimates
than using either of these two datasets. In the comparison with this study where the spatial
resolution of the ASCAT soil moisture data was 12.5 km grid, we applied the higher spatial
resolution data of 500 m grid which led to better results of the soil moisture simulations.

The results of our study are also consistent with the studies where the satellite soil
moisture data were incorporated in different modelling approaches. The added value
of using soil moisture from remote sensing in the calibration of large-scale hydrological
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models was addressed in [26]. Improvement of the simulation of runoff discharges in
upstream areas was reported. In addition, the remotely-sensed soil moisture resulted in an
improved simulation of the moisture content of the soil throughout the catchments. The
study’s conclusions stressed the potential of including soil moisture data in the calibration
of hydrological models.

Improvement of hydrological predictability and reduction of equifinality of the Soil
and Water Assessment Tool (SWAT) was evaluated in [27] by testing the relative potential of
using estimates of spatially-distributed surface and root zone soil moisture in the calibration.
Improvement of soil moisture simulation of the surface soil layer was achieved. However,
the soil moisture content in the lower soil layer (and other water balance components such
as streamflow and evapotranspiration) was less affected.

The SWAT model was also used in [28]; where raw remotely-sensed surface soil
moisture data were used (the soil moisture values were not transformed into a soil wa-
ter index). The results showed that the approach generally improved the simulation of
the rainfall-runoff response concerning delays but could not correct the overall routing
behavior. In [29], the efficiency of two calibration schemes (multi-objective and discharge
only) for a lumped model and a semi-distributed model with only one and several gauges
available for calibration were compared. The same findings, as in our study, were that
the multi-objective scheme slightly degraded the streamflow predictions at the gauged
sites compared with the streamflow-only calibration; however, improvements occurred
in the validation period. Improvement was achieved at the gauged sites not used in the
calibration when the remotely-sensed soil moisture data was used.

6. Conclusions

For testing the potential of new satellite datasets of soil moisture (ASCAT) for the
multi-objective calibrations of the dual-layer, the TUW_dual conceptual semi-distributed
hydrological model was calibrated in 209 Austrian catchments (71 Alpine and 138 Lowland
catchments) and validated in 189 catchments (65 Alpine and 124 Lowland catchments)
situated in different physiographic and climate zones of Austria. Both the surface soil
moisture and root zone soil moisture indexes based on ASCAT data were implemented
into the hydrological model calibration and validation.

The calibration and multi-calibration of the TUW_dual model were undertaken in the
period 2007–2014. The validation of the model for the runoff was provided in the period
2015–2016 and the validation for the soil moisture in the period 2015–2018.

In general, we can conclude that the assimilation of the new ASCAT product to the
objective function of the multi-objective calibration significantly improved the model
performance in both the calibration and validation periods, especially in the Lowland
catchments (catchments where the rain is a major contributor to the runoff and water from
melted snow does not dramatically affect the runoff), except for the catchments with higher
forest cover percentages. Improvements were also detect in the runoff model efficiency in
the validation period in the Lowland catchments with lower mean elevations, lower terrain
slopes, and a higher percentage of agricultural land (compared to the Alpine catchments).
What was new compared to similar papers was that we also detected an improved runoff
model efficiency and categorized the catchments where the improvement can be expected.

The enhanced model efficiency has important implications for water resource man-
agement purposes. The findings strengthen recommendations that hydrological models
should consider information beyond runoff signatures in their calibration.
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