Damming Induced Natural Attenuation of Hydrothermal Waters by Runoff Freshwater Dilution and Sediment Biogeochemical Transformations (Sochagota Lake, Colombia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
Data Acquisition and Analytical Procedures
3. Results
3.1. Physicochemical Properties of the Sochagota Lake Waters
3.2. Physicochemical Properties of the Hydrothermal Waters
4. Discussion
4.1. Water Sources
4.2. Chemical Distribution in the Lake Waters: Processes Controlling Elements Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kristmannsdóttir, H.; Ármannsson, H. Environmental aspects of geothermal energy utilization. Geothermics 2003, 32, 451–461. [Google Scholar] [CrossRef]
- Aiuppa, A.; Dongarra, G.; Capasso, G.; Allard, P. Trace elements in the thermal groundwaters of Vulcano Island Sicily. J. Volcanol. Geotherm. Res. 2000, 98, 189–207. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S. Chemical mapping of a fumarolic field: La Fossa crater, Vulcano Island (Aeolian Islands, Italy). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Battistel, M.; Hurwitz, H.; Evans, W.C.; Barbieri, M. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy. J. Volcanol. Geotherm. Res. 2016, 328, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Khadse, G.K.; Meshram, D.B.; Deshmukh, P.; Labhasetwar, P.K. Water quality of Tehri dam reservoir and contributing rivers in the Himalayan region, India. Sustain. Water Resour. Manag. 2019, 5, 1951–1961. [Google Scholar] [CrossRef]
- Aghasian, K.; Moridi, A.; Mirbagheri, A.; Abbaspour, M. Selective withdrawal optimization in a multipurpose water use reservoir. Int. J. Environ. Sci. Technol. 2019, 10, 5559–5568. [Google Scholar] [CrossRef]
- Willis, C.M.; Griggs, G.B. Reductions in fluvial sediment discharge by coastal dams in California and implications for beach sustainability. J. Geol. 2003, 111, 167–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Pei, Z.; Lu, X.; Xu, S.; Wang, X. Effect of dam construction on nutrient deposition from a small agricultural karst catchment. Ecol. Indic. 2019, 107, 105548. [Google Scholar] [CrossRef]
- Niu, Z.S.; Pan, H.; Guo, X.P.; Lu, D.P.; Feng, J.N.; Chen, Y.R.; Tou, F.Y.; Liu, M.; Yang, Y. Sulphate-reducing bacteria (SRB) in the Yangtze estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Sci. Total Environ. 2018, 634, 296–304. [Google Scholar] [CrossRef]
- Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Gálvez, A.; Castellanos-Rozo, J.; Jiménez-Espinosa, R. Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): The role of bacterial communities. Sci. Total Environ. 2021, 762, 143113. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, G.; Wu, J.; Yang, C.; Niu, X.; Tao, X.; Zhenqing, S.; Xiaoyun, Y.; Dang, Z. Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China. Ecotoxicol. Environ. Saf. 2018, 164, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Wang, W.X. Trace metal behavior in sediments of Jiulong River Estuary and implication for benthic exchange fluxes. Environ. Pollut. 2017, 225, 598–609. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Torrentó, C.; Nieto, J.M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta 2006, 70, 4130–4139. [Google Scholar] [CrossRef]
- Schaider, L.A.; Senn, D.B.; Estes, E.R.; Brabander, D.J.; Shin, J.P. Sources and fates of heavy metals in a mining-impacted stream:Temporal variability and the role of iron oxides. Sci. Total Environ. 2014, 490, 456–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Quevedo, C.P.; Jiménez-Millán, J.; Cifuentes, G.R.; Jiménez-Espinosa, R. Clay mineral transformations in anthropic organic matter-rich sediments. under saline water environment. Effect on the detrital mineral assemblages in the Upper Chicamocha River Basin, Colombia. Appl. Clay Sci. 2020, 196, 105776. [Google Scholar] [CrossRef]
- Quevedo, C.P.; Jiménez-Millán, J.; Cifuentes, G.R.; Jiménez-Espinosa, R. Electron Microscopy Evidence of Zn Bioauthigenic Sulfides Formation in Polluted Organic Matter-Rich Sediments from the Chicamocha River (Boyacá-Colombia). Minerals 2020, 10, 673. [Google Scholar] [CrossRef]
- Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Jiménez-Espinosa, R. Transformation of S-Bearing Minerals in Organic Matter-Rich Sediments from a Saline Lake with Hydrothermal Inputs. Minerals 2020, 10, 525. [Google Scholar] [CrossRef]
- Alfaro, C.; Velandia, F.; Cepeda, H. Colombian geothermal resources. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 1–11. [Google Scholar]
- Pardo, N.; Cepeda, H.; Jaramillo, J.M. The Paipa volcano, eastern cordillera of Colombia, South America: Volcanic stratigraphy. Earth Sci. Res. J. 2005, 9, 3–18. [Google Scholar]
- Alfaro, C.; Velandia, F.; Cepeda, H.; Pardo, N. Preliminary Conceptual Model of the Paipa Geothermal System, Colombia. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Alfaro, C. Improvement of Perception of the Geothermal Energy as a Potential Source of Electrical Energy in Colombia, Country Update. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Vazquez-Suñe, E.; Serrano-Juan, A.; Easy Quim v5.0. Grupo de Hidrología Subterránea. 2012. Available online: https://h2ogeo.upc.edu/ (accessed on 4 June 2021).
- Nieto, F.; Ortega-Huertas, M.; Peacor, D.R.; Arostegui, J. Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 1996, 44, 304–323. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO Library Cataloguing-in-Publication Data; WHO: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- USSL (US Salinity Laboratory). Diagnosis and Improvement of Saline and Alkaline Soils; Agriculture Handbook No. 60; USDA: Washington, DC, USA, 1954; p. 160.
- NSW Department of Primary Industries. Interpreting Water Quality Test Results. 2002. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/523618/interpreting-water-quality-test-results.pdf (accessed on 14 November 2021).
- Velandia, F. Cartografía Geológica y Estructural Sector Sur del Municipio de Paipa. Informe Técnico. INGEOMINAS. 2003, p. 31. Available online: https://docplayer.es/71639818-Informe-tecnico-cartografia-geologica-y-estructural-sector-sur-del-municipio-de-paipa-proyecto-de-geodinamica-francisco-velandia.html (accessed on 10 August 2020). (In Spanish).
- Usaquén, O.L. Desarrollo de una Metodología para la Gestión Ambiental de Humedales Costeros y Continentales Sometidos a Presiones Agrícolas. Ph.D. Thesis, University of Cantabria, Santander, Spain, 2007. (In Spanish). [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- Drever, J.I. The Geochemistry of Natural Waters, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1997; p. 436. [Google Scholar]
- Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Nieto, F.; Cuadros, J.; Jiménez-Espinosa, R. Low Temperature Illitization through Illite-Dioctahedral Vermiculite Mixed Layers in a Tropical Saline Lake Rich in Hydrothermal Fluids (Sochagota Lake, Colombia). Minerals 2021, 11, 523. [Google Scholar] [CrossRef]
- Alfaro, C. Geoquímica del Sistema Geotérmico de Paipa; INGEOMINAS, Unpublished Technical Report; Bogotá, Colombia, 2002; p. 88. (In Spanish) [Google Scholar]
- Corpoboyacá-Corporación Autónoma Regional de Boyacá. Lineamientos para la Gestión Integral de Aguas Termales y Termominerales en el Municipio de Paipa, Departamento de Boyacá. 2006 Fundación Profesional para el Manejo Integral del Agua; 2016; Unpublished Technical Report. (In Spanish) [Google Scholar]
- Rye, R.O.; Bethke, P.M.; Wasserman, M.D. The stable isotope geochemistry of acid sulfate alteration. Econ. Geol. 1992, 87, 225–262. [Google Scholar] [CrossRef]
- John, D.A.; Lee, R.G.; Breit, G.N.; Dilles, J.H.; Calvert, A.T.; Muer, L.J.P.; Clynne, M.A. Pleistocene hydrothermal activity on Brokeo volcano and in the Maidu volcanic center, Lassen Peak area, northeast California: Evolution of magmatic-hydrothermal systems on stratovolcanoes. Geosphere 2019, 15, 946–982. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Andrade, G.R.P.; Cuadros, J.; Partiti, C.M.S.; Cohen, R.; Vidal-Torrado, P. Sequential mineral transformation from kaolinite to Fe-illite in two Brazilian mangrove soils. Geoderma 2018, 309, 84–99. [Google Scholar] [CrossRef]
- Cuadros, J.; Andrade, G.; Ferreira, T.O.; Partiti, C.S.M.; Cohen, R.; Vidal-Torrado, P. The mangrove reactor: Fast clay transformation and potassium sink. Appl. Clay Sci. 2017, 140, 50–58. [Google Scholar] [CrossRef]
SAMPLE | pH | EC | Temp | TDS | Cl− | SO42− | HCO3− | CO32− | NO3− | Na+ | Mg2+ | Ca2+ | K | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | µS/cm | °C | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ||
P1 (1.2) | 9.07 | 2473.0 | 16.0 | 1582.9 | 204.80 | 687.34 | 169.88 | 0.70 | - | 432.44 | 8.65 | 24.07 | 54.98 | |
P2 (1.3) | 8.90 | 2325.0 | 17.0 | 1488.2 | 203.54 | 679.75 | 99.58 | 0.40 | 3.13 | 430.66 | 8.56 | 7.05 | 55.53 | |
P3 (1.2) | 9.16 | 2282.0 | 19.0 | 1460.3 | 200.94 | 671.69 | 73.77 | 1.30 | 2.94 | 424.24 | 8.35 | 22.89 | 54.17 | |
P4 (0.9) | 9.14 | 2329.0 | 18.0 | 1490.3 | 204.53 | 686.58 | 76.15 | 0.32 | 2.69 | 434.72 | 8.41 | 21.96 | 54.94 | |
P5 (1.2) | 9.17 | 2368.0 | 18.0 | 1515.3 | 204.28 | 687.09 | 102.15 | 0.85 | 2.70 | 433.50 | 8.46 | 21.42 | 54.81 | |
P6 (1.1) | 9.21 | 2377.0 | 17.0 | 1521.4 | 197.38 | 666.29 | 141.87 | 1.54 | - | 429.51 | 8.44 | 21.87 | 54.51 | |
P7 (0.9) | 9.16 | 2287.0 | 17.0 | 1463.5 | 194.90 | 652.87 | 107.82 | 0.34 | 2.74 | 416.90 | 8.31 | 26.64 | 52.92 | |
P8 (1.0) | 9.22 | 2211.0 | 17.0 | 1415.3 | 198.35 | 667.70 | 34.05 | 0.47 | 2.70 | 425.38 | 8.55 | 24.32 | 53.79 | |
P9 (1.1) | 9.18 | 2547.0 | 20.0 | 1630.3 | 208.36 | 699.74 | 187.27 | 0.64 | 2.68 | 442.88 | 8.71 | 23.87 | 56.12 | |
P10 (1.0) | 9.14 | 2485.0 | 19.0 | 1590.2 | 206.21 | 696.19 | 158.90 | 0.43 | - | 440.63 | 8.58 | 23.50 | 55.77 | |
P11 (1.1) | 9.16 | 2415.0 | 16.0 | 1545.9 | 205.51 | 694.10 | 119.17 | 0.68 | 2.67 | 438.32 | 8.55 | 21.39 | 55.46 | |
P12 (0.9) | 9.15 | 2371.0 | 19.0 | 1517.4 | 208.54 | 703.51 | 68.10 | 0.47 | - | 447.63 | 8.84 | 23.79 | 56.58 | |
P13 (0.8) | 9.14 | 2350.0 | 19.0 | 1504.0 | 209.71 | 708.17 | 45.40 | 0.60 | 2.72 | 447.04 | 8.90 | 25.00 | 56.45 | |
P14 (0.9) | 9.24 | 2355.0 | 19.0 | 1507.2 | 211.70 | 714.78 | 39.72 | 0.38 | - | 450.78 | 8.75 | 23.98 | 57.10 | |
P15 (0.9) | 9.27 | 2274.0 | 20.0 | 1455.1 | 211.09 | 712.57 | 28.37 | 0.73 | - | 419.07 | 9.14 | 21.04 | 53.07 | |
P16 (0.7) | 9.10 | 2361.0 | 18.0 | 1511.2 | 211.82 | 714.15 | 35.15 | 0.17 | 2.67 | 453.11 | 8.87 | 27.98 | 57.33 | |
P17 (0.5) | 9.05 | 2432.0 | 19.0 | 1556.5 | 218.03 | 724.41 | 58.58 | 0.15 | 2.76 | 461.27 | 9.06 | 22.23 | 59.97 | |
P18 (0.3) | 8.88 | 2489.0 | 18.0 | 1592.9 | 224.62 | 752.82 | 41.30 | 0.20 | - | 481.90 | 8.79 | 22.67 | 60.57 | |
8.84 | 7126.0 | 19.0 | 4526.3 | 664.50 | 2142.51 | 64.44 | 0.45 | 2.75 | 1470.69 | 8.65 | 28.16 | 178.31 | ||
P19 (0.2) | 8.90 | 8651.8 | 19.0 | 5493.8 | 846.00 | 2598.08 | 80.76 | 0.66 | 3.38 | 1719.00 | 10.42 | 28.46 | 207.00 | |
SAMPLE | NH4+ | F | Br | Li | Al | Mn | Fe | Ni | Cu | Zn | As | Rb | Sr | Cs |
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
P1 (1.2) | 0.00 | 0.930 | 0.842 | 0.542 | 0.055 | 0.702 | 0.221 | 0.003 | 0.004 | 0.016 | 0.009 | 0.386 | 0.325 | 0.016 |
P2 (1.3) | 0.00 | 0.577 | 0.834 | 0.586 | 0.063 | 0.709 | 0.219 | 0.003 | 0.001 | 0.054 | 0.008 | 0.386 | 0.329 | 0.016 |
P3 (1.2) | 0.00 | 0.776 | 0.823 | 0.595 | 0.058 | 0.717 | 0.212 | 0.003 | 0.001 | 0.009 | 0.008 | 0.392 | 0.334 | 0.016 |
P4 (0.9) | 0.03 | 0.938 | 0.827 | 0.594 | 0.060 | 0.713 | 0.217 | 0.003 | 0.001 | 0.011 | 0.008 | 0.389 | 0.333 | 0.016 |
P5 (1.2) | 0.03 | 0.931 | 0.823 | 0.602 | 0.063 | 0.712 | 0.212 | 0.003 | 0.001 | 0.015 | 0.008 | 0.388 | 0.333 | 0.016 |
P6 (1.1) | 0.04 | 0.902 | 0.813 | 0.603 | 0.055 | 0.694 | 0.205 | 0.002 | 0.001 | 0.006 | 0.008 | 0.385 | 0.329 | 0.016 |
P7 (0.9) | 0.03 | 0.867 | 0.808 | 0.595 | 0.050 | 0.627 | 0.193 | 0.003 | 0.001 | 0.005 | 0.008 | 0.359 | 0.310 | 0.016 |
P8 (1.0) | 0.03 | 0.944 | 0.816 | 0.598 | 0.057 | 0.635 | 0.193 | 0.003 | 0.001 | 0.024 | 0.008 | 0.366 | 0.316 | 0.016 |
P9 (1.1) | 0.04 | 1.001 | 0.838 | 0.601 | 0.062 | 0.639 | 0.202 | 0.002 | 0.001 | 0.006 | 0.008 | 0.364 | 0.314 | 0.016 |
P10 (1.0) | 0.08 | 1.004 | 0.819 | 0.599 | 0.048 | 0.645 | 0.199 | 0.002 | 0.001 | 0.005 | 0.008 | 0.370 | 0.317 | 0.016 |
P11 (1.1) | 0.04 | 1.003 | 0.824 | 0.588 | 0.054 | 0.629 | 0.191 | 0.002 | 0.001 | 0.005 | 0.008 | 0.353 | 0.308 | 0.015 |
P12 (0.9) | 0.03 | 1.021 | 0.838 | 0.578 | 0.045 | 0.616 | 0.190 | 0.003 | 0.001 | 0.008 | 0.008 | 0.354 | 0.305 | 0.015 |
P13 (0.8) | 0.04 | 0.986 | 0.836 | 0.583 | 0.064 | 0.615 | 0.218 | 0.004 | 0.001 | 0.012 | 0.008 | 0.360 | 0.309 | 0.016 |
P14 (0.9) | 0.06 | 1.037 | 0.838 | 0.572 | 0.054 | 0.632 | 0.194 | 0.003 | 0.001 | 0.023 | 0.008 | 0.365 | 0.315 | 0.016 |
P15 (0.9) | 0.06 | 1.000 | 0.836 | 0.582 | 0.053 | 0.620 | 0.192 | 0.003 | 0.001 | 0.019 | 0.008 | 0.361 | 0.310 | 0.016 |
P16 (0.7) | 0.05 | 1.038 | 0.836 | 0.577 | 0.057 | 0.643 | 0.213 | 0.002 | 0.001 | 0.009 | 0.008 | 0.366 | 0.316 | 0.016 |
P17 (0.5) | 0.07 | 1.120 | 0.849 | 0.570 | 0.100 | 0.612 | 0.356 | 0.003 | 0.000 | 0.008 | 0.009 | 0.368 | 0.314 | 0.016 |
P18 (0.3) | 0.05 | 1.078 | 0.850 | 0.610 | 0.024 | 0.006 | 0.033 | 0.002 | 0.000 | 0.000 | 0.007 | 0.379 | 0.317 | 0.017 |
0.10 | 2.915 | 1.828 | 1.911 | 0.648 | 0.409 | 3.939 | 0.007 | 0.005 | 0.056 | 0.066 | 1.285 | 0.572 | 0.076 | |
P19 (0.2) | 0.17 | 3.546 | 2.001 | 2.102 | 0.713 | 0.450 | 4.333 | 0.008 | 0.005 | 0.062 | 0.072 | 1.413 | 0.629 | 0.083 |
Variable | N | Min. | Max. | Average | Std. Dev |
---|---|---|---|---|---|
pH | 20 | 8.84 | 9.27 | 9.10 | 0.13 |
EC (µS/cm) | 20 | 2211.00 | 8651.75 | 2925.44 | 1717.38 |
Temp (°C) | 20 | 16.00 | 20.00 | 18.20 | 1.19 |
TDS (mg/L) | 20 | 1415.31 | 5493.76 | 1868.39 | 1087.10 |
Cl− (mg/L) | 20 | 194.90 | 846.00 | 261.74 | 171.46 |
SO42− (mg/L) | 20 | 652.87 | 2598.08 | 863.01 | 521.24 |
HCO3− (mg/L) | 20 | 28.37 | 187.27 | 86.62 | 48.09 |
CO32− (mg/L) | 20 | 0.15 | 1.54 | 0.57 | 0.35 |
NO3− (mg/L) | 13 | 2.67 | 3.38 | 2.81 | 0.21 |
Na+ (mg/L) | 20 | 416.90 | 1719.00 | 554.98 | 358.22 |
Mg2+ (mg/L) | 20 | 8.31 | 10.42 | 8.75 | 0.45 |
Ca2+ (mg/L) | 20 | 7.05 | 28.46 | 23.11 | 4.41 |
K+ (mg/L) | 20 | 52.92 | 207.00 | 69.47 | 42.42 |
NH4+ (mg/L) | 20 | 0.00 | 0.17 | 0.04 | 0.037 |
F− (mg/L) | 20 | 0.57 | 3.55 | 1.18 | 0.72 |
Br− (mg/L) | 20 | 0.81 | 2.00 | 0.94 | 0.33 |
Li+ (mg/L) | 20 | 0.54 | 2.10 | 0.73 | 0.44 |
Al (mg/L) | 20 | 0.02 | 0.71 | 0.12 | 0.19 |
Mn (mg/L) | 20 | 0.01 | 0.72 | 0.60 | 0.16 |
Fe (mg/L) | 20 | 0.03 | 4.33 | 0.60 | 1.21 |
Ni (mg/L) | 20 | 0.00 | 0.01 | 0.003 | 0.001 |
Cu (mg/L) | 20 | 0.00 | 0.01 | 0.001 | 0.001 |
Zn (mg/L) | 20 | 0.00 | 0.06 | 0.018 | 0.0181 |
As (mg/L) | 20 | 0.01 | 0.07 | 0.014 | 0.0187 |
Rb (mg/L) | 20 | 0.35 | 1.41 | 0.47 | 0.3018 |
Sr (mg/L) | 20 | 0.31 | 0.63 | 0.35 | 0.0876 |
Cs (mg/L) | 20 | 0.02 | 0.08 | 0.022 | 0.0195 |
Cl− (mg/L) | SO42− (mg/L) | HCO3− (mg/L) | Na+ (mg/L) | Mg2+ (mg/L) | Ca2+ (mg/L) | K+ (mg/L) | |||
---|---|---|---|---|---|---|---|---|---|
T1. Termales Olitas | 3.3 | 19.2 | 64.7 | 20.0 | 0.8 | 8.1 | 6.8 | ||
T2. El Hervidero | 9.7 | 59.3 | 4.9 | 12.8 | 0.8 | 3.7 | 27.2 | ||
T3. Piscina La Playa | 3050.0 | 9180.0 | 999.0 | 5480.0 | 21.0 | 70.0 | 930.0 | ||
T4. Curiosidad Caliente | 100.0 | 60.3 | 360.0 | 130.0 | 4.9 | 59.3 | 13.5 | ||
T5. Curiosidad Fría | 12600.0 | 19100.0 | 2598.6 | 14600.0 | 3.5 | 42.3 | 9060.0 | ||
T6. Los Delfines | 6580.0 | 16510.0 | 2830.4 | 12460.0 | 8.9 | 83.6 | 1250.0 | ||
T7. Escuela Esperanza | 242.0 | 477.0 | 55.6 | 315.0 | 9.9 | 47.3 | 13.7 | ||
T8. Colegio ITA | 13.0 | 16.0 | 62.5 | 22.9 | 4.6 | 3.7 | 5.1 | ||
T9. Finca Entre Lomas | 3.3 | 14.2 | 4.9 | 5.0 | 0.9 | 1.3 | 3.0 | ||
T10. Vereda Caños | 3.3 | 13.3 | 26.8 | 3.1 | 0.6 | 10.7 | 6.9 | ||
T11. Termal Marismas | 7540.0 | 15000.0 | 2976.8 | 12089.0 | 28.3 | 175.0 | 1870.0 | ||
T12. Pozo Azul | 6620.0 | 16500.0 | 2635.2 | 11200.0 | 6.1 | 168.0 | 1940.0 | ||
T13. Ojo Diablo | 6300.0 | 16400.0 | 2440.0 | 11400.0 | 15.9 | 129.0 | 1390.0 | ||
T14. Hotel Colsubsidio | 6540.0 | 16600.0 | 2415.6 | 11500.0 | 17.6 | 123.0 | 1210.0 | ||
T15. Interior Colsubsidio | 6120.0 | 17500.0 | 2403.4 | 11200.0 | 25.3 | 126.0 | 1500.0 | ||
T16. Aljive | 6.0 | 12.5 | 29.5 | 7.2 | 1.6 | 9.2 | 2.2 | ||
pH | C.E. (µS/cm) | TDS (mg/L) | SiO2 (mg/L) | Temp (°C) | Fe (mg/L) | F− (mg/L) | B− (mg/L) | ||
T1. Termales Olitas | 6.0 | 212.4 | 80.1 | 12.30 | 26.9 | 0.79 | 3.73 | 0.00 | |
T2. El Hervidero | 6.0 | 223.4 | 98.3 | 10.7 | 20.0 | 13.90 | 0.07 | 0.00 | |
T3. Piscina La Playa | 8.0 | 30874.8 | 13300.0 | 29.0 | 64.0 | 0.92 | 16.30 | 1.94 | |
T4. Curiosidad Caliente | 7.8 | 1154.6 | 31700.0 | 10.9 | 27.8 | 0.00 | 0.69 | 0.33 | |
T5. Curiosidad Fría | 7.3 | 90654.0 | 466.0 | 13.4 | 24.0 | 0.76 | 23.40 | 3.95 | |
T6. Los Delfines | 7.1 | 62099.7 | 28300.0 | 20.0 | 34.6 | 0.95 | 23.50 | 3.65 | |
T7. Escuela Esperanza | 6.4 | 1822.5 | 1010.0 | 3.5 | 21.0 | 2.30 | 0.06 | 0.00 | |
T8. Colegio ITA | 6.4 | 221.6 | 67.8 | 2.8 | 19.9 | 11.20 | 0.10 | 0.00 | |
T9. Finca E. Lomas | 6.5 | 84.8 | 44.3 | 2.4 | 19.0 | 19.20 | 0.07 | 0.00 | |
T10. Vereda Caños | 6.4 | 103.7 | 74.8 | 1.7 | 20.7 | 0.00 | 0.30 | 0.00 | |
T11. Termal Marismas | 6.4 | 62033.9 | 34500.0 | 13.1 | 22.0 | 9.53 | 6.22 | 4.11 | |
T12. Pozo Azul | 8.0 | 61073.2 | 26100.0 | 17.5 | 52.0 | 0.00 | 17.50 | 3.58 | |
T13. Ojo Diablo | 8.0 | 59522.0 | 25400.0 | 18.8 | 74.0 | 0.41 | 16.40 | 2.94 | |
T14. Hotel Colsubsidio | 7.0 | 60037.2 | 25800.0 | 17.3 | 52.0 | 0.34 | 16.40 | 3.18 | |
T15. Interior Colsubsidio | 7.3 | 60767.4 | 25500.0 | 16.0 | 44.0 | 0.47 | 16.20 | 2.96 | |
T16. Aljive | 6.8 | 108.5 | 53.3 | 1.3 | 17.5 | 0.00 | 0.00 | 0.00 |
Variable | Variable | N | Average | Std.Dev. | Min. | Max. |
---|---|---|---|---|---|---|
pH | pH | 16 | 7.0 | 0.7 | 6.0 | 8.0 |
EC (µS/cm) | EC | 16 | 30687.1 | 33049.0 | 84.8 | 90654.0 |
Temp (°C) | Temp | 16 | 33.7 | 17.9 | 17.5 | 74.0 |
TDS (mg/L) | TDS | 16 | 13280.9 | 14128.8 | 44.3 | 34500.0 |
Cl− (mg/L) | Cl | 16 | 3483.2 | 3982.5 | 3.3 | 12600.0 |
SO42+ (mg/L) | SO4 | 16 | 7966.4 | 8384.6 | 12.5 | 19100.0 |
HCO3− (mg/L) | HCO3 | 16 | 1244.2 | 1278.1 | 4.9 | 2976.8 |
Na+ (mg/L) | Na | 16 | 5652.8 | 6036.1 | 3.1 | 14600.0 |
Mg2+ (mg/L) | Mg | 16 | 9.4 | 9.3 | 0.6 | 28.3 |
Ca2+ (mg/L) | Ca | 16 | 66.3 | 61.1 | 1.3 | 175.0 |
K+ (mg/L) | K | 16 | 1201.8 | 2225.8 | 2.2 | 9060.0 |
SiO2 (mg/L) | SiO2 | 16 | 11.9 | 7.9 | 1.3 | 29.0 |
F− (mg/L) | F | 16 | 8.8 | 9.3 | 0.0 | 23.5 |
B− (mg/L) | B | 16 | 1.7 | 1.7 | 0.0 | 4.1 |
Fe (mg/L) | Fe | 16 | 3.8 | 6.1 | 0.0 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cifuentes, G.R.; Jiménez-Espinosa, R.; Quevedo, C.P.; Jiménez-Millán, J. Damming Induced Natural Attenuation of Hydrothermal Waters by Runoff Freshwater Dilution and Sediment Biogeochemical Transformations (Sochagota Lake, Colombia). Water 2021, 13, 3445. https://doi.org/10.3390/w13233445
Cifuentes GR, Jiménez-Espinosa R, Quevedo CP, Jiménez-Millán J. Damming Induced Natural Attenuation of Hydrothermal Waters by Runoff Freshwater Dilution and Sediment Biogeochemical Transformations (Sochagota Lake, Colombia). Water. 2021; 13(23):3445. https://doi.org/10.3390/w13233445
Chicago/Turabian StyleCifuentes, Gabriel Ricardo, Rosario Jiménez-Espinosa, Claudia Patricia Quevedo, and Juan Jiménez-Millán. 2021. "Damming Induced Natural Attenuation of Hydrothermal Waters by Runoff Freshwater Dilution and Sediment Biogeochemical Transformations (Sochagota Lake, Colombia)" Water 13, no. 23: 3445. https://doi.org/10.3390/w13233445
APA StyleCifuentes, G. R., Jiménez-Espinosa, R., Quevedo, C. P., & Jiménez-Millán, J. (2021). Damming Induced Natural Attenuation of Hydrothermal Waters by Runoff Freshwater Dilution and Sediment Biogeochemical Transformations (Sochagota Lake, Colombia). Water, 13(23), 3445. https://doi.org/10.3390/w13233445