Urban Drool Water Quality in Denver, Colorado: Pollutant Occurrences and Sources in Dry-Weather Flows
Abstract
:1. Introduction
2. Background Information
2.1. Urban Drool: Dry-Weather Urban Water Quality
2.2. Effects of Urbanizaion and Land Use Characterisitcs
3. Materials and Methods
3.1. Study Area and Site Selection
3.2. Watershed Delineation and Characterization
3.3. Field Collection
3.4. Laboratory Analysis
3.5. Water Quality Standards
3.6. Statisitcal Analysis
4. Results
4.1. GIS Analysis
4.2. Dry-Weather Urban Flow Analysis
4.2.1. Flow
4.2.2. Nutrients
4.2.3. Pathogens and Physical Parameters
4.2.4. Metals
4.3. Correlations Analysis
5. Discussion
5.1. Dry-Weather Flows
5.2. Nutrients
5.3. Pathogens
5.4. Metals
5.5. Relationship between TSS, P, and Metals
5.6. Pollution Mitigation Strategies
5.7. Future Research
- Even though sampling for this study lasted a year, a longer study would be more indicative of water quality since polluting factors and land use in the urban environment are constantly changing [37]. Better characterization can be made by taking more frequent samples over a 3–5 year time period.
- Because much of the dry-weather urban water pollution was implied to derive from groundwater sources, it would be beneficial to characterize urban shallow groundwater quality, study the connections between shallow groundwater and urban surface water, and evaluate how the urban environment affects shallow groundwater table behavior, such as identifying sources of infiltration/percolation.
- Though many pollutants were attributed to shallow groundwater sources, further research is recommended to determine the origin of pollutants in Denver, specifically P, K, E. coli, As, Mn, Ni, and Zn.
- Strong correlations between MED sites and fertilizer components nitrate, P, and K suggest that targeted research should be performed to confirm the impact of MED sites on urban water quality and to inform potential mitigation. There appears to be no limit on the number of approved MED sites, suggesting that MED sites may continue to grow, suggesting urgent study is needed.
- Additional targeted investigation into the instances of high TSS and erosion, including the effects of construction and development, is recommended. A better spatial characterization of Denver soils for target pollutants is also recommended.
- Dry-weather flow water quality is likely an indication of shallow urban groundwater quality. Shallow urban groundwater is not a common water resource for cities in any location because it is typically presumed to be polluted. However, as water shortages grow, particularly in the arid western U.S., cities will likely need to utilize shallow groundwater as municipal water supply. For these reasons, more extensive and frequent monitoring of urban drool is recommended.
6. Conclusions
- Pollutants of concern as identified by exceedances of CDPHE standards in at least one watershed included nitrate, total P, E. coli, As, Mn, Ni, and Se. Nitrate and Se were of particular concern due to their exceedances of acute standards. E. coli was also of special concern due to its ubiquitous contamination throughout Denver, regardless of the watershed’s characteristics.
- Evidence suggested that nitrate, Ni, and Mn may have been partially contributed by industrial inputs and potentially commercial traffic.
- MED sites may have been a significant contributor of nitrate, P, K, and Zn.
- Instances of high TSS were notable due to severe contamination of particulate pollutants, including P and metals. These particulate pollutants were attributed to contaminated urban soils and were presumed to have been contributed via erosion during construction in the watershed, though other erosive activities may have contributed to enhanced TSS.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Beck, H.J.; Birch, G.F. Metals, Nutrients and total suspended solids discharged during different flow conditions in highly urbanised catchments. Environ. Monit. Assess. 2012, 184, 637–653. [Google Scholar] [CrossRef]
- Brabec, E.; Schulte, S.; Ric, P. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. J. Plan. Lit. 2002, 16, 499–514. [Google Scholar] [CrossRef]
- Stein, E.D.; Ackerman, D. Dry Weather water quality loadings in arid, urban watersheds of the Los Angeles Basin, California, USA. J. Am. Water Resour. Assoc. 2007, 43, 398–413. [Google Scholar] [CrossRef]
- Bale, A.E.; Greco, S.E.; Pitton, B.J.L.; Haver, D.L.; Oki, L.R. Pollutant loading from low-density residential neighborhoods in California. Environ. Monit. Assess. 2017, 189, 386. [Google Scholar] [CrossRef] [PubMed]
- Boroon, M.; Coo, C. Water quality assessment of the Los Angeles river watershed, California, USA in wet and dry weather periods. JGEESI 2015, 3, 1–17. [Google Scholar] [CrossRef]
- McPherson, T.N.; Burian, S.J.; Turin, H.J.; Stenstrom, M.K.; Suffet, I.H. Comparison of the pollutant loads in dry and wet weather runoff in a southern California urban watershed. Water Sci. Technol. 2002, 45, 255–261. [Google Scholar] [CrossRef]
- Mizell, S.A.; French, R.H. Beneficial use potential of dry weather flow in the Las Vegas Valley, Nevada. J. Am. Water Resour. Assoc. 1995, 31, 447–461. [Google Scholar] [CrossRef]
- Stein, E.D.; Tiefenthaler, L.L. Dry-weather metals and bacteria loading in an arid, urban watershed: Ballona Creek, California. Water Air Soil Pollut. 2005, 164, 367–382. [Google Scholar] [CrossRef]
- Francey, M.; Fletcher, T.D.; Deletic, A.; Duncan, H. New insights into the quality of urban storm water in south eastern Australia. J. Environ. Eng. 2010, 136, 381–390. [Google Scholar] [CrossRef]
- Kang, J.-H.; Lee, Y.S.; Ki, S.J.; Lee, Y.G.; Cha, S.M.; Cho, K.H.; Kim, J.H. Characteristics of wet and dry weather heavy metal discharges in the Yeongsan watershed, Korea. Sci. Total Environ. 2009, 407, 3482–3493. [Google Scholar] [CrossRef]
- Deffontis, S.; Breton, A.; Vialle, C.; Montréjaud-Vignoles, M.; Vignoles, C.; Sablayrolles, C. Impact of dry weather discharges on annual pollution from a separate storm sewer in Toulouse, France. Sci. Total Environ. 2013, 452–453, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, L.H.C.; Lo, E.Y.M.; Shuy, E.B.; Tan, S.B.K. Nutrients and suspended solids in dry weather and storm flows from a tropical catchment with various proportions of rural and urban land use. J. Environ. Manag. 2009, 90, 3635–3642. [Google Scholar] [CrossRef] [PubMed]
- Tiefenthaler, L.L.; Stein, E.D.; Lyon, G.S. Fecal Indicator Bacteria (FIB) levels during dry weather from southern California reference streams. Environ. Monit. Assess. 2009, 155, 477–492. [Google Scholar] [CrossRef]
- McKee, L.J.; Gilbreath, A.N. Concentrations and loads of suspended sediment and trace element pollutants in a small semi-arid urban Tributary, San Francisco Bay, California. Environ. Monit. Assess. 2015, 187, 499. [Google Scholar] [CrossRef] [PubMed]
- Piechota, T.C.; Bowland, L. Characterization of wet and dry weather flows from urban runoff in an arid region. In Urban Drainage Modeling; American Society of Civil Engineers: Orlando, FL, USA, 2001; pp. 195–203. [Google Scholar] [CrossRef]
- Malik, U. Nonpoint Source Pollution during Dry and Wet Weather Flows in an Urbanized Watershed. Master’s Thesis, University of Nevada, Las Vegas, NV, USA, 2003. [Google Scholar] [CrossRef]
- Booth, D.B.; Reinelt, L.E. Consequences of Urbanization on Aquatic Systems—Measured Effects, Degradation Thresholds, and Corrective Strategies; King County Surface Water Management Division: Seattle, WA, USA, 1993.
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phophorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Sercu, B.; Werfhorst, L.C.V.D.; Murray, J.; Holden, P.A. Storm drains are sources of human fecal pollution during dry weather in three urban southern California watersheds. Environ. Sci. Technol. 2009, 43, 293–298. [Google Scholar] [CrossRef]
- Hibbs, B.J. Selenium, Nitrate, and Other Constituents in San Diego Creek and Newport Bay Watersheds; Santa Ana Regional Water Quality Control Board: Riverside, CA, USA, 2008.
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- City and County of Denver. Water Quality. Available online: https://www.denvergov.org/Government/Agencies-Departments-Offices/Public-Health-Environment/Environmental-Quality/Water-Quality (accessed on 16 August 2021).
- Schliemann, S.A.; Grevstad, N.; Brazeau, R.H. Water quality and spatio-temporal hot spots in an effluent-dominated urban river. Hydrol. Process. 2021, 35, e14001. [Google Scholar] [CrossRef]
- Colorado Department of Public Health & Environment. Water Quality Regulations, Policies and Guidance. Available online: https://cdphe.colorado.gov/water-quality-regulations-policies-and-guidance (accessed on 2 August 2021).
- Metro Wastewater Reclamation District. Metro Wastewater Reclamation District Rules and Regulations Governing the Operation, Use, and Services of the System; Metro Wastewater Reclamation District: Denver, CO, USA, 2018. [Google Scholar]
- McPherson, T.N.; Burian, S.J.; Stenstrom, M.K.; Turin, H.J.; Brown, M.J.; Suffet, I.H. Trace metal pollutant load in urban runoff from a southern California watershed. J. Environ. Eng. 2005, 137, 1073–1080. [Google Scholar] [CrossRef]
- Petersen, T.; Rifai, H.; Suarez, M.; Stein, A.R. Bacteria loads from point and nonpoint sources in an urban watershed. J. Environ. Eng. 2005, 131, 1414–1425. [Google Scholar] [CrossRef]
- Reginato, M.; Piechota, T.C. Nutrient concentration of nonpoint source runoff in the Las Vegas Valley. J. Am. Water Resour. Assoc. 2004, 40, 1537–1551. [Google Scholar] [CrossRef]
- Gustafson, K.R.; Garcia-Chevesich, P.A.; Slinski, K.M.; Sharp, J.O.; McCray, J.E. Quantifying the effects of residential infill redevelopment on urban stormwater quality in Denver, Colorado. Water 2021, 13, 988. [Google Scholar] [CrossRef]
- Stevens, M.R.; Slaughter, C.B. Summary and Evaluation of the Quality of Stormwater in Denver, Colorado, 2006–2010; Open-File Report 2012-1052; U.S. Geological Survey: Reston, VA, USA, 2012.
- Saunders, S.; Montgomery, C.; Easley, T.; Spencer, T. Hotter and Drier: The West’s Changed Climate; Rocky Mountain Climate Organization and Natural Resources Defense Council: CO, USA, 2008; Available online: https://www.rockymountainclimate.org/reports_1.htm (accessed on 25 November 2021).
- Hibbs, B.J.; Sharp, J.M., Jr. Hydrogeological impacts of urbanization. Environ. Eng. Geosci. 2012, 23, 3–24. [Google Scholar] [CrossRef]
- Stein, E.D.; Yoon, V.K. Dry Weather flow contribution of metals, nutrients, and solids from natural catchments. Water Air Soil Pollut. 2008, 190, 183–195. [Google Scholar] [CrossRef]
- Denver Department of Public Health & Environment. 2020 Water Quality Scorecard for Small Tributaries. Available online: https://storymaps.arcgis.com/stories/75eb23ebed274f898cc2e5f3bf4e8e24 (accessed on 12 July 2021).
- Rippy, M.A.; Stein, R.; Sanders, B.F.; Davis, K.; McLaughlin, K.; Skinner, J.F.; Kappeler, J.; Grant, S.B. Small Drains, Big Problems: The impact of dry weather runoff on shoreline water quality at enclosed beaches. Environ. Sci. Technol. 2014, 48, 14168–14177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duke, L.D.; Lo, T.S.; Turner, M.W. Chemical constituents in storm flow vs. dry weather discharges in california storm water conveyances. J. Am. Water Resour. Assoc. 1999, 35, 821–836. [Google Scholar] [CrossRef]
- Booth, D.B.; Jackson, C.R. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. J. Am. Water Resour. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specifc sources. Chemosphere 2001, 44, 887–1009. [Google Scholar] [CrossRef]
- Line, D.E.; White, N.M. Effects of development on runoff and pollutant export. Water Environ. Res. 2007, 79, 185–190. [Google Scholar] [CrossRef]
- Carle, M.V.; Halpin, P.N.; Stow, C.A. Patterns of watershed urbanization and impacts on water quality. J. Am. Water Resour. Assoc. 2005, 41, 693–708. [Google Scholar] [CrossRef]
- Nagy, R.C.; Graeme Lockaby, B.; Kalin, L.; Anderson, C. Effects of urbanization on stream hydrology and water quality: The Florida Gulf Coast: Urbanization effects on water resources. Hydrol. Process 2012, 26, 2019–2030. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Walsh, C.J.; Taylor, S.L. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ. Manag. 2004, 34, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.B.; Richards, C.; Host, G.E.; Arthur, J.W. Landscape influences on water chemistry in midwestern stream ecosystems. Freshw. Biol. 1997, 37, 193–208. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Baker, L.A.; Buyarski, C.; Nidzgorski, D.; Finlay, J.C. Decomposition of tree leaf litter on pavement: Implications for urban water quality. Urban Ecosyst. 2014, 17, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Janke, B.D.; Finlay, J.C.; Hobbie, S.E. Trees and streets as drivers of urban stormwater nutrient pollution. Environ. Sci. Technol. 2017, 51, 9569–9579. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Bang, K.W. Characterization of urban stormwater runoff. Water Res. 2000, 34, 1773–1780. [Google Scholar] [CrossRef]
- Paschke, S.S. (Ed.) Groundwater Availability of the Denver Basin Aquifer System, Colorado; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2011.
- Passarello, M.C.; Sharp, J.M.; Pierce, S.A. Estimating urban-induced artificial recharge: A case study for Austin, TX. Environ. Eng. Geosci. 2012, 18, 25–36. [Google Scholar] [CrossRef]
- Lerner, D.N. Groundwater recharge in urban areas. Atmos. Environ. 1990, 24B, 29–33. [Google Scholar] [CrossRef]
- Gunawardena, J.M.A.; Liu, A.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Influence of Traffic and Land Use on Urban Stormwater Quality: Implications for Urban Stormwater Treatment Design; SpringerBriefs in Water Science and Technology; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Stein, E.D.; Tiefenthaler, L.; Schiff, K. Land-use-based sources of pollutants in urban storm water. Proc. Water Environ. Fed. 2007, 2007, 700–722. [Google Scholar] [CrossRef]
- Birch, G.F.; McCready, S. Catchment condition as a major control on the quality of receiving basin sediments (Sydney Harbour, Australia). Sci. Total Environ. 2009, 407, 2820–2835. [Google Scholar] [CrossRef]
- Goonetilleke, A.; Thomas, E.; Ginn, S.; Gilbert, D. Understanding the role of land use in urban stormwater quality management. J. Environ. Manag. 2005, 74, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Ge, Y.; Chang, S.X.; Luo, W.; Chang, J. Nitrate in groundwater of China: Sources and driving forces. Glob. Environ. Chang. 2013, 23, 1112–1121. [Google Scholar] [CrossRef]
- Musgrove, M.; Beck, J.A.; Paschke, S.S.; Bauch, N.J.; Mashburn, S.L. Quality of Groundwater in the Denver Basin Aquifer System, Colorado, 2003–2005; National Water-Quality Assessment Program; Scientific Investigations Report 2014-5051; U.S. Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Reyes Gómez, V.M.; Gutiérrez, M.; Nájera Haro, B.; Núñez López, D.; Alarcón Herrera, M.T. Groundwater quality impacted by land use/land cover change in a semiarid region of Mexico. Groundw. Sustain. Dev. 2017, 5, 160–167. [Google Scholar] [CrossRef]
- Hudak, P.F. Nitrate, arsenic and selenium concentrations in The Pecos Valley Aquifer, west Texas, USA. Int. J. Environ. Res. 2010, 4, 229–236. [Google Scholar] [CrossRef]
- Johnson, H.M.; Stets, E.G. Nitrate in streams during winter low-flow conditions as an indicator of legacy nitrate. Water Resour. Res. 2020, 56, e2019WR026996. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Duff, J.H.; Saad, D.A.; Spahr, N.E.; Wolock, D.M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 2013, 47, 3623–3629. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, J.N.; Brooks, J.R.; Mayer, P.M.; Rugh, W.D.; Compton, J.E. Coupling the dual isotopes of water (δ2H and δ18O) and nitrate (δ15N and δ18O): A new framework for classifying current and legacy groundwater pollution. Environ. Res. Lett. 2021, 16, 045008. [Google Scholar] [CrossRef]
- Wayland, K.G.; Long, D.T.; Hyndman, D.W.; Pijanowski, B.C.; Woodhams, S.M.; Haack, S.K. Identifying relationships between baseflow geochemistry and land use with synoptic sampling and r-mode factor analysis. J. Environ. Qual. 2003, 32, 180–190. [Google Scholar] [CrossRef]
- Hibbs, B.J.; Lee, M.; Ridgway, R. Land use modification and changing redox conditions releases selenium and sulfur from historic marsh sediments. J. Contemp. Water Res. Educ. 2017, 161, 48–65. [Google Scholar] [CrossRef] [Green Version]
- Dewitz, J.; U.S. Goelogical Survey. National Land Cover Database (NLCD) 2019 Products. 2021. Available online: https://doi.org/10.5066/P9KZCM54 (accessed on 29 June 2021).
- DRCOG. Regional Land Use Land Cover Project. Available online: https://drcog.org/services-and-resources/data-maps-and-modeling/regional-land-use-land-cover-project (accessed on 16 June 2021).
- Dewitz, J. National Land Cover Dataset (NLCD) 2016 Products. 2019. Available online: https://doi.org/10.5066/P96HHBIE (accessed on 29 June 2021).
- City and County of Denver. Open Data Catalog. Available online: https://www.denvergov.org/opendata (accessed on 1 July 2021).
- Arapahoe County. GIS Data Download. Available online: https://www.arapahoegov.com/1151/GIS-Data-Download (accessed on 2 July 2021).
- Jefferson County. Jefferson County Maps and Data Download. Available online: https://www.jeffco.us/3165/Maps-Data-Download (accessed on 2 July 2021).
- Colorado Department of Revenue. MED Facility Search. Available online: https://www.colorado.gov/MEDLicenseVerification/Search.aspx?facility=Y (accessed on 10 July 2021).
- Schneider, A. GPS Visualizer; Adam Schneider: Portland, OR, USA, 2019. [Google Scholar]
- Reges, H.W.; Doesken, N.; Turner, J.; Newman, N.; Bergantino, A.; Schwalbe, Z. CoCoRaHS: The Evolution and accomplishments of a volunteer rain gauge network. Bull. Am. Meteorol. Soc. 2016, 97, 1831–1846. [Google Scholar] [CrossRef]
- Harmel, R.D.; King, K.W.; Haggard, B.E.; Wren, D.G.; Sheridan, J.M. Practical guidance for discharge and water quality data collection on small watersheds. Trans. ASABE 2006, 49, 937–948. [Google Scholar] [CrossRef]
- U.S. Bureau of Reclamation. Chapter 7—Weirs. In Water Measurement Manual; United States Department of the Interior: Washington, DC, USA, 1997. [Google Scholar]
- Turnipseed, D.P.; Sauer, V.B. Discharge Measurements at Gaging Stations; Techniques and Methods Book 3, Chapter A8; U.S. Geological Survey: Reston, VA, USA, 2010.
- Colorado Department of Public Health & Environment (CDPHE). Regulation No. 38—Classifications and Numeric Standards for South Platte River Basin, Laramie River Basin, Republican River Basin, Smoky Hill River Basin. Code of Colorado Regulations; Colorado Department of Public Health & Environment (CDPHE): Denver, CO, USA, 2016.
- Colorado Department of Public Health & Environment (CDPHE). Regulation No. 85—Nutrients Management Control Regulation. Code of Colorado Regulations; Colorado Department of Public Health & Environment (CDPHE): Denver, CO, USA, 2016.
- Wickam, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D. Ggplot2: Elegant Graphics for Data Snalysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J.; Helsel, D.R. Statistical Methods in Water Resources: U.S. Geological Survey Techniques and Methods; book 4, chapter A3; US Geological Survey: Reston, VA, USA, 2020. [CrossRef]
- Fay, M.P.; Shaw, P.A. Exact and asymptotic weighted logrank tests for interval censored data: The interval r package. J. Stat. Softw. 2010, 36, 1–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, R.M.; Ryberg, K.R.; Archfield, S.A.; Gilroy, E.J.; Helsel, D.R. Statistical Methods in Water Resources—Supporting Materials; US Geological Survey: Reston, VA, USA, 2020. [CrossRef]
- Hibbs, B.J.; Hu, W.; Ridgway, R. Origin of stream flow at the wildlands-urban interface, Santa Monica Mountains, California, U.S.A. Environ. Eng. Geosci. 2012, 23, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, K. Quantifying the Effects of Residential Infill Redevelopment on Urban Stormwater Quality. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2019. [Google Scholar]
- Ruybal, C.J.; Hogue, T.S.; McCray, J.E. Assessment of groundwater depletion and implications for management in the Denver basin aquifer system. J. Am. Water Resour. Assoc. 2019, 55, 1130–1148. [Google Scholar] [CrossRef]
- Garcia-Fresca, B. Urban-enhanced groundwater recharge: Review and case study of Austin, Texas, USA. In Urban Groundwater, Meeting the Challenge; CRC Press: Austin, TX, USA, 2007; p. 16. [Google Scholar]
- Tubau, I.; Vázquez-Suñé, E.; Carrera, J.; Valhondo, C.; Criollo, R. Quantification of groundwater recharge in urban environments. Sci. Total Environ. 2017, 592, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Lohse, K.A.; Gallo, E.L.; Kennedy, J. Possible tradeoffs from urbanization on groundwater recharge and water quality. Urban Watershed Manag. 2010, 9, 18–20. [Google Scholar]
- Gates, T.K.; Cody, B.M.; Donnelly, J.P.; Herting, A.W.; Bailey, R.T.; Mueller Price, J. Assessing Selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado. J. Environ. Qual. 2009, 38, 2344–2356. [Google Scholar] [CrossRef]
- Wright, W.G. Oxidation and mobilization of selenium by nitrate in irrigation drainage. J. Environ. Qual. 1999, 28, 1182–2287. [Google Scholar] [CrossRef]
- Anonymous; Colorado School of Mines, Golden, CO, USA. Personal communication, July 2021.
- Denver Department of Public Health & Environment. Cannabis Environmental Best Management Practices Guide; Denver Department of Public Health & Environment: Denver, CO, USA, 2018.
- Burns, D.A. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming—A review and new analysis of past study results. Atmos. Environ. 2003, 37, 921–932. [Google Scholar] [CrossRef]
- Riha, K.M.; Michalski, G.; Gallo, E.L.; Lohse, K.A.; Brooks, P.D.; Meixner, T. High atmospheric nitrate inputs and nitrogen turnover in semi-arid urban catchments. Ecosystems 2014, 17, 1309–1325. [Google Scholar] [CrossRef]
- Grimm, N.B.; Sheibley, R.W.; Crenshaw, C.L.; Dahm, C.N.; Roach, W.J.; Zeglin, L.H. N retention and transformation in urban streams. J. N. Am. Benthol. Soc. 2005, 24, 626–642. [Google Scholar] [CrossRef]
- Holman, I.P.; Whelan, M.J.; Howden, N.J.K.; Bellamy, P.H.; Willby, N.J.; Rivas-Casado, M.; McConvey, P. Phosphorus in groundwater—An overlooked contributor to eutrophication? Hydrol. Process. 2008, 22, 5121–5127. [Google Scholar] [CrossRef]
- Domagalski, J.L.; Johnson, H. Phosphorus and Groundwater: Establishing Links Between Agricultural Use and Transport to Streams; U.S. Geological Survey: Reston, VA, USA, January 2012.
- Liao, X.; Nair, V.D.; Canion, A.; Dobberfuhl, D.R.; Foster, D.K.; Inglett, P.W. Subsurface transport and potential risk of phosphorus to groundwater across different land uses in a karst springs Basin, Florida, USA. Geoderma 2019, 338, 97–106. [Google Scholar] [CrossRef]
- Lewandowski, J.; Meinikmann, K.; Nützmann, G.; Rosenberry, D.O. Groundwater—The disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients. Hydrol. Process. 2015, 29, 2922–2955. [Google Scholar] [CrossRef]
- Welch, H.L.; Kingsbury, J.A.; Coupe, R.H. Occurrence of Phosphorus in Groundwater and Surface Water of Northwestern Mississippi. 2010; pp. 142–155. Available online: https://pubs.er.usgs.gov/publication/70157574 (accessed on 19 August 2021).
- Lubliner, B. Phosphorus Concentrations in Construction Stormwater Runoff: A Literature Review; 07-03–027; Washington State Department of Ecology: Olympia, WA, USA, 2007.
- City and County of Denver. Site Development Plans. Available online: https://www.denvergov.org/maps/map/sitedevelopmentplans (accessed on 28 August 2021).
- City and County of Denver. Navigate North Denver. Available online: https://www.denvergov.org/ndcc-navigate/ (accessed on 28 August 2021).
- Monell, E.; Prince, K.; Juszczak, P.; Nourin, Z. Assessment and Comparison of Residential Soil Phosphorus Levels and Resident Knowledge of Fertilizers within the Barr-Milton Watershed; University of Colorado Denver: Denver, CO, USA, 2017. [Google Scholar]
- Melo, A.; Pinto, E.; Aguiar, A.; Mansilha, C.; Pinho, O.; Ferreira, I.M.P.L.V.O. Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides. Environ. Monit. Assess. 2012, 184, 4539–4551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Rees, P.; Dorner, S. Variability of E. Coli Density and sources in an urban watershed. J. Water Health 2011, 9, 94–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meixner, T.; Hibbs, B.J.; Sjolin, J.; Walker, J. Sources of Selenium, Arsenic and Nutrients in the Newport Bay Watershed; 00-200-180–01; SWRCB: Riverside, CA, USA, 2004. [Google Scholar]
- Davis, H.T.; Marjorie Aelion, C.; McDermott, S.; Lawson, A.B. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-Based Data, PCA, and spatial interpolation. Environ. Pollut. 2009, 157, 2378–2385. [Google Scholar] [CrossRef] [Green Version]
- Rocco, M.; Rubio, M.A. Chemical behavior of chromium, iron, lead, molybdenum, manganese and zinc in the surface water of two urban Lagoons in Santiago, Chile. Fresenius Environ. Bull. 2010, 19, 438–446. [Google Scholar]
- Tume, P.; González, E.; King, R.W.; Cuitiño, L.; Roca, N.; Bech, J. Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano, Chile. J. Soils Sediments 2018, 18, 2335–2349. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, Q.; Huang, G.; Liu, C.; Zhang, Y. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. Sci. Total Environ. 2020, 701, 134777. [Google Scholar] [CrossRef] [PubMed]
- Masciale, R.; Amalfitano, S.; Frollini, E.; Ghergo, S.; Melita, M.; Parrone, D.; Preziosi, E.; Vurro, M.; Zoppini, A.; Passarella, G. Assessing natural background levels in the groundwater bodies of the Apulia Region (Southern Italy). Water 2021, 13, 958. [Google Scholar] [CrossRef]
- Charters, F.J.; Cochrane, T.A.; O’Sullivan, A.D. Characterising urban zinc generation to identify surface pollutant hotspots in a low intensity rainfall climate. Water Sci. Technol. 2017, 76, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, R.A.; Tolosa, C.A. Variation in total and extractable elements with distance from roads in an urban watershed, Honolulu, Hawaii. Water Air Soil Pollut. 2001, 127, 315–338. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daphne, L.H.X.; Utomo, H.D.; Kenneth, L.Z.H. Correlation between turbidity and total suspended solids in Singapore rivers. J. Water Sustain. 2011, 1, 313–322. [Google Scholar]
- Line, D.E.; Shaffer, M.B.; Blackwell, J.D. Sediment export from a highway construction site in central north Carolina. Trans. ASABE 2011, 54, 105–111. [Google Scholar] [CrossRef]
- Shapiro, N. Urban runoff: From waste to natural resource, Proceedings of the Ninth International Conference on Urban Drainage, Portland, OR, USA, 8-13 September 2002; American Society of Civil Engineers: Reston, VA, USA, 2012. [Google Scholar] [CrossRef]
Sampling Site Name | Site ID | Drainage Outlet Type | Channel Bottom Type |
---|---|---|---|
South Golden Gulch | SG | Gulch | Natural/Concrete |
River North Art District | RN | Storm Drain Outfall | Concrete |
Five Points | 5P | Storm Drain Outfall | Concrete |
Denver Skate Park | D8 | Storm Drain Outfall | Concrete |
Cherry Creek | CK | Gulch | Natural/Concrete |
Lakewood Gulch | LG | Gulch | Natural |
Weir Gulch | WG | Gulch | Natural/Concrete |
Denver Wastewater Building | DW | Storm Drain Outfall | Concrete |
Sanderson Gulch | SD | Gulch | Natural |
West Harvard Gulch | WH | Gulch | Natural/Concrete |
Analysis | Method/Standard/Equipment | Maximum Sample Hold Time |
---|---|---|
Total Coliforms | Idexx Colilert | 24 h |
E. coli | Idexx Colilert | 24 h |
Nitrite | HACH TNT 839 | 24 h |
Nitrate | HACH TNT 835 | 24 h |
Ammonia | HACH TNT 831 | 24 h |
Phosphate | HACH TNT 843 | 24 h |
TSS | EPA Standard Method 2540D | 7 days |
DOC/TOC | Shimadzu TOCV-TNM-LCSH | 24 h |
Total Nitrogen | Shimadzu TOCV-TNM-LCSH | 24 h |
Total Dissolved Metals | ICP-AES | 7 days |
Total Recoverable Metals | ICP-AES | 7 days |
Urban Characteristic | SG | RN | 5P | D8 | CK | LG | WG | DW | SD | WH |
---|---|---|---|---|---|---|---|---|---|---|
Watershed Area (km2) | 1.06 | 7.69 | 1.11 | 1.42 | 66.48 | 43.07 | 20.72 | 4.25 | 23.96 | 3.96 |
Development, Open Space 1 | 10.7% | 3.6% | 0.7% | 0.4% | 13.4% | 12.2% | 9.5% | 1.7% | 6.4% | 7.3% |
Development, Low-Intensity 1 | 14.0% | 19.5% | 0.5% | 0.8% | 33.2% | 37.6% | 44.5% | 29.0% | 48.4% | 54.7% |
Development, Medium-Intensity 1 | 23.5% | 48.4% | 4.8% | 15.5% | 32.6% | 28.1% | 33.0% | 40.4% | 32.2% | 26.1% |
Development, High-Intensity 1 | 11.9% | 28.5% | 94.0% | 83.4% | 18.1% | 12.9% | 8.1% | 28.8% | 7.2% | 11.5% |
Herbaceous 1 | 28.3% | 0% | 0% | 0% | 0.6% | 5.0% | 1.6% | 0% | 0.4% | 0.2% |
Imperviousness 1 | 31.3% | 64.2% | 90.3% | 87.6% | 50.0% | 43.8% | 44.7% | 62.4% | 44.7% | 44.7% |
Tree Canopy Cover 1 | 4.0% | 2.3% | 0.2% | 0.1% | 6.8% | 6.0% | 4.1% | 1.3% | 3.0% | 1.9% |
Turf/Irrigated Land 2 | 8.7% | 12.4% | 1.2% | 1.2% | 20.0% | 20.9% | 23.8% | 18.6% | 25.2% | 27.3% |
Vacant 3 | 34.5% | 3.9% | 23.7% | 7.3% | 3.3% | 5.9% | 3.7% | 3.9% | 5.0% | 3.3% |
Multi-Unit Residential 3 | 8.3% | 23.5% | 14.3% | 14.3% | 18.2% | 7.7% | 5.7% | 8.1% | 12.4% | 2.7% |
Single-Unit Residential 3 | 18.0% | 27.0% | 0% | 0.1% | 35.4% | 39.2% | 54.0% | 45.5% | 52.1% | 68.2% |
Industrial 3 | 0.5% | 5.1% | 14.2% | 1.9% | 2.5% | 2.8% | 1.3% | 19.3% | 0.5% | 10.0% |
Office 3 | 0.3% | 6.1% | 6.1% | 24.8% | 6.2% | 9.6% | 1.3% | 1.2% | 0.6% | 1.2% |
Park/Open Space 3 | 9.7% | 7.4% | 0.1% | 3.9% | 13.0% | 3.4% | 4.8% | 2.5% | 5.2% | 2.2% |
Commercial/Retail 3 | 9.8% | 6.6% | 5.7% | 7.5% | 6.6% | 5.0% | 4.7% | 7.8% | 5.7% | 1.7% |
MED Sites 4 | 0 | 29 | 4 | 12 | 94 | 17 | 10 | 24 | 11 | 2 |
MED Density 4 (site/km2) | 0 | 3.77 | 3.60 | 8.45 | 1.41 | 0.39 | 0.48 | 5.65 | 0.46 | 0.51 |
SG | RN | 5P | D8 | CK | LG | WG | DW | SD | WH | |
---|---|---|---|---|---|---|---|---|---|---|
Flow Measurement | Float | Float | Float | Float | USGS Gage | USGS Gage/Float | USGS Gage/Float | V-Notch Weir | Float | Float |
Mean Flowrate (CFS) | 0.031 | 0.109 | 0.286 | 0.876 | 19.6 | 4.71 | 1.39 | 0.342 | 1.45 | 0.089 |
Standard Deviation (RSD) | 0.015 (48.3%) | 0.058 (52.9%) | 0.052 (18.2%) | 0.204 (23.4%) | 16.7 (85.1%) | 3.12 (66.3%) | 1.40 (100.7%) | 0.506 (147.8%) | 1.35 (40.9%) | 0.087 (97.9%) |
SG | RN | 5P | D8 | CK | LG | WG | DW | SD | WH | |
---|---|---|---|---|---|---|---|---|---|---|
Nitrate | 1.51 (±0.63) | 5.04 (±1.29) | 7.20 (±0.60) | 2.87 (±0.21) | 1.73 (±0.65) | 0.71 (±0.34) | 1.12 (±0.76) | 13.2 (±1.14) | 1.31 (±0.69) | 3.33 (±1.36) |
Nitrite | 0.02 (±0.01) | 0.03 (±0.04) | 0.02 (±0.03) | 0.02 (±0.04) | 0.01 (±.01) | 0.003 (±0.01) | 0.04 (±0.03) | 0.02 (±0,01) | 0.01 (±0.02) | 0.07 (±0.02) |
Total Nitrogen | 1.65 (±0.65) | 5.29 (±1.30) | 8.05 (±1.11) | 3.22 (±0.38) | 2.00 (±0.63) | 0.86 (±0.36) | 1.55 (±0.87) | 14.0 (±1.56) | 1.6 (±0.66) | 3.59 (±1.32) |
Ammonia | 0.03 (±0.02) | 0.07 (±0.09) | 0.03 (±0.04) | 0.02 (±0.02) | 0.03 (±0.02) | 0.02 (±0.01) | 0.12 (0.16) | 0.06 (±0.15) | 0.04 (±0.03) | 0.06 (±0.03) |
P | 0.08 (±0.03) | 0.21 (±0.23) | 0.14 (±0.03) | 0.13 (±0.10) | 0.10 (±0.04) | 0.03 (±0.03) | 0.06 (±0.05) | 0.05 (±0.04) | 0.03 (±0.02) | 0.06 (±0.03) |
P (T) | 0.09 (±0.03) | 0.25 (±0.15) | 0.13 (±0.03) | 0.13 (±0.10) | 0.11 (±0.04) | 0.04 (±0.03) | 0.07 (±0.05) | 0.04 (±0.04) | 0.06 (±0.03) | 0.08 (±0.04) |
K | 2.37 (±0.25) | 7.92 (±6.62) | 7.33 (±0.94) | 10.9 (±2.17) | 7.23 (±0.84) | 2.13 (±0.49) | 2.86 (±0.80) | 1.80 (±0.36) | 2.56 (±0.60) | 3.17 (±0.99) |
SG | RN | 5P | D8 | CK | LG | WG | DW | SD | WH | |
---|---|---|---|---|---|---|---|---|---|---|
E. coli | 2138 (±1956) | 1248 (±2066) | 869 (±834) | 440 (±693) | 905 (±836) | 295 (±152) | 743 (±918) | 5458 (±14,850) | 1115 (±1224) | 937 (±1159) |
Total Coliforms | 15,992 (±21,045) | 17,756 (±32,881) | 13,425 (±8435) | 6089 (±10,998) | 4911 (±885) | 5501 (±4706) | 8763 (±8215) | 25,827 (±35,200) | 11,360 (±11,108) | 13,704 (±20,370) |
TSS | 1.50 (±2.50) | 66.7 (±219) | 0.79 (±1.78) | 0.50 (±1.24) | 10.2 (±5.65) | 5.01 (±5.51) | 8.61 (±5.71) | 0.54 (±1.33) | 9.64 (±15.7) | 6.58 (±4.04) |
TOC | 4.32 (±0.85) | 5.85 (±3.75) | 2.44 (±0.96) | 2.51 (±1.03) | 4.30 (±0.84) | 3.36 (±0.92) | 6.30 (±3.44) | 3.30 (±0.27) | 5.11 (±0.99) | 7.35 (±7.87) |
SG | RN | 5P | D8 | CK | LG | WG | DW | SD | WH | |
---|---|---|---|---|---|---|---|---|---|---|
As | 29 (±7.2) | 20 (±5.6) | 29 (±6.9) | 32 (±6.5) | 29 (±6.8) | 23 (±7.7) | 18 (±6.9) | 23 (±6.2) | 19 (±7.1) | 24 (±7.4) |
As (T) | 34 (±6.8) | 25 (±10) | 31 (±7.4) | 34 (±8.3) | 32 (±7.9) | 26 (±7.3) | 21 (±4.0) | 25 (±5.5) | 23 (±7.2) | 29 (±8.1) |
Cd | 0.20 (±0.17) | BDL | 0.20 (±0.13) | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
Cd (T) | 0.31 (±0.22) | 0.26 (±0.26) | 0.26 (±0.22) | 0.24 (±0.21) | 0.25 (±0.17) | 0.20 (±0.18) | 0.26 (±0.22) | 0.28 (±0.24) | 0.22 (±0.21) | BDL |
Cu | BDL | 8.6 (±7.7) | 4.5 (±3.4) | BDL | BDL | 5.5 (±6.4) | BDL | 4.6 (±4.3) | BDL | 6.3 (±4.6) |
Cu (T) | 9.0 (±19) | 21 (±30) | 7.9 (±11) | 6.8 (±10) | 11 (±16) | 7.4 (±12) | 6.9 (±6.6) | 5.6 (±5.3) | 7.1 (±7.6) | 6.8 (±5.6) |
Cr | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
Cr (T) | BDL | 1.7 (±3.5) | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
Fe | 24 (±21) | 26 (±22) | 11 (±18) | 7.0 (±5.6) | 9.0 (±7.5) | 10 (±13) | 29 (±35) | 3.4 (±3.1) | 8.3 (±5.8) | 35 (±83) |
Fe (T) | 90 (±47) | 516 (±1644) | 24 (±15) | 20 (±16) | 135 (±66) | 146 (±105) | 216 (±100) | 22 (±30) | 239 (±218) | 242 (±228) |
Mn | 194 (±210) | 8.1 (±16) | 5.9 (±7.6) | 163 (±29) | 27 (±15) | 23 (±16) | 59 (±91) | 0.8 (±1.5) | 17 (±9.5) | 161 (±256) |
Mn (T) | 196 (±205) | 30 (±82) | 5.6 (±7.4) | 163 (±37) | 54 (±20) | 36 (±14) | 85 (±92) | 1.3 (±1.9) | 35 (±21) | 171 (±258) |
Ni | 4.6 (±1.4) | 3.2 (±1.2) | 3.0 (±1.3) | 3.8 (±1.0) | 3.9 (±1.3) | 3.1 (±1.3) | 3.2 (±1.3) | 3.1 (±1.0) | 3.1 (±1.0) | 4.8 (±1.5) |
Ni (T) | 5.6 (±1.8) | 4.8 (±3.1) | 4.0 (±2.0) | 5.0 (±1.8) | 5.1 (±1.9) | 4.1 (±1.8) | 4.4 (±1.7) | 4.0 (±1.7) | 3.9 (±1.8) | 6.0 (±1.8) |
Pb | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
Pb (T) | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL | BDL |
Se | 20 (±7.8) | 18 (±6.7) | 21 (±8.2) | 23 (±4.3) | 21 (±7.2) | 17 (±7.6) | 17 (±8.3) | 31 (±6.6) | 16 (±8.3) | 20 (±9.0) |
Se (T) | 24 (±7.6) | 15 (±7.5) | 21 (±6.2) | 24 (±7.0) | 19 (±7.6) | 17 (±8.6) | 15 (±6.7) | 28 (±7.3) | 16 (±6.7) | 22 (±7.0) |
Zn | 6.5 (±8.2) | 38 (±104) | 8.5 (±9.1) | 6.7 (±11) | 4.0 (±6.9) | 9.4 (±20) | 3.3 (±7.4) | 5.3 (±8.5) | 3.3 (±8.3) | 6.5 (±9.3) |
Zn (T) | 8.9 (±8.5) | 48 (±114) | 8.5 (±8.9) | 4.2 (±4.1) | 3.8 (±5.4) | 4.3 (±4.7) | 4.6 (±5.8) | 5.0 (±6.7) | 5.1 (±9.7) | 11 (±13) |
Urban Characteristic | Nitrate | P | P (T) | K | TOC | As | As (T) | Se |
---|---|---|---|---|---|---|---|---|
Development, Open Space 1 | −0.66 | −0.38 | −0.37 | 0.42 | 0.42 | −0.10 | −0.04 | −0.43 |
Development, Low-Intensity 1 | −0.45 | −0.70 | −0.62 | −0.39 | 0.73 | −0.56 | −0.59 | −0.66 |
Development, Medium-Intensity 1 | 0.03 | −0.13 | −0.12 | −0.24 | 0.44 | −0.67 | −0.68 | −0.26 |
Development, High-Intensity 1 | 0.68 | 0.59 | 0.51 | 0.42 | −0.79 | 0.60 | 0.49 | 0.68 |
Imperviousness 1 | 0.78 | 0.65 | 0.64 | 0.68 | −0.49 | 0.38 | 0.22 | 0.44 |
Tree Canopy Cover 1 | −0.72 | −0.34 | −0.36 | −0.38 | 0.39 | −0.26 | −0.21 | −0.55 |
Turf/Irrigated Land 2 | −0.42 | −0.69 | −0.61 | −0.42 | 0.72 | −0.59 | −0.62 | −0.68 |
Multi-Unit Residential 3 | 0.35 | 0.72 | 0.73 | 0.60 | −0.38 | 0.35 | 0.33 | 0.16 |
Single-Unit Residential 3 | −0.30 | −0.68 | −0.66 | −0.47 | 0.72 | −0.65 | −0.65 | −0.49 |
Industrial 3 | 0.75 | 0.10 | 0.07 | 0.04 | −0.28 | 0.09 | 0.09 | 0.31 |
MED Density 4 | 0.76 | 0.53 | 0.47 | 0.55 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilone, F.G.; Garcia-Chevesich, P.A.; McCray, J.E. Urban Drool Water Quality in Denver, Colorado: Pollutant Occurrences and Sources in Dry-Weather Flows. Water 2021, 13, 3436. https://doi.org/10.3390/w13233436
Pilone FG, Garcia-Chevesich PA, McCray JE. Urban Drool Water Quality in Denver, Colorado: Pollutant Occurrences and Sources in Dry-Weather Flows. Water. 2021; 13(23):3436. https://doi.org/10.3390/w13233436
Chicago/Turabian StylePilone, Forrest Gage, Pablo A. Garcia-Chevesich, and John E. McCray. 2021. "Urban Drool Water Quality in Denver, Colorado: Pollutant Occurrences and Sources in Dry-Weather Flows" Water 13, no. 23: 3436. https://doi.org/10.3390/w13233436
APA StylePilone, F. G., Garcia-Chevesich, P. A., & McCray, J. E. (2021). Urban Drool Water Quality in Denver, Colorado: Pollutant Occurrences and Sources in Dry-Weather Flows. Water, 13(23), 3436. https://doi.org/10.3390/w13233436