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and Monica Butnariu 3,*

����������
�������
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Abstract: This study aimed to compare the antibiotic resistance levels of the indicator bacteria
Escherichia coli in wastewater samples collected from two hospitals and two urban communities.
Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from
communities) using the disc diffusion method according to the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen.
The strains isolated from the community wastewater, compared to those from the hospital wastewater,
were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—
increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the
hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of
the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47%
compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-
lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to
5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community
wastewaters, with very few significant differences between them, so the community outlet might be
a source of resistant bacteria that is at least as important as the well-recognised hospitals.

Keywords: multidrug-resistant E. coli; carbapenemases; ESBL-EC; wastewater; community; hospitals

1. Introduction

As a result of many years of antibiotic use and abuse, the parent compounds and their
functional metabolites, antimicrobial-resistant bacteria (ARB) as well as their resistance
genes (ARG) are common and widespread contaminants in many environments [1–4]. Hu-
man and animal excreta and wastewater are recognised and documented as major sources
of the previously mentioned compounds and bacteria [1]. Although treatment processes
can reduce the concentrations of pathogens in wastewater, wastewater treatment plant
effluents do not show appreciable removal of ARB and ARG in general [5,6], and large
amounts of resistant bacteria, possibly of hospital origin, are released into the recipient
waters [7]. Wastewater effluents are considered co-contributors to the extended-spectrum
beta-lactamases-producing bacteria (ESBL) in recreational waters, so they can represent
a possible exposure route for the population [8]. In many countries, facilities to treat
municipal wastewater that may harbour large pathogens as Giardia duodenalis and Cryp-
tosporidium spp. are absent or inadequate [9], so retaining or neutralising smaller molecules
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such as antibiotics, antibiotic-resistant bacteria and their resistance genes becomes even
more difficult to achieve through the currently available treatments [1]. Another common
problem for many countries, including Romania, which may lead to population exposure to
resistant bacteria is aged infrastructure and the fact that leaking sewers are often co-located
with municipal drinking water distribution pipes [1]. On the contrary, other authors claim
that there is no evidence for selection for antibiotic resistance in wastewater treatment
plants [10].

It has been suggested that the specific hotspots for antibiotic-resistant bacteria and
resistance genes are the waste discharges and wastewaters from pharmaceutical production
facilities, hospitals and other healthcare facilities [11]. People in hospitals are constantly
and extensively treated with antibiotics, and their faecal and liquid wastes have been
documented as important sources contributing to the release and subsequent spread of
antibiotic residues, ARB and ARG in the environment [5,11,12]. Even though hospitals are
under close examination, they provide relatively controlled environments for the usage
of antibiotics, and resistance evolution is relatively easy to track (i.e., testing of hospital
effluent) and subsequently curb. In contrast, antibiotic usage by the general populace is
largely unsupervised [4].

The evolution of resistance in the human gut microbiome (and other microbiomes),
via in-home usage of antibiotics, can be due to overuse, inappropriate use or incomplete
treatment, resulting in sub-inhibitory antibiotic concentrations in situ [4]. Monitoring
antimicrobial resistance (AMR) through national and international surveillance programs
has increased knowledge of the dissemination of resistant bacteria. For example, in the
veterinary field, the European Food Safety Authority (EFSA) runs such a surveillance
program focused on monitoring antimicrobial resistance of commensal bacteria in faecal
samples collected from healthy animals [13]. Because it is more difficult to obtain large
numbers of faecal samples from healthy humans, less is known about the role of normal
human microbiota as a reservoir of antimicrobial-resistant bacteria [13]. According to
Kühn et al. [13] and Paulshus et al. [14] an alternative method of sampling hundreds of
individuals in the population can be measuring levels of antibiotic resistance in commensal
indicators, such as E. coli, from untreated wastewater samples [13,14]. This method can also
be used as an early warning system for the emergence of new or rare antibiotic resistance
patterns in the corresponding population, as proposed in the 1970s by Linton et al. [15] and
confirmed recently by Paulshus et al. [13] as well as by others [16–18].

The resistance rates in the bacteria isolated from urban wastewater were found to
correlate positively with the frequency of the antibiotic resistance in the corresponding
human population [18]. Iversen et al. [19] found a possible transmission route for ampicillin-
and ciprofloxacin-resistant Enterococcus faecicum from patients in hospital-to-hospital and
urban sewage, further through wastewater treatment plants to surface water and possibly
back to humans. Because the strain was found enriched in untreated and treated sewage,
and also in many surface water samples, it can be assumed that hospital wastewater is not
the only source for these clones, that the community could be involved as well and/or
this strain can better survive the bacterial-reduction process in treatment plants than other
enterococci strains [19]. Thus, it may be of great importance to identify wastewater outlets,
other than hospitals, which can act as hotspots for antibiotic-resistant bacteria [20].

In the present study, we analysed the antimicrobial resistance patterns of the indicator
bacterium Escherichia coli in wastewater samples collected from hospitals and urban com-
munities connected to the sewage system of Timisoara, Romania. The aim of this study
was to compare the antibiotic resistance levels of these two sites in order to improve the
knowledge of the occurrence and spread of antibiotic-resistant bacteria in the resident
population and to identify whether any of these two outlets may act as a hotspot for
such bacteria.
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2. Materials and Methods

Hospital wastewater was collected directly from the wastewater treatment system
of two hospitals in Timisoara; more precisely, from the treated effluent stocked in a tank
before being transported to the urban wastewater treatment plant. Community wastewater
was collected from the sewer system, from two specific points selected based on the city’s
sewer system map, in order to provide wastewater with no contributions from health care
institutions (human or veterinary) and agricultural or zootechnical sources (Figure 1).
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Figure 1. Wastewater sampling sites and their approximate geographical locations in Timisoara city.

Wastewater was collected on the same days from all four locations, five times from
October 2018 to March 2019, in sterile 750 mL glass vials. Samples were kept at +4 ◦C and
analysed within 4 h. From each sample, aliquots of 100 µL were plated on 90 mm Petri
dishes containing Tryptone Bile X-glucuronide chromogenic agar for E. coli (Chromocult®

TBX agar, Merck KGaA, Darmstadt, Germany) (3 plates for each sample). The plates
were incubated for an initial period of 4 h at 37 ◦C (to reduce potential cellular stress)
and then, for the next 20 h, at 44 ± 1 ◦C. Blue or blue-to-green (turquoise) colonies were
regarded as E. coli. Three to five colonies corresponding to each sample were picked from
the TBX agar with sterile plastic loops and recultured for proper storage in order to be
further analysed. A total of 81 E. coli strains (47 from hospitals and 34 from communities)
were subjected to antimicrobial susceptibility testing using the disc diffusion method,
according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST)
methodology [21]. Ten antibiotics from nine different classes were chosen based on the
EUCAST recommendations [22] and the World Health Organization list of Critically Important
Antimicrobials for Human Medicine—WHO CIA list [23]:

• Highest-priority critically important antimicrobials: cefotaxime (CTX 30 µg), cef-
tazidime (CAZ 30 µg), ciprofloxacine (CIP 5 µg);

• High-priority critically important antimicrobials: ampicillin (AMP 10 µg), meropenem
(MRP 10 µg), aztreonam (AT 30 µg), fosfomycine (FO 200 µg), gentamicine (GEN
10 µg);

• Highly important antimicrobials: sulfamethoxazole-trimethoprim (SXT 25 µg);
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• Important antimicrobials: nitrofurantoine (NIT 100 µg) (Liofilchem®, Roseto degli
Abruzzi, Teramo, Italy).

• The diameter of the inhibition zone was interpreted according to the latest EUCAST
recommendations [22,24,25]. The strains were classified as:

• Susceptible, standard dosing regimen (S)—refers to microorganisms against which
there is a high probability of therapeutic success when the antimicrobial agent is used
in standard (usual) doses;

• Susceptible, increased exposure (the old intermediate “I” category)—refers to microor-
ganisms against which there is a high probability of therapeutic success when exposure
to the agent is increased by adjusting the dosing regimen or by its concentration at the
site of infection;

• Resistant (R)—refers to microorganisms against which there is a high probability of
therapeutic failure even when there is increased exposure [25].

Isolates showing resistance to both CTX and CAZ were regarded as the presumed
extended-spectrum beta-lactamases (ESBL) producers [13,26,27]. Those exhibiting an
inhibition zone diameter to MRP smaller than 28 mm were regarded as presumed car-
bapenemases producers [26], and the isolates showing resistance to at least three antibiotics
from three different classes were regarded as multidrug-resistant [28].

Comparisons between the prevalence of antibiotic-resistant E. coli in hospitals and
community wastewater were performed using the Chi-square test with Yates correction
at a level of significance set at p < 0.05. Where the requirements for Chi-square testing
were unmet, Fischer’s exact test was performed with a two-side p value of >0.05, which is
considered to be significant.

3. Results
3.1. Antibiotic Susceptibility of E. coli Isolates from Hospital Wastewater and
Community Wastewater

All 81 E. coli isolates were tested for their susceptibility using a panel of ten antibi-
otics (from nine different classes). The most commonly found antibiotics to which the
isolates were resistant (over 50%) were: ampicillin (58/81; 72%), fosfomycin (51/81; 63%),
ceftazidime (47/81; 58%) and sulfamethoxazole/trimethoprim (44/81; 54%). Less than
50% of the strains showed resistance to: aztreonam (35/81; 43%), ciprofloxacin (29/81;
36%), nitrofurantoin (26/81; 32%), cefotaxime (23/81; (28%), gentamicin (6/81; 7%) and
meropenem (3/81; 4%) (Figure 2).
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Figure 2. Susceptibility pattern of E. coli strains to critically important antimicrobials—highest
priority (RED) and high priority (BLUE) and highly important (GREEN) and important (ORANGE)
antimicrobials for human medicine.
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The highest frequency of susceptibility at increased exposure (old intermediate cat-
egory I), was found for cefotaxime (32/81; 39.5%), followed by aztreonam (29/81; 36%),
ceftazidime (24/81; 30%), gentamicin (16/81; 20%), ciprofloxacin (14/81; 17%), sulfamethox-
azole/trimethoprim (11/81; 14%) and meropenem (9/81; 11%) (Figure 2).

Resistance was more common among the isolates from the hospital wastewater for
the following six out of ten antibiotics: MRP, CTX, CAZ, AT, GEN, SXT with a significant
difference only in the case of gentamicin (p = 0.03). The strains isolated from the commu-
nity wastewater showed a higher resistance rate to AMP, CIP, FO and NIT without any
significant difference (p > 0.05) (Table 1).

Table 1. Antibiotic resistance patterns for E. coli isolates from hospital wastewater (HW) and community wastewater (CW).

Antibiogram
Results

HW CW 5 Statistical Analysis
47 Strains 34 Strains

n % n % Difference
(HW-CW) % p

Ampicillin 1 R 33 70.21 25 73.53 −3.32 0.92

Meropenem R 2 4.26 1 2.94 1.32 1
2 I 8 17.02 1 2.94 14.08 0.07

Cefotaxime
R 16 34.04 7 20.59 13.45 0.22
I 15 31.91 17 50 −18.09 0.15

Ceftazidime
R 31 65.96 16 47.06 18.9 0.14
I 7 14.89 17 50 −35.11 * 0.001

Aztreonam
R 24 51.06 11 32.35 18.71 0.14
I 16 34.04 13 38.24 −4.2 0.88

Ciprofloxacin R 15 31.91 14 41.18 −9.27 0.53
I 10 21.28 4 11.76 9.52 0.41

Fosfomycin R 26 55.31 25 73.53 −18.22 0.14
Nitrofurantoin R 15 31.91 11 32.35 −0.44 0.84

Gentamicin
R 6 12.77 0 0 12.77 * 0.03
I 12 25.53 4 11.76 13.77 0.21

Sulfamethoxazole-trimethoprim R 26 55.32 18 52.94 2.38 1
I 5 10.64 6 17.65 −7.01 0.51

3 MRP < 28 mm 32 68.09 26 76.47 −8.38 0.56
4 MRP < 16 mm + IIIrd gen. ceph 2 4.26 1 2.94 1.32 1

Resistance to CTX or CAZ 25 53.19 19 55.88 −2.69 1
Resistance to both CTX and CAZ 10 21.28 2 5.88 15.4 0.1

1 R—resistant; 2 I—old intermediate category, now regarded as susceptible, increased exposure; 3 inhibition zone diameter for meropenem
smaller than 28 mm; 4 clear resistance to meropenem and to one of the third-generation cephalosporins; 5 all Chi-squared tests were
performed with 1 degree of freedom; * the results are statistically significant.

Susceptibility at increased exposure was more common among the isolates from the
hospital wastewater only for the following three antibiotics: MRP, CIP and GEN without
any significant difference. The isolates from the community wastewater showed a higher
susceptibility at increased exposure to CTX, CAZ, AT and SXT with significant differences
in the case of ceftazidime (p = 0.001) (Table 1).

3.2. The Proportion of Multidrug-Resistant E. coli Recovered from Hospital Wastewater and
Community Wastewater

The isolates showing resistance to at least three antibiotics belonging to three different
classes were regarded as multidrug-resistant (MDR) [27]. It was found that the proportion
of MDR E. coli recovered from HW (85.11%), even if higher, was not statistically significant
compared to those recovered from CW (73.53%) X2 (1, N = 81) = 1.75; p > 0.05 (Figure 3).
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Figure 3. The proportion of multidrug-resistant E. coli (resistance to at least three antibiotics from three
different classes—starting from no. 3) in hospital wastewater (HW) and community wastewater (CW).

The isolates resistant to three, five and six antibiotics were more frequently identified
in the CW: 21% compared with 19% (HW), 26% compared with 13% and 18% compared
with 11% (p > 0.05). The isolates resistant to four antibiotics were significantly more
common in HW: 38% compared with 9%, X2 (1, N = 81) = 8.92; p < 0.05. The only two
isolates resistant to seven (2%) and eight (2%) antibiotics were also isolated from the HW.
The single isolate susceptible to all antibiotics was identified in the community wastewater
(Figure 3).

3.3. Presumed ESBL- and Carbapenemase-Producing E. coli Recovered from HW and CW

The frequency of presumed carbapenemase-producing E. coli (IZD < 28 mm for
meropenem) was higher among the CW isolates (76.47%) than the HW isolates (68.09%)
(p > 0.05). In contrast, two isolates from the hospital outlet (4.26%) were clearly resistant to
meropenem (IZD < 16 mm) and to one of the third-generation cephalosporins compared
to one isolate from the community outlet (2.94%) (p > 0.05) (Table 1). The proportion
of the isolates resistant to one of the cephalosporins was slightly higher in the commu-
nity outlet (55.88% compared with 53.19%), and the prevalence of those resistant to both
cephalosporins (the presumed ESBL-producing E. coli) was higher in the hospital out-
lets (21.28% compared with 5.88%). In both situations, the differences were statistically
nonsignificant (p > 0.05) (Table 1).

4. Discussion

We compared E. coli in wastewater from hospital and non-hospital outlets with re-
gard to their prevalence of antibiotic resistance. To our knowledge, no previous studies
have investigated ARB in wastewaters in Romania, the country with the second-highest
consumption of antibacterials for systemic use in Europe [29].

In our study, we found the following prevalences of resistance to critically important
antimicrobials for human medicine: highest priority—CAZ (58%), CIP (36%) and high
priority—AMP (72%), FO (63%). According to WHO, antibiotics within the critically im-
portant category (highest and priority antimicrobials) should be included in antibiotic
resistance monitoring programs [23]. Currently, this category includes quinolones; third-,
fourth- and fifth-generation cephalosporins; macrolides and ketolides; polymyxins; and
glycopeptides. On the one hand, these drugs must be used with caution and great discern-
ment, as the loss of their effectiveness due to the emergence of resistance would result in
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the lack of therapeutic options and, thus, in the impossibility of treating life-threatening
infections in humans [23]. On the other hand, these medicines are also used to treat dis-
eases caused by bacteria other than those of human origin, and, often, these infections can
be difficult to manage because of the improper use of antibiotics in veterinary medicine
and other fields [23]. Additionally, commensal microorganisms from non-human sources
(animals, water, food or the environment), as well as transmitting antimicrobial resistance
genes to pathogenic bacteria of human origin, can themselves become pathogenic for
immunosuppressed hosts [23].

The increased resistance to ampicillin (72%) can be attributed to the fact that it is among
the most frequently used drugs in the EU for the treatment of respiratory, abdominal, soft
tissue and urinary tract infections [30]. Currently, in Romania, beta-lactams (potentiated or
not) are the favourite “weapon” of both doctors and veterinarians, conduct that inevitably
leads to an increase in the resistant bacteria population and an increased amount of drug
residues in wastewater. It is known that antibiotic residues present in wastewater can cause
resistance in susceptible bacterial populations [31]. Moreover, selective pressure caused by
the presence of antibiotics can lead to the occurrence of antibiotic resistance mainly in the
form of cross-resistance [13]. In the case of the extended beta-lactam antibiotics class, the
presence of cross-resistance between amoxicillin and third-generation cephalosporins is an
undeniable fact [32]. The occurrence of cross-resistance can explain the increased resistance
to ceftazidime (58%) and the increased intermediate behaviour towards cefotaxime (39.5%)
revealed by the present study.

The second-highest frequency of resistance was to fosfomycin (63%). At the time of
the research, this antibiotic was placed in the Reserve group. Its use should be limited
to urinary tract infections with ESBL-producing E. coli strains. Resistance to aztreonam,
which has the same indications as fosfomycin, was lower (43%), but it is still considered
high given that it replaced fosfomycin in the WHO Model List of Essential Medicines in
2017 [23,33].

Only 3 out of 81 strains (4%) exhibited clear resistance to meropenem (IZD < 16 mm).
The low resistance rate to meropenem could be due to the fact that it is included in the
Watch group: it remains an antibiotic reserved for in-hospital patients, is given mainly
parenterally and is not used in any situation as the first therapeutic option but only as
a second option (for serious conditions such as acute bacterial meningitis in newborns,
complicated and severe abdominal infections as well as high-risk febrile neutropenia) [33].

Although sulfonamides or therapeutic combinations containing sulfonamides have
been used less and less in the treatment of bacterial infections in recent years in human
medicine, we found a high-resistance frequency to SXT (54%).

Regarding nitrofurantoin, which is also no longer commonly used, there is, however,
a low resistance rate (32%). It is included in the Access group and should be one of
the first therapeutic options in the treatment of uncomplicated urinary tract infections
in women, including those caused by ESBL-producing Enterobacteriaceae [30,33]. The
reluctance to prescribe nitrofurantoin is probably due to the associated risks [30,34]. It
is known that, in animal populations, decreased exposure to a particular antibiotic may
reduce the incidence of resistance [35], as was probably the case with nitrofurantoin, and
also that the phenomenon may be irreversible [30], which would explain the evolution of
resistance to sulfamethoxazole/trimethoprim.

The frequency of antibiotic resistance in E. coli isolates from the HW compared with the
CW in the present study is somehow predictable, given that ampicillin and ciprofloxacin are
among the most often prescribed antibiotics in ambulatory care. In contrast, meropenem,
gentamicin and third-generation cephalosporins are reserved for in-hospital treatment of
serious infections. Gentamicin is used as a monotherapy or in various combinations in the
treatment of severe infections with not only Gram-negative bacteria in general, but also
Gram-positive (e.g., endocarditis caused by S. aureus). Further, perhaps the most important
aspect, which mainly explains the second-lowest resistance rate (after meropenem) in all
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strains (7%), is that it is only available for parenteral administration (except for eye drops),
which makes it less attractive for both the doctor and patient [30,33].

The results obtained by this study, according to which there are no significant differ-
ences between the antibiotic resistance rates of the bacteria isolated from the HW and those
isolated from the CW, are reinforced by the findings of other studies. In their study con-
ducted in Oslo, Norway, Paulshus et al. [13] concluded that the levels of antibiotic-resistant
E. coli in the hospital wastewater relative to the community and urban wastewater (entering
the urban treatment plant), even if they were higher, were insufficient to recommend the
implementation of local treatment measures. They also agreed that the majority of the
antibiotic-resistant bacteria in the influent entering the urban wastewater treatment plant
were likely derived from the presence of such bacteria in the total population of the urban
society, as the relative contribution of the hospital wastewater was low [13].

If testing for susceptibility to meropenem and an inhibition zone diameter of less than
28 mm is obtained, the EUCAST recommends that the strain should be subjected to addi-
tional testing procedures in order to detect carbapenemase production [26]. The presumed
carbapenemase production is strengthened by the concomitant resistance to meropenem
and a third-generation cephalosporin. Moreover, resistance and/or susceptibility at in-
creased exposure (intermediate) to cefotaxime and/or ceftazidime is a phenotypic criterion
for further investigations in order to detect ESBLs and acquired AmpC beta-lactamases
in bacteria belonging to the Enterobacteriaceae family. However, the same authority points
out that screening for these resistance mechanisms is important for infection control and
public health, but that the phenotypical expression of these enzymes is not always asso-
ciated with clinical resistance, especially in Gram-negative bacteria producing ESBL and
carbapenemases [26].

The epidemiological importance of the detection of carbapenemase secretion lies
in the following: these enzymes can generate resistance to practically all beta-lactams;
resistance is easily transferable between bacterial strains; infections with such bacteria
belonging to the Enterobacteriaceae group result in high mortality rates [36], especially
when low susceptibility to carbapenems occurs [26]. The lack of response to carbapenems
may be due not only to carbapenemase production but also to the presence of ESBLs
or AmpCs in combination with decreased permeability due to porin loss [37]. Same as
carbapenemases, ESBLs hydrolyse most penicillin and cephalosporins, including oxyimino
compounds (cefuroxime, third- and fourth-generation cephalosporins as well as aztreonam)
but do not hydrolyse cephamycins (cefoxitin) and carbapenems and are inhibited by
classical inhibitors (clavulanic acid, sulbactam and tazobactam) and diazabicyclooctanone
(avibactam) [38]. Except for the strains isolated from patients with various infections,
ESBL production was also detected in bacterial strains isolated from healthy carriers, sick
and healthy animals as well as food of animal origin throughout the entire European
community, suggesting that both horizontal gene transfer resistance, through plasmids,
in addition to chromosomal transmission of resistance, is achieved at a fast pace among
bacterial populations [26].

In a similar study conducted by Paulshus et al. [13], the isolates showing resistance
to cefotaxime and cefpodoxime were regarded as ESBL-producing E. coli (ESBL-EC). The
prevalence of ESBL-EC was 11.5% for the hospital wastewater and 6.9% for the community
wastewater [13]. In another study in Stockholm, 14.9% of the hospital wastewater isolates
were suspected ESBL-EC and resistant to at least one of the antibiotics cefotaxime or cef-
tazidime. Moreover, 14% were resistant to cefotaxime, ceftazidime and cefpodoxime. After
the confirmation of ESBL production using an AREB (antibiotic resistance in environmental
bacteria) test for 75 of the isolates (hospital and urban wastewater) that were resistant to all
three cephalosporins, 73 (97%) of these were confirmed to harbour an ESBL gene (including
qAmpC) [27]. In another study conducted in Spain on wastewater samples of human and
animal origin, E. coli from chicken wastewater showed the highest percentage of ESBL
producers (21%), followed by 4% in humans and 0% in cow and pig wastewater [39]. The
prevalence of ESBL-producing E. coli isolated from the hospital wastewater in our study
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(21.28%) was lower compared to a situation in Poland where ESBL-EC constituted 37% of
the examined hospital wastewater isolates [12].

Thus, to answer whether hospital effluents should be additionally treated, it is essential
to define the risks associated with MDR bacteria in the wastewater outlets specific to each
country. Additionally, the present study presents limitations, such as the low sample size
and the small number of isolates, which may interfere with the statistical results. The
lack of the molecular characterisation of the isolates is also an issue when it comes to
demonstrating that a certain antibiotic resistance phenotype is not due to the spread of
specific clones among the E. coli population isolated from our samples.

Despite these limitations, the finding that the community outlets might be a source
of resistant bacteria at least as important as the well-recognised hospital outlets raises
new questions about how the phenomenon of antibiotic resistance escalates within the
population. Measuring levels of antibiotic resistance in faecal bacteria from wastewater
can be used as an early warning system for changes in the human or animal population’s
resistance patterns.

5. Conclusions

Even if the resistance rate (for six out of ten antibiotics tested), the frequency of
multidrug-resistant bacteria and the prevalence of ESBL producing E. coli were higher
overall among the hospital wastewater isolates compared to the community isolates, the
differences were statistically insignificant.

Thus, the community outlet might be a source of resistant bacteria at least as important
as the well-recognised hospitals.
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