Sensitivity Analysis of Hydraulic Transient Simulations Based on the MOC in the Gravity Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Parameter Selection
2.2. Control Equations and Calculation Methods
2.3. Sensitivity Analysis Methods
2.3.1. Morris Sensitivity Analysis
2.3.2. LHS-PRCC
3. Results and Discussion
3.1. The Result of Morris
3.2. LHS-PRCC Analysis
3.3. Results Comparison and Discussion
3.3.1. Analysis of Parameters Related to Wave Velocity
3.3.2. The Main Parameters That Affect the Maximum Pressure
3.3.3. Analysis of the Variability of the Friction Factor in the Results
4. Conclusions
- In this gravity flow example, the comparison of the two sensitivity analysis results shows that only some key parameters have an important influence on the calculation results. The sensitivity of key parameters from large to small are pipe diameter, flow rate and valve closing time. The friction factor, pipe thickness and Young’s modulus have little influence on the calculation results, and their sensitivity ranking has some variability.
- The simulation results have reference value for the design of similar gravity flow water delivery projects with obvious characteristics. In the design and operation of the project, the valve closing time, pipe diameter and flow rate should be strictly controlled to ensure the safety of the project.
- The sensitivity of the friction factor is different in the results of the two methods. After discussion, when other parameters remain unchanged, the maximum pressure increases with the increase in the friction factor due to the line packing effect; when other parameters change and the water delivery capacity cannot be guaranteed, the maximum pressure is negatively related to the friction coefficient. Therefore, more protective measures are needed when the friction factor of a gravity flow project becomes larger.
- The Morris screening method and LHS-PRCC gave similar parameter rankings for the selected parameters of the project in this case. The calculation results of the two methods are complementary in the sensitivity analysis of hydraulic transient simulation. At the same time, this study also confirms the applicability of the two methods in the sensitivity analysis of hydraulic transient simulations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
H | pressure head (m) |
x | distance along pipe from inlet (m) |
g | acceleration of gravity (m/s2) |
V | flow velocity (m/s) |
t | time, as subscript to denote time (s) |
ρ | density of liquid (kg/m3) |
R | radius of the pipe (m) |
α | the angle between pipe and the horizontal plane |
τw | shear stress calculated by the non-stationary friction losses |
τq | shear stress calculated by the quasi-steady state model |
τu | shear stress related to the non-stationarity of flow |
a | speed of pressure wave (m/s) |
f | Darcy–Weisbach friction factor |
VP, VA, VB | flow velocity of Point·P, A and B (m/s) |
HP, HA, HB | pressure head of Point·P, A and B (m) |
∆t | time step (s) |
∆x | length of segment (m) |
Cd | discharge coefficient |
∆H | head loss of valve |
K | fluid bulk elastic modulus (Pa) |
D | pipe inner diameter (m) |
E | elastic modulus of the pipe (Pa) |
δ | thickness of pipe (m) |
S | sensitivity judgment parameter in Morris |
x | input parameter |
y | output parameter |
y0 | reference value of the model parameter calculation result |
Pi | percentage of the change of the i-th model’s calculation parameter value to the reference value after the calibration parameter |
n | number of model runs |
r | sensitivity judgment parameter in LHS-PRCC |
Acronyms: | |
MOC | method of characteristics |
Morris | Morris sensitivity analysis |
LHS-PRCC | partial rank correlation coefficient method based on Latin hypercube sampling |
References
- Wang, R.; Wang, Z.; Wang, X.; Yang, H.; Sun, J. Pipe Burst Risk State Assessment and Classification Based on Water Hammer Analysis for Water Supply Networks. J. Water Res. Plan. Manag. 2014, 140, 4014005. [Google Scholar] [CrossRef]
- Yang, K. Review and frontier scientific issues of hydraulic control for long distance water diversion. J. Hydraul. Eng. 2016, 47, 424–435. (In Chinese) [Google Scholar] [CrossRef]
- Abdeldayem, O.; Ferràs, D.; van der Zwan, S.; Kennedy, M. Analysis of Unsteady Friction Models Used in Engineering Software for Water Hammer Analysis: Implementation Case in WANDA. Water 2021, 13, 495. [Google Scholar] [CrossRef]
- Wylie, E.B.A.S. Fluid Transients; McGraw-Hill: New York, NY, USA, 1978; p. 384. [Google Scholar]
- Chaudhry, H.M. Applied Hydraulic Transients; Van Nostrand Reinhold: New York, NY, USA, 1987; p. 521. [Google Scholar]
- Wylie, E.B.; Streeter, V.L.; Lyle, V.; Suo, L. Fluid Transients in Systems; Prentice Hall: Hoboken, NJ, USA, 1993; p. 463. [Google Scholar]
- Kwon, H.J.; Lee, J. Computer and Experimental Models of Transient Flow in a Pipe Involving Backflow Preventers. J. Hydraul. Eng. 2008, 134, 426–434. [Google Scholar] [CrossRef]
- Han, S.Y.; Hansen, D.; Kember, G. Multiple scales analysis of water hammer attenuation. Q. Appl. Math. 2011, 69, 677–690. [Google Scholar] [CrossRef] [Green Version]
- Kou, Y.; Yang, J.; Kou, Z. A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve. Shock Vib. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Su, G.H.; Wang, G.; Qiu, S.; Xiao, Z. Numerical simulation and optimization on valve-induced water hammer characteristics for parallel pump feedwater system. Ann. Nucl. Energy 2008, 35, 2280–2287. [Google Scholar] [CrossRef]
- Bettaieb, N.; Taieb, E.H. Assessment of Failure Modes Caused by Water Hammer and Investigation of Convenient Control Measures. J. Pipeline Syst. Eng. 2020, 11, 4020006. [Google Scholar] [CrossRef]
- Afshar, M.H.; Rohani, M.; Taheri, R. Simulation of transient flow in pipeline systems due to load rejection and load acceptance by hydroelectric power plants. Int. J. Mech. Sci. 2010, 52, 103–115. [Google Scholar] [CrossRef]
- Urbanowicz, K. Modern Modeling of Water Hammer. Pol. Marit. Res. 2017, 24, 68–77. [Google Scholar] [CrossRef]
- Urbanowicz, K.; Stosiak, M.; Towarnicki, K.; Bergant, A. Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system. Eng. Fail. Anal. 2021, 128, 105607. [Google Scholar] [CrossRef]
- Liou, J.C.P. Understanding Line Packing in Frictional Water Hammer. J. Fluids Eng. 2016, 138, 081303. [Google Scholar] [CrossRef]
- Ionescu-Bujor, M.; Cacuci, D.G. A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods. Nucl. Sci. Eng. 2004, 147, 189–203. [Google Scholar] [CrossRef]
- Cacuci, D.G.; Ionescu-Bujor, M. A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II: Statistical Methods. Nucl. Sci. Eng. 2004, 147, 204–217. [Google Scholar] [CrossRef]
- Yi, X.; Zou, R.; Guo, H. Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake. Ecol. Model. 2016, 327, 74–84. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Beljadid, A.; Leblanc, M.; Chehbouni, A. Sensitivity and Interdependency Analysis of the HBV Conceptual Model Parameters in a Semi-Arid Mountainous Watershed. Water 2020, 12, 2440. [Google Scholar] [CrossRef]
- Xu, X.; Sun, C.; Huang, G.; Mohanty, B.P. Global sensitivity analysis and calibration of parameters for a physically-based agro-hydrological model. Environ. Model. Softw. 2016, 83, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, W.; Xiong, J.; Chen, P. Sensitivity Analysis for Urban Drainage Modeling Using Mutual Information. Entropy 2014, 16, 5738. [Google Scholar] [CrossRef]
- Wan, W.; Huang, W.; Li, C. Sensitivity Analysis for the Resistance on the Performance of a Pressure Vessel for Water Hammer Protection. J. Press. Vessel. Technol. 2014, 136. [Google Scholar] [CrossRef]
- Wan, W.; Li, F. Sensitivity Analysis of Operational Time Differences for a Pump–Valve System on a Water Hammer Response. J. Press. Vessel. Technol. 2016, 138. [Google Scholar] [CrossRef]
- Zhu, Y.Z.Y.; Zhang, J.Z.J.; Hu, M.H.M. Random model of water hammer pressure and probability analysis in waterpower station. In Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference, San Diego, CA, USA, 30 July–2 August 2007; pp. 47–55. [Google Scholar]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Ge, Q.; Menendez, M. Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs. Reliab. Eng. Syst. Saf. 2017, 162, 28–39. [Google Scholar] [CrossRef]
- Mckay, M.D.; Beckman, R.J.; Conover, W.J. Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Marino, S.; Hogue, I.B.; Ray, C.J.; Kirschner, D.E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 2008, 254, 178–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helton, J.C.; Davis, F.J. Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk Anal. 2002, 22, 591–622. [Google Scholar] [CrossRef] [PubMed]
- Yao, E.; Kember, G.; Hansen, D. Analysis of Water Hammer Attenuation in Applications with Varying Valve Closure Times. J. Eng. Mech. 2015, 141, 4014107. [Google Scholar] [CrossRef]
Parameter Number | Parameter | Initial Value | Range |
---|---|---|---|
1 | Valve closing time (s) | 100.00 | 70.00~130.00 |
2 | Flow rate (m3/s) | 0.054 | 0.038~0.070 |
3 | Friction factor | 0.0249 | 0.0174~0.032 |
4 | Young’s modulus of pipe (Pa) | 2.079 × 1011 | 1.455 × 1011~2.703 × 1011 |
5 | Pipe thickness (mm) | 8.00 | 5.60~10.40 |
6 | Pipe diameter (mm) | 250.00 | 175.00~325.00 |
Parameter Number | Parameter | S | Sensitivity Level |
---|---|---|---|
1 | Valve closing time (s) | −0.242 | Sensitivity parameter |
2 | Flow rate (m3/s) | 0.347 | Sensitivity parameter |
3 | Friction factor | 0.020 | Not sensitive |
4 | Young’s modulus of pipe (Pa) | 0.006 | Not sensitive |
5 | Pipe thickness (mm) | 0.019 | Not sensitive |
6 | Pipe diameter (mm) | −0.383 | Sensitivity parameter |
Number | Valve Closing Time (s) | Flow Rate (m3/s) | Friction Factor | Young’s Modulus (Pa) | Pipe Thickness (mm) | Pipe Diameter (mm) | Maximum Pressure (m) |
---|---|---|---|---|---|---|---|
1 | 125.645 | 56.144 | 0.026 | 2.386 × 1011 | 7.681 | 283.788 | 296.841 |
2 | 127.826 | 38.052 | 0.031 | 2.244 × 1011 | 8.327 | 210.493 | 301.976 |
3 | 74.495 | 51.442 | 0.025 | 1.592 × 1011 | 9.572 | 298.601 | 319.967 |
4 | 115.808 | 48.514 | 0.022 | 1.973 × 1011 | 9.147 | 269.441 | 297.539 |
5 | 104.482 | 46.554 | 0.026 | 1.931 × 1011 | 6.336 | 200.200 | 327.434 |
6 | 93.766 | 63.972 | 0.027 | 2.636 × 1011 | 8.556 | 274.412 | 325.845 |
7 | 107.732 | 53.202 | 0.023 | 1.613 × 1011 | 8.814 | 187.536 | 358.472 |
8 | 119.087 | 61.940 | 0.022 | 1.775 × 1011 | 7.202 | 323.909 | 302.464 |
9 | 98.902 | 63.532 | 0.028 | 2.276 × 1011 | 7.004 | 227.417 | 342.644 |
10 | 84.484 | 44.062 | 0.019 | 2.008 × 1011 | 6.416 | 294.127 | 290.188 |
11 | 122.422 | 59.940 | 0.018 | 2.090 × 1011 | 9.929 | 222.184 | 332.570 |
12 | 89.271 | 65.280 | 0.030 | 1.667 × 1011 | 6.160 | 313.784 | 317.355 |
13 | 96.503 | 67.063 | 0.028 | 2.116 × 1011 | 5.940 | 261.522 | 328.255 |
14 | 102.435 | 44.252 | 0.023 | 1.536 × 1011 | 6.577 | 237.701 | 294.895 |
15 | 70.479 | 54.492 | 0.018 | 2.675 × 1011 | 9.795 | 246.130 | 351.802 |
16 | 84.059 | 42.327 | 0.020 | 2.549 × 1011 | 6.785 | 193.882 | 354.191 |
17 | 80.988 | 39.814 | 0.021 | 2.201 × 1011 | 8.953 | 309.268 | 288.788 |
18 | 113.402 | 49.666 | 0.021 | 2.577 × 1011 | 10.209 | 214.894 | 330.033 |
19 | 94.499 | 40.572 | 0.018 | 1.716 × 1011 | 9.425 | 255.921 | 302.486 |
20 | 122.897 | 47.827 | 0.018 | 1.808 × 1011 | 10.123 | 250.589 | 301.791 |
21 | 87.626 | 59.078 | 0.024 | 1.898 × 1011 | 8.268 | 282.544 | 321.346 |
22 | 77.114 | 55.254 | 0.020 | 2.475 × 1011 | 7.719 | 185.561 | 394.491 |
23 | 108.762 | 69.224 | 0.032 | 2.330 × 1011 | 8.095 | 180.260 | 365.335 |
24 | 77.358 | 67.849 | 0.029 | 2.453 × 1011 | 5.643 | 233.897 | 367.192 |
25 | 111.571 | 57.441 | 0.019 | 1.488 × 1011 | 7.363 | 305.560 | 303.349 |
Parameter Number | Parameter | r |
---|---|---|
1 | Valve closing time (s) | −0.806 |
2 | Flow rate (m3/s) | 0.860 |
3 | Friction factor | −0.388 |
4 | Young’s modulus (Pa) | 0.096 |
5 | Pipe thickness (mm) | 0.136 |
6 | Pipe diameter (mm) | −0.924 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, J.; Zhang, Y.; Wu, X. Sensitivity Analysis of Hydraulic Transient Simulations Based on the MOC in the Gravity Flow. Water 2021, 13, 3464. https://doi.org/10.3390/w13233464
Liu J, Wu J, Zhang Y, Wu X. Sensitivity Analysis of Hydraulic Transient Simulations Based on the MOC in the Gravity Flow. Water. 2021; 13(23):3464. https://doi.org/10.3390/w13233464
Chicago/Turabian StyleLiu, Jinhao, Jianhua Wu, Yusheng Zhang, and Xinhao Wu. 2021. "Sensitivity Analysis of Hydraulic Transient Simulations Based on the MOC in the Gravity Flow" Water 13, no. 23: 3464. https://doi.org/10.3390/w13233464
APA StyleLiu, J., Wu, J., Zhang, Y., & Wu, X. (2021). Sensitivity Analysis of Hydraulic Transient Simulations Based on the MOC in the Gravity Flow. Water, 13(23), 3464. https://doi.org/10.3390/w13233464