Effect of Sediment Supply on Morphodynamics of Free Alternate Bars: Insights from Hydrograph Boundary Layer
Abstract
:1. Introduction
2. Methods
2.1. Numerical Model
2.2. Computational Conditions
3. Results
3.1. Two-Dimensional Study of the Hydrograph Boundary Layer: Alternate Bar Formation
3.2. Sensitivity Analysis
4. Discussion
4.1. Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padawangi, R.; Douglass, M. Water, water everywhere: Toward participatory solutions to chronic urban flooding in Jakarta. Pac. Aff. 2015, 88, 517–550. [Google Scholar] [CrossRef]
- Yousefi, S.; Mirzaee, S.; Keesstra, S.; Surian, N.; Pourghasemi, H.R.; Zakizadeh, H.R.; Tabibian, S. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology. 2018, 304, 30–39. [Google Scholar] [CrossRef]
- Kazama, M.; Yamakawa, Y.; Yamaguchi, A.; Yamada, S.; Kamura, A.; Hino, T.; Moriguchi, S. Disaster report on geotechnical damage in Miyagi Prefecture, Japan caused by Typhoon Hagibis in 2019. Soils Found. 2021, 61, 549–565. [Google Scholar] [CrossRef]
- Viero, D.P.; D’Alpaos, A.; Carniello, L.; Defina, A. Mathematical modeling of flooding due to river bank failure. Adv. Water Resour. 2013, 59, 82–94. [Google Scholar] [CrossRef]
- Inoue, T.; Mishra, J.; Kato, K.; Sumner, T.; Shimizu, Y. Supplied sediment tracking for bridge collapse with large-scale channel migration. Water 2020, 12, 1881. [Google Scholar] [CrossRef]
- Ohtsuka, S.; Sato, Y.; Yoshikawa, T.; Sugii, T.; Kodaka, T.; Maeda, K. Levee damage and revetment erosion by the 2019 Typhoon Hagibis in the Chikuma River, Japan. Soils Found. 2021, 61, 1172–1188. [Google Scholar] [CrossRef]
- Visconti, F.; Camporeale, C.; Ridolfi, L. Role of discharge variability on pseudomeandering channel morphodynamics: Results from laboratory experiments. J. Geophys. Res. Earth Surf. 2010, 115, F4. [Google Scholar] [CrossRef] [Green Version]
- Church, M. Channel morphology and typology. River Handb. 1994, 126–143. [Google Scholar]
- Parker, G.; Wilcock, P.R.; Paola, C.; Dietrich, W.E.; Pitlick, J. Physical basis for quasi-univeral relations describing bankfull hy-draulic geometry of single-thread gravel bed rivers. J. Geophys. Res. Earth Surf. 2007, 112, F04005. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Nelson, P.A.; Brew, A.K.; Morgan, J.A. Morphodynamic response of a variable-width channel to changes in sediment supply. Water Resour. Res. 2015, 51, 5717–5734. [Google Scholar] [CrossRef] [Green Version]
- Constantine, J.A.; Dunne, T.; Ahmed, J.; Legleiter, C.; Lazarus, E. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 2014, 7, 899–903. [Google Scholar] [CrossRef] [Green Version]
- Stähly, S.; Franca, M.J.; Robinson, C.T.; Schleiss, A.J. Sediment replenishment combined with an artificial flood improves river habitats downstream of a dam. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Nittrouer, J.A.; Viparelli, E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta. Nat. Geosci. 2014, 7, 350–354. [Google Scholar] [CrossRef]
- Gaeuman, D.; Schmidt, J.C.; Wilcock, P.R. Complex channel responses to changes in stream flow and sediment supply on the lower Duchesne River, Utah. Geomorphology 2005, 64, 185–206. [Google Scholar] [CrossRef]
- Morgan, J.A.; Nelson, P.A. Experimental investigation of the morphodynamic response of riffles and pools to unsteady flow and increased sediment supply. Earth Surf. Process. Landforms 2021, 46, 869–886. [Google Scholar] [CrossRef]
- Wong, M.; Parker, G. One-dimensional modeling of bed evolution in a gravel bed river subject to a cycled flood hydrograph. J. Geophys. Res. Earth Surf. 2006, 111, F03018. [Google Scholar] [CrossRef] [Green Version]
- An, C.; Cui, Y.; Fu, X.; Parker, G. Gravel-bed river evolution in earthquake-prone regions subject to cycled hydrographs and repeated sediment pulses. Earth Surf. Process. Landforms 2017, 42, 2426–2438. [Google Scholar] [CrossRef]
- An, C.; Fu, X.; Wang, G.; Parker, G. Effect of grain sorting on gravel bed river evolution subject to cycled hydrographs: Bed load sheets and breakdown of the hydrograph boundary layer. J. Geophys. Res. Earth Surf. 2017, 122, 1513–1533. [Google Scholar] [CrossRef]
- Nelson, P.A.; Morgan, J.A. Flume experiments on flow and sediment supply controls on gravel bedform dynamics. Geomorphology 2018, 323, 98–105. [Google Scholar] [CrossRef]
- Venditti, J.G.; Nittrouer, J.A.; Allison, M.A.; Humphries, R.P.; Shurch, M. Supply-limited bedform patterns and scaling downstream of a gravel-sand transition. Sedimentology 2019, 66, 2538–2556. [Google Scholar] [CrossRef]
- Shimizu, Y.; Takebayashi, H.; Inoue, T.; Hamaki, M.; Iwasaki, T.; Nabi, M. iRIC-Software: Nays2DH Solver Manual. 2014. Available online: https://i-ric.org/en/ (accessed on 25 October 2021).
- Nelson, J.M.; Shimizu, Y.; Abe, T.; Asahi, K.; Gamou, M.; Inoue, T.; Iwasaki, T.; Kakinuma, T.; Kawamura, S.; Kimura, I.; et al. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Adv. Water Resour. 2016, 93, 62–74. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nelson, J.; Arnez, K.F.; Asahi, K.; Giri, S.; Inoue, T.; Iwasaki, T.; Jang, C.L.; Kang, T.; Kimura, I.; et al. Advances in computational morphodynamics using the International River Interface Cooperative (iRIC) software. Earth Surf. Process. Land. 2019, 45, 11–37. [Google Scholar] [CrossRef]
- Iwasaki, T.; Nelson, J.; Shimizu, Y.; Parker, G. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars. J. Geophys. Res. Earth Surf. 2017, 122, 847–874. [Google Scholar] [CrossRef]
- Okitsu, T.; Iwasaki, T.; Kyuka, T.; Shimizu, Y. The Role of Large-Scale Bedforms in Driftwood Storage Mechanics in Rivers. Water 2021, 13, 811. [Google Scholar] [CrossRef]
- Nagata, T.; Watanabe, W.; Yasuda, H.; Ito, A. Development of a meandering channel caused by the planform shape of the river bank. Earth Surf. Dynam. 2014, 2, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.J. Adaptation measures for extreme floods using huge ensemble of high-resolution climate model simulation in Japan. Summ. Rep. Elev. Meet. Res. Dialogue 2019, 28–30. [Google Scholar]
- Hoshino, T.; Yamada, T.J.; Kawase, H. Evaluation for Characteristics of Tropical Cyclone Induced Heavy Rainfall over the Sub-basins in The Central Hokkaido, Northern Japan by 5-km Large Ensemble Experiments. Atmosphere 2020, 11, 435. [Google Scholar] [CrossRef]
- Yamada, T.J.; Hoshino, T.; Suzuki, A. Using a massive high-resolution ensemble climate data set to examine dynamic and thermodynamic aspects of heavy precipitation change. At. Sci. Lett. 2021, 22, e1065. [Google Scholar] [CrossRef]
- Francalanci, S.; Solari, L.; Toffolon, M.; Parker, G. Do alternate bars affect sediment transport and flow resistance in gravel-bed rivers? Earth Surf. Process. Land. 2012, 37, 866–875. [Google Scholar] [CrossRef] [Green Version]
- East, A.E.; Logan, J.B.; Mastin, M.C.; Ritchie, A.C.; Bountry, J.A.; Magirl, C.S.; Sankey, J.B. Geomorphic evolution of a gravel-bed river under sediment-starved versus sediment-rich conditions: River response to the world’s largest dam removal. J. Geophys. Res. Earth Surf. 2018, 123, 3338–3369. [Google Scholar] [CrossRef]
- Ahammad, M.; Czuba, J.A.; Pfeiffer, A.M.; Murphy, B.P.; Belmont, P. Simulated dynamics of mixed versus uniform grain size sediment pulses in a gravel-bedded river. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006194. [Google Scholar] [CrossRef]
- Sutherland, D.G.; Ball, M.H.; Hilton, S.J.; Lisle, T.E. Evolution of a landslide-induced sediment wave in the Navarro River, California. GSA Bull. 2002, 114, 1036–1048. [Google Scholar] [CrossRef]
- Facchini, M.; Bertoldi, W.; Boes, R.; Vetsch, D.A.; Siviglia, A. Effects of natural and anthropogenic repeated water and sediment inputs to gravel-bed rivers: A numerial study. AGU Fall Meet. Abstr. 2018, 2018, EP31A-05. [Google Scholar]
- Rachelly, C.; Friedl, F.; Boes, R.M.; Weitbrecht, V. Morphological response of channelized, sinuous gravel-bed rivers to sediment replenishment. Water Resour. Res. 2021, 57, e2020WR029178. [Google Scholar] [CrossRef]
- Schmidt, J.C.; Wilcock, P.R. Metrics for assessing the downstream effects of dams. Water Resour. Res. 2008, 44, W04404. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.A.; Nelson, P.A. Morphodynamic modeling of sediment pulse dynamics. Water Resour. Res. 2019, 55, 8691–8707. [Google Scholar] [CrossRef]
- Lisle, T.E.; Cui, Y.; Parker, G.; Pizzuto, J.E.; Dodd, A.M. The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers. Earth Surf. Proc. Land. 2001, 26, 1409–1420. [Google Scholar] [CrossRef]
- Lanzoni, S.; Tubino, M. Grain sorting and bar instability. J. Fluid Mech. 1999, 393, 149–174. [Google Scholar] [CrossRef] [Green Version]
- Blom, A.; Parker, G. Vertical sorting and the morphodynamics of bed form-dominated rivers: A modeling framework. J. Geophys. Res. Earth Surf. 2004, 109, F02007. [Google Scholar] [CrossRef] [Green Version]
- Takebayashi, H.; Egashira, S. Non-equilibrium characteristics of bar geometry on bed with non-uniform sediment. J. Hydrosci. Hydraul. Eng. 2008, 26, 1–14. [Google Scholar]
- An, C.; Moodie, A.; Ma, H.; Fu, X.; Zhang, Y.; Naito, K.; Parker, G. Morphodynamic model of the lower Yellow River: Flux or entrainment form for sediment mass conservation? Earth Surf. Dynam. 2018, 6, 989–1010. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Nakatsugawa, M.; Ohashi, H. Research of Impacts of the 2018 Hokkaido Eastern Iburi Earthquake on Sediment Trasnport in the Atsuma River Basin Using the SWAT Model. Water 2021, 13, 356. [Google Scholar] [CrossRef]
- Zolezzi, G.; Luchi, R.; Tubino, M. Modeling morphodynamic processes in meandering rivers with spatial width variations. Rev. Geophys. 2012, 50, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kleinhans, M.; Wilbers, A.W.E.; de Swaaf, A.; Van den Berg, J.H. Sediment supply-limited bedforms in sand-gravel bed rivers. J. Sediment. Res. 2002, 72, 629. [Google Scholar] [CrossRef]
Hydrograph Duration | Discharge Variation | |
---|---|---|
Case 1 | 40 h | 100–600 m3/s |
Case 2 | 80 h | 100–600 m3/s |
Case 3 | 40 h | 100–1200 m3/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Iwasaki, T.; Shimizu, Y. Effect of Sediment Supply on Morphodynamics of Free Alternate Bars: Insights from Hydrograph Boundary Layer. Water 2021, 13, 3437. https://doi.org/10.3390/w13233437
Dai H, Iwasaki T, Shimizu Y. Effect of Sediment Supply on Morphodynamics of Free Alternate Bars: Insights from Hydrograph Boundary Layer. Water. 2021; 13(23):3437. https://doi.org/10.3390/w13233437
Chicago/Turabian StyleDai, Huang, Toshiki Iwasaki, and Yasuyuki Shimizu. 2021. "Effect of Sediment Supply on Morphodynamics of Free Alternate Bars: Insights from Hydrograph Boundary Layer" Water 13, no. 23: 3437. https://doi.org/10.3390/w13233437
APA StyleDai, H., Iwasaki, T., & Shimizu, Y. (2021). Effect of Sediment Supply on Morphodynamics of Free Alternate Bars: Insights from Hydrograph Boundary Layer. Water, 13(23), 3437. https://doi.org/10.3390/w13233437