Recovery of Alkaline Earth Metals from Desalination Brine for Carbon Capture and Sodium Removal
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Chemicals
2.2. Apparatus
3. Results and Discussion
3.1. The Recovery Rate of Magnesium Hydroxide and Calcium Hydroxide
3.2. Amine Carrier Method-CO2 Adsorption Capacities of Different Amine Carriers
3.3. Amine Carrier Method-CO2 Adsorption Capacities of 3-Amino-1-Propanol at Different Temperatures
3.4. XRD, SEM, and Whiteness Analyses of Magnesium Carbonate
3.5. Modified Solvay Process-Removal of Sodium at Different Ca(OH)2 Concentrations
3.6. Modified Solvay Process-Removal of Sodium at Different Temperatures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visser, P.M.; Verspagen, J.M.; Sandrini, G.; Stal, L.J.; Matthijs, H.C.; Davis, T.W.; Paerl, H.W.; Huisman, J. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 2016, 54, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Z.H.; Sethupathi, S.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renew. Sustain. Energy Rev. 2013, 28, 71–81. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–28. [Google Scholar]
- Rosa, L.P.; Ribeiro, S.K. The present, past, and future contributions to global warming of CO2 emissions from fuels. Clim. Chang. 2001, 48, 289–307. [Google Scholar] [CrossRef]
- Philander, S.G. Encyclopedia of Global Warming and Climate Change: AE; Sage: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Mejía, A.; Nucete Hubner, M.; Ron Sánchez, E.; Doria, M. The United Nations World Water Development Report-No 4-Water and Sustainability (A Review of Targets, Tools and Regional Cases); United Nations: San Francisco, CA, USA, 2012. [Google Scholar]
- Wagnick, K. IDA Worldwide Desalting Plants: Inventory Report No, 17; Wangnick Consulting: Gnarrenburg, Germany, 2002. [Google Scholar]
- Kim, I.; Yoo, Y.; Son, J.; Park, J.; Huh, I.-S.; Kang, D. Two-step mineral carbonation using seawater-based industrial wastewater: An eco-friendly carbon capture, utilization, and storage process. J. Mater. Cycles Waste Manag. 2020, 22, 333–347. [Google Scholar] [CrossRef]
- Kang, D.; Lee, M.-G.; Jo, H.; Yoo, Y.; Lee, S.-Y.; Park, J. Carbon capture and utilization using industrial wastewater under ambient conditions. Chem. Eng. J. 2017, 308, 1073–1080. [Google Scholar] [CrossRef]
- Al-Mamoori, A.; Krishnamurthy, A.; Rownaghi, A.A.; Rezaei, F. Carbon Capture and Utilization Update. Energy Technol. 2017, 5, 834–849. [Google Scholar] [CrossRef] [Green Version]
- Stünkel, S.; Drescher, A.; Wind, J.; Brinkmann, T.; Repke, J.-U.; Wozny, G. Carbon dioxide capture for the oxidative coupling of methane process—A case study in mini-plant scale. Chem. Eng. Res. Des. 2011, 89, 1261–1270. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.C.; Bai, H. Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Sci. Total Environ. 1999, 228, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Yeh, A.C. Removal of CO2 Greenhouse Gas by Ammonia Scrubbing. Ind. Eng. Chem. Res. 1997, 36, 2490–2493. [Google Scholar] [CrossRef]
- Diao, Y.-F.; Zheng, X.-Y.; He, B.; Chen, C.-H.; Xu, X.-C. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers. Manag. 2004, 45, 2283–2296. [Google Scholar] [CrossRef]
- Li, X.; Hagaman, E.; Tsouris, A.C.; Lee, J.W. Removal of Carbon Dioxide from Flue Gas by Ammonia Carbonation in the Gas Phase. Energy Fuels 2002, 17, 69–74. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Chang, E.; Chiang, P.-C. CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol Air Qual. Res. 2012, 12, 770–791. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Sun, R.; Liu, H.; Wu, S.; Lu, C. Sequential SO2/CO2 capture of calcium-based solid waste from the paper industry in the calcium looping process. Ind. Eng. Chem. Res. 2012, 51, 16042–16048. [Google Scholar] [CrossRef]
- Karimi, M.; de Tuesta, J.L.D.; Gonçalves, C.N.D.P.; Gomes, H.T.; Rodrigues, A.E.; Silva, J.A.C.; Mohsen, K.; José, A.S. Compost from Municipal Solid Wastes as a Source of Biochar for CO2 Capture. Chem. Eng. Technol. 2020, 43, 1336–1349. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; El-Naas, M.H.; Zevenhoven, R.; Al-Sobhi, S.A. Enhanced CO2 capture through reaction with steel-making dust in high salinity water. Int. J. Greenh. Gas Control 2019, 91, 102819. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Maroto-Valer, M.M. Development of adsorbents for CO2 capture from waste materials: A review. Greenh. Gases Sci. Technol. 2012, 2, 20–35. [Google Scholar] [CrossRef]
- Kaithwas, A.; Prasad, M.; Kulshreshtha, A.; Verma, S. Industrial wastes derived solid adsorbents for CO2 capture: A mini review. Chem. Eng. Res. Des. 2012, 90, 1632–1641. [Google Scholar] [CrossRef]
- Pour, N.; Webley, P.; Cook, P.J. Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). Int. J. Greenh. Gas Control 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Ohenoja, K.; Rissanen, J.; Kinnunen, P.; Illikainen, M. Direct carbonation of peat-wood fly ash for carbon capture and utilization in construction application. J. CO2 Util. 2020, 40, 101203. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R. Applications of fly ash for CO2 capture, utilization, and storage. J. CO2 Util. 2018, 29, 82–102. [Google Scholar] [CrossRef]
- Mankar, J.S.; Rayalu, S.S.; Balasubramanian, R.; Krupadam, R.J. High performance CO2 capture at elevated temperatures by using cenospheres prepared from solid waste, fly ash. Chemosphere 2021, 284, 131405. [Google Scholar] [CrossRef]
- Sreenivasulu, B.; Sreedhar, I.; Reddy, B.M.; Raghavan, K.V. Stability and Carbon Capture Enhancement by Coal-Fly-Ash-Doped Sorbents at a High Temperature. Energy Fuels 2017, 31, 785–794. [Google Scholar] [CrossRef]
- Skocek, J.; Zajac, M.; Ben Haha, M. Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete. Sci. Rep. 2020, 10, 1–12. [Google Scholar]
- Lu, L.; Guest, J.S.; Peters, C.A.; Zhu, X.; Rau, G.H.; Ren, Z.J. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 2018, 1, 750–758. [Google Scholar] [CrossRef]
- Dong, C.; Huang, G.; Cheng, G.; An, C.; Yao, Y.; Chen, X.; Chen, J. Wastewater treatment in amine-based carbon capture. Chemosphere 2019, 222, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, J.; Aya, A.-H.M.; Al-Marzouqi, A.H.; El-Naas, M.H. Simultaneous treatment of reject brine and capture of carbon dioxide: A comprehensive review. Desalination 2020, 483, 114386. [Google Scholar] [CrossRef]
- Galvez-Martos, J.-L.; Elhoweris, A.; Morrison, J.; Al-Horr, Y. Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines. J. CO2 Util. 2018, 27, 161–169. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Al-Marzouqi, A.H.; Chaalal, O. A combined approach for the management of desalination reject brine and capture of CO2. Desalination 2010, 251, 70–74. [Google Scholar] [CrossRef]
- Kang, D.; Jo, H.; Lee, M.-G.; Park, J. Carbon dioxide utilization using a pretreated brine solution at normal temperature and pressure. Chem. Eng. J. 2016, 284, 1270–1278. [Google Scholar] [CrossRef]
- Yoo, Y.; Kang, D.; Park, S.; Park, J. Carbon utilization based on post-treatment of desalinated reject brine and effect of structural properties of amines for CaCO3 polymorphs control. Desalination 2020, 479, 114325. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Abu Zahra, M. Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine. Appl. Energy 2015, 154, 298–308. [Google Scholar] [CrossRef]
- El-Naas, M.H.; Mohammad, A.F.; Suleiman, M.I.; Al Musharfy, M.; Al-Marzouqi, A.H. A new process for the capture of CO2 and reduction of water salinity. Desalination 2017, 411, 69–75. [Google Scholar] [CrossRef]
- Carson, P.A. Hazardous Chemicals Handbook; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Montes-Hernandez, G.; Bah, M.; Renard, F. Mechanism of formation of engineered magnesite: A useful mineral to mitigate CO2 industrial emissions. J. CO2 Util. 2019, 35, 272–276. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A. Green construction with carbonating reactive magnesia porous blocks: Effect of cement and water contents. In Proceedings of the International Conference on Future Concrete, Dubai, United Arab Emirates, 12–14 December 2011. [Google Scholar]
- Yan, P.K.; Wang, B.; Gao, Y.J. Study on Synthesis of the High Aspect Ratios Nesquehonite Whiskers. Adv. Mater. Res. 2011, 239, 1118–1122. [Google Scholar] [CrossRef]
- Stephan, G.; MacGillavry, C.H. The crystal structure of nesquehonite, MgCO3. 3H2O. Acta Crystallogr. Sect. B 1972, 28, 1031–1033. [Google Scholar] [CrossRef]
Author | Method | Process and Results |
---|---|---|
D. Kang et al. [33] | Amine carrier method | 0.79, 0.34 and 0.19 mol of CO2 was captured by 5, 10 and 30 wt% of aqueous MEA solutions, separately. When pretreated brine solutions were added to each saturated MEA solution, CO2 was turned into CaCO3. Through analyses, it was proven that the CaCO3 was in the form of calcite. |
Y. Yoo et al. [34] | Amine carrier method | CO2 was captured by different amines and carried into the separated Ca(OH)2 to generate CaCO3. XRD, SEM, FT-IR and TG/DTG analyses were used to investigate the crystal shape, polymorph, and purity of the product. The results illustrated that crystallization inhibition was possible, depending on the structural properties of amine carriers, leading to a successful CaCO3 polymorph control. |
M.H. El-Naas et al. [36] | Modified Solvay process | The authors replaced ammonia with calcium oxide to conduct a CO2 capture. In this modified Solvay process, each mole of Ca(OH)2 could capture two moles of CO2. Moreover, calcium hydroxide could be directly obtained from brine by adjusting the pH value. Under the optimal conditions, a CO2 capture of 86% and 99% and sodium removal of 29% and 35% were achieved for the traditional Solvay and the modified process, respectively. |
Elements | Na | Mg | K | Ca | Rb | Li | B |
---|---|---|---|---|---|---|---|
Concentration (mg/L) | 17,420 | 2112 | 782.6 | 722.2 | 36.4 | 19.5 | 18.9 |
Magnesium Carbonate | Samples | Whiteness |
---|---|---|
Commercial product | Sample 1 | 94.9 |
Sample 2 | 94.7 | |
Sample 3 | 94.8 | |
Experimental magnesium carbonate | Sample 1 | 93.5 |
Sample 2 | 93.5 | |
Sample 3 | 93.8 |
Temperatures | 288 K | 298 K | 308 K | 318 K | 328 K |
Solubility (g/100 g water) | 7.6 | 8.4 | 9.9 | 12.1 | 13.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Chen, P.-H.; Chen, W.-S. Recovery of Alkaline Earth Metals from Desalination Brine for Carbon Capture and Sodium Removal. Water 2021, 13, 3463. https://doi.org/10.3390/w13233463
Lee C-H, Chen P-H, Chen W-S. Recovery of Alkaline Earth Metals from Desalination Brine for Carbon Capture and Sodium Removal. Water. 2021; 13(23):3463. https://doi.org/10.3390/w13233463
Chicago/Turabian StyleLee, Cheng-Han, Pin-Han Chen, and Wei-Sheng Chen. 2021. "Recovery of Alkaline Earth Metals from Desalination Brine for Carbon Capture and Sodium Removal" Water 13, no. 23: 3463. https://doi.org/10.3390/w13233463
APA StyleLee, C. -H., Chen, P. -H., & Chen, W. -S. (2021). Recovery of Alkaline Earth Metals from Desalination Brine for Carbon Capture and Sodium Removal. Water, 13(23), 3463. https://doi.org/10.3390/w13233463