Suspended Sediment Load Simulation during Flood Events Using Intelligent Systems: A Case Study on Semiarid Regions of Mediterranean Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artificial Neural Networks
2.2. Neuro-Fuzzy Inference Systems
2.3. Particle Swarm Optimization
- The current velocity.
- The best performance.
- The best performance in its neighborhoods.
2.4. Random Forest
2.5. Long Short-Term Memory Networks
2.6. Data Sources
3. Study Area
4. Evaluation Criteria
5. Models Development
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ONU. 2020. Available online: www.greenfacts.org/fr/ressources-eau/ (accessed on 2 March 2020).
- Khan, M.Y.A.; Tian, F.; Hasan, F.; Chakrapani, G.J. Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India. Int. J. Sediment Res. 2019, 34, 95–107. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Kişi, Ö.; Adamowski, J.; Ramezani-Charmahineh, A. Evaluation of data driven models for river suspended sediment concentration modeling. J. Hydrol. 2016, 535, 457–472. [Google Scholar] [CrossRef]
- Salih, S.-Q.; Sharafati, A.; Khosravi, K.; Faris, H.; Kisi, O.; Tao, H.; Yaseen, Z.-M. River suspended sediment load prediction based on river discharge information: Application of newly developed data mining models. Hydrol. Sci. J. 2020, 65, 624–637. [Google Scholar] [CrossRef]
- Kisi, Ö. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation/Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme d’apprentissage de Levenberg-Marquardt. Hydrol. Sci. J. 2004, 49, 1025–1040. [Google Scholar] [CrossRef] [Green Version]
- Toumi, A.; Remini, B. Perte de la capacité de stockage d’eau au barrage de Beni Haroun, Algérie. Loss of water storage capacity at the Beni Haroun dam, Algeria. Syst. Agric. Environ. 2018, 2, 80–97. [Google Scholar]
- Remini, B.; Bensafia, D.; Mekhatri, A. Sidi M’hamed Ben Aouda’s Dam (Algeria): Acceleration to the silting! LARHYSS 2018, 33, 221–252. [Google Scholar]
- Yilmaz, B.; Aras, E.; Kankal, M.; Nacar, S. Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches. Acta Geophys. 2019, 67, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Djemai, M. The use of hybrid methods for change points and trends detection in rainfall series of northern Algeria. Acta Geophys. 2020, 68, 1443–1460. [Google Scholar] [CrossRef]
- Abda, Z.; Chettih, M. Forecasting daily flow rate-based intelligent hybrid models combining wavelet and Hilbert–Huang transforms in the mediterranean basin in northern Algeria. Acta Geophys. 2018, 66, 1131–1150. [Google Scholar] [CrossRef]
- Abda, Z.; Chettih, M.; Zerouali, B. Assessment of neuro-fuzzy approach based different wavelet families for daily flow rates forecasting. Model. Earth Syst. Environ. 2020, 7, 1523–1538. [Google Scholar] [CrossRef]
- Bajirao, T.S.; Kumar, P.; Kumar, M.; Elbeltagi, A.; Kuriqi, A. Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers. Sustainability 2021, 13, 542. [Google Scholar] [CrossRef]
- Cimen, M. Estimation of daily suspended sediments using support vector machines. Hydrol. Sci. J. 2008, 53, 656–666. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Singh, V.P.; Kahya, E.; Ruskeepää, H.; Saggi, M.K.; Sivakumar, B.; Kim, S.; Salmasi, F.; Kashani, M.H.; et al. Continuous monitoring of suspended sediment concentrations using image analytics and deriving inherent correlations by machine learning. Sci. Rep. 2020, 10, 1–9. [Google Scholar]
- Azamathulla, H.M.; Cuan, Y.C.; Ghani, A.A.; Chang, C.K. Suspended sediment load prediction of river systems: GEP approach. Arab. J. Geosci. 2013, 6, 3469–3480. [Google Scholar] [CrossRef]
- Lafdani, E.K.; Nia, A.M.; Ahmadi, A. Daily suspended sediment load prediction using artificial neural networks and support vector machines. J. Hydrol. 2013, 478, 50–62. [Google Scholar] [CrossRef]
- Olyaie, E.; Banejad, H.; Chau, K.W.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess. 2015, 187, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Shamaei, E.; Kaedi, M. Suspended sediment concentration estimation by stacking the genetic programming and neuro-fuzzy predictions. Appl. Soft. Comput. 2016, 45, 187–196. [Google Scholar] [CrossRef]
- Buyukyildiz, M.; Kumcu, S.Y. An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models. Water Resour. Manag. 2017, 31, 1343–1359. [Google Scholar] [CrossRef]
- Elahcene, O.; Bouznad, I.E.; Bouleknaft, Z. Erosion and solid transport processes in the Isser Wadi watershed, Algeria. Euro-Mediterr. J. Environ. Integr. 2019, 4, 1–10. [Google Scholar] [CrossRef]
- Kisi, O.; Yaseen, Z.M. The potential of hybrid evolutionary fuzzy intelligence model for suspended sediment concentration prediction. Catena 2019, 174, 11–23. [Google Scholar] [CrossRef]
- Nourani, V.; Molajou, A.; Tajbakhsh, A.D.; Najafi, H. A wavelet based data mining technique for suspended sediment load modeling. Water Resour. Manag. 2019, 33, 1769–1784. [Google Scholar] [CrossRef]
- Nourani, V.; Andalib, G. Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. J. Mt. Sci. 2015, 12, 85–100. [Google Scholar] [CrossRef]
- Asheghi, R.; Hosseini, S.A.; Saneie, M.; Shahri, A.-A. Updating the neural network sediment load models using different sensitivity analysis methods: A regional application. J. Hydroinf. 2020, 22, 562–577. [Google Scholar] [CrossRef] [Green Version]
- Meshram, S.G.; Ghorbani, M.A.; Deo, R.C.; Kashani, M.H.; Meshram, C.; Karimi, V. New approach for sediment yield forecasting with a two-phase feedforward neuron network-particle swarm optimization model integrated with the gravitational search algorithm. Water Resour. Manag. 2019, 33, 2335–2356. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, A.; Sharma, N.; Flügel, W.A. Daily suspended sediment simulation using machine learning approach. Catena 2016, 138, 77–90. [Google Scholar] [CrossRef]
- Adnan, R.-M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of suspended sediment load using data-driven models. Water 2019, 11, 2060. [Google Scholar] [CrossRef] [Green Version]
- Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Teo, F.Y.; Ebrahimi, M.; Fai, C.M.; Huang, Y.K.; El-Shaife, A. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm. Environ. Sci. Pollut. Res. 2020, 27, 38094–38116. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, K.; Kaveh, H.; Bui, M.-D.; Rutschmann, P. Long short-term memory for predicting daily suspended sediment concentration. Eng. Comput. 2020, 37, 2013–2027. [Google Scholar] [CrossRef]
- Zerouali, B.; Chettih, M.; Abda, Z.; Mesbah, M.; Santos, C.A.G.; Neto, R.M.B.; da Silva, R.M. Spatiotemporal meteorological drought assessment in a humid Mediterranean region: Case study of the Oued Sebaou basin (northern central Algeria). Nat. Hazards 2021, 108, 689–709. [Google Scholar] [CrossRef]
- Touati, B. Les Barrages et la Politique Hydraulique en Algérie. 2010. Available online: https://bu.umc.edu.dz/theses/sc-terre/TOU5850.pdf (accessed on 5 July 2021).
- Zerouali, B.; Chettih, M.; Alwetaishi, M.; Abda, Z.; Elbeltagi, A.; Augusto Guimarães Santos, C.; Hussein, E.E. Evaluation of Karst Spring Discharge Response Using Time-Scale-Based Methods for a Mediterranean Basin of Northern Algeria. Water 2021, 13, 2946. [Google Scholar] [CrossRef]
- Baosheng, W.U.; Van Maren, D.S.; Lingyun, L.-I. Predictability of sediment transport in the Yellow River using selected transport formulas. Inter. J. Sediment Res. 2008, 23, 283–298. [Google Scholar]
- Benkhaled, A.; Remini, B. Variabilité temporelle de la concentration en sédiments et phénomène d’hystérésis dans le bassin de l’Oued Wahrane (Algérie). Hydrol. Sci. J. 2003, 48, 243–255. [Google Scholar] [CrossRef] [Green Version]
- El Mahi, A.; Meddi, M.; Bravard, J.P. Analyse du transport solide en suspension dans le bassin versant de l’Oued El Hammam (Algérie du Nord). Hydrol. Sci. J. 2012, 57, 1642–1661. [Google Scholar] [CrossRef]
- Nakato, T. Tests of selected sediment-transport formulas. J. Hydraul. Eng. 1990, 116, 362–379. [Google Scholar] [CrossRef]
- Hasbaia, M.; Paquier, A.; Herizi, T. Hydrological modeling of sediment transport in the semiarid region, case of Soubella watershed in Algeria. In Water Resources in Arid Areas: The Way Forward; Springer: Cham, Switzerland, 2017; pp. 251–266. [Google Scholar]
- Tachi, S.E.; Bouguerra, H.; Derdous, O.; Djabri, L.; Benmamar, S. Estimating suspended sediment concentration at different time scales in Northeastern Algeria. Appl. Water Sci. 2020, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bouguerra, H.; Tachi, S.-E.; Derdous, O.; Bouanani, A.; Khanchoul, K. Suspended sediment discharge modeling during flood events using two different artificial neural network algorithms. Acta Geophys. 2019, 67, 1649–1660. [Google Scholar] [CrossRef]
- Boukhrissa, Z.A.; Khanchoul, K.; Le Bissonnais, Y.; Tourki, M. Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment, Algeria. J. Earth Syst. Sci. 2013, 122, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Salhi, C.; Touaibia, B.; Zeroual, A. Les réseaux de neurones et la régression multiple en prédiction de l’érosion spécifique: Cas du bassin hydrographique Algérois-Hodna-Soummam (Algérie). Hydrol. Sci. J. 2013, 58, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Tachi, S.E.; Ouerdachi, L.; Remaoun, M.; Derdous, O.; Boutaghane, H. Forecasting suspended sediment load using regularized neural network: Case study of the Isser River (Algeria). J. Water Land Develop. 2016, 29, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.J.; Loucks, D.P.; Stedinger, J.R. Artificial neural network models of watershed nutrient loading. Water Resour. Manag. 2012, 26, 2781–2797. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Tabari, H.; Yazdi, A.-A.; Isik, S.; Kalin, L. Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 2014, 25, 25–37. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Sugeno, M.; Kang, G.T. Fuzzy modelling and control of multilayer incinerator. Fuzzy Set Syst. 1986, 18, 329–345. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC 1985, 1, 116–132. [Google Scholar] [CrossRef]
- Akrami, S.A.; El-Shafie, A.; Jaafar, O. Improving rainfall forecasting efficiency using modified adaptive neuro-fuzzy inference system (MANFIS). Water Resour. Manag. 2013, 27, 3507–3523. [Google Scholar] [CrossRef]
- Awan, J.A.; Bae, D.H. Improving ANFIS based model for long-term dam inflow prediction by incorporating monthly rainfall forecasts. Water Resour. Manag. 2014, 28, 1185–1199. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Naouel, D.; Zouini, D.; Breil, P. Contribution to flood risk management by the IRIP method at the level of Gareat El Taref catchment, Constantine’s highlands, North-East of Algeria. J. Water Land Develop. 2018, 38, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Hauduc, H.; Neumann, M.B.; Muschalla, D.; Gamerith, V.; Gillot, S.; Vanrolleghem, P.A. Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment. Environ. Modell. Soft. 2015, 68, 196–204. [Google Scholar] [CrossRef]
- Abda, Z.; Chettih, M.; Zerouali, B. Efficiency of a neuro-fuzzy model based on the Hilbert-Huang transform for flood prediction. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources; Springer: Cham, Switzerland, 2019; pp. 401–404. [Google Scholar]
- Kisi, O.; Latifoğlu, L.; Latifoğlu, F. Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resour. Manag. 2014, 28, 4045–4057. [Google Scholar] [CrossRef]
- AlDahoul, N.; Essam, Y.; Kumar, P.; Ahmed, A.N.; Sherif, M.; Sefelnasr, A.; Elshafie, A. Suspended sediment load prediction using long short-term memory neural network. Sci. Rep. 2021, 11, 1–22. [Google Scholar]
- Sharafati, A.; Haji Seyed Asadollah, S.B.; Motta, D.; Yaseen, Z.M. Application of newly developed ensemble machine learning models for daily suspended sediment load prediction and related uncertainty analysis. Hydrol. Sci. J. 2020, 65, 2022–2042. [Google Scholar] [CrossRef]
- Mohammadi, B.; Guan, Y.; Moazenzadeh, R.; Safari, M.-J.S. Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena 2021, 198, 105024. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Abdullatif, A.A.B.; Ahmed, A.N.; Razzaq, A.; Birima, A.H.; El-Shafie, A.A. Comparison of various machine learning approaches performance for prediction suspended sediment load of river systems: A case study in Malaysia. Earth Sci. Inform. 2021, 1–14. [Google Scholar] [CrossRef]
- Idrees, M.B.; Jehanzaib, M.; Kim, D.; Kim, T.W. Comprehensive evaluation of machine learning models for suspended sediment load inflow prediction in a reservoir. Stoch. Environ. Res. Risk. Assess. 2021, 35, 1805–1823. [Google Scholar] [CrossRef]
- Nhu, V.H.; Khosravi, K.; Cooper, J.R.; Karimi, M.; Kisi, O.; Pham, B.T.; Lyu, Z. Monthly suspended sediment load prediction using artificial intelligence: Testing of a new random subspace method. Hydrol. Sci. J. 2020, 65, 2116–2127. [Google Scholar] [CrossRef]
- Ehteram, M.; Ahmed, A.N.; Latif, S.D.; Huang, Y.F.; Alizamir, M.; Kisi, O.; Mert, C.; El-Shafie, A. Design of a hybrid ANN multi-objective whale algorithm for suspended sediment load prediction. Environ. Sci. Poll. Res. 2021, 28, 1596–1611. [Google Scholar] [CrossRef] [PubMed]
- Bouzeria, H.; Ghenim, A.N.; Khanchoul, K. Using artificial neural network (ANN) for prediction of sediment loads, application to the Mellah catchment, northeast Algeria. J. Water Land Develop. 2017, 33, 47–55. [Google Scholar] [CrossRef]
Year | Month | Day | Hour | Height (m) | Ql (m3/s) | Qs (kg/s) |
---|---|---|---|---|---|---|
1972 | 5 | 24 | 19:15 | 32 | 27.300 | 25.662 |
1972 | 5 | 25 | 06:30 | 17 | 0.966 | 0.985 |
1972 | 6 | 10 | 05:00 | 17 | 0.270 | 1.220 |
1972 | 6 | 11 | 06:00 | 17 | 0.270 | 0.837 |
1972 | 6 | 12 | 06:50 | 9 | 0.270 | 0.772 |
1972 | 7 | 17 | 05:40 | 8 | 0.098 | 0.632 |
1972 | 7 | 18 | 06:15 | 7 | 0.079 | 0.021 |
1972 | 7 | 19 | 19:00 | 32 | 0.062 | 0.786 |
Basin | Statistical Parameters | Mean | STD | CV | Min | Max |
---|---|---|---|---|---|---|
Chemourah | Ql (m3/s) | 4.7282 | 9.4349 | 1.9955 | 0 | 74.3000 |
Qs (kg/s) | 71.1296 | 150.1295 | 2.1106 | 0 | 955.0040 | |
Garaet el tarf | Ql (m3/s) | 3.4225 | 7.3479 | 2.1470 | 0 | 69.5000 |
Qs (kg/s) | 64.3165 | 162.9772 | 2.5340 | 0 | 957.6070 |
Input Models | Number of Input | Output |
---|---|---|
(1) Ql(t) | 1 | Qs(t) |
(2) Ql(t) and –Qs(t − 1) | 2 | Qs(t) |
(3) Ql(t) and −Ql(t − 1) | 2 | Qs(t) |
(4) Ql(t), −Ql(t − 1) and −Qs(t − 1) | 3 | Qs(t) |
(5) Ql(t), −Ql(t − 1) and −Ql(t − 2) | 3 | Qs(t) |
(6) Ql(t), −Ql(t − 1), −Ql(t − 2) and −Qs(t − 1) | 4 | Qs(t) |
Basin | Models | Phases | RMSE | U2 | E | R |
---|---|---|---|---|---|---|
Chemourah | ANN-PSO | Training | 78.1193 | 0.1828 | 0.7663 | 0.8755 |
Validation | 67.2990 | 0.3274 | 0.6346 | 0.8003 | ||
ANFIS-PSO | Training | 201.5912 | 1.2171 | −0.5561 | 0.0051 | |
Validation | 158.2035 | 1.8090 | −1.0195 | −0.0012 | ||
RF | Training | 77.1006 | 0.1780 | 0.7724 | 0.8845 | |
Validation | 74.5747 | 0.4020 | 0.5513 | 0.7458 | ||
LSTM | Training | 62.0405 | 0.1153 | 0.8526 | 0.9239 | |
Validation | 69.4178 | 0.3483 | 0.6112 | 0.7824 | ||
Garaet el tarf | ANN-PSO | Training | 88.7852 | 0.2009 | 0.7564 | 0.8706 |
Validation | 55.8737 | 0.2904 | 0.6971 | 0.8392 | ||
ANFIS-PSO | Training | 239.5296 | 1.4647 | −0.7753 | −0.0235 | |
Validation | 165.3653 | 2.5346 | −1.6440 | −0.0394 | ||
RF | Training | 80.1885 | 0.1639 | 0.8013 | 0.8974 | |
Validation | 58.9957 | 0.3237 | 0.6624 | 0.8157 | ||
LSTM | Training | 68.6353 | 0.1201 | 0.8544 | 0.9273 | |
Validation | 64.8888 | 0.3916 | 0.5915 | 0.7706 |
Basin | Models | Phases | Flow | Mean | STD | CV | Min | Max |
---|---|---|---|---|---|---|---|---|
Chemourah | ANN−PSO | Training | Observed | 85.2852 | 161.9096 | 1.8984 | 0 | 955.0040 |
Simulated | 87.2012 | 142.5901 | 1.6352 | 0.0567 | 819.1319 | |||
Validation | Observed | 37.9759 | 111.8170 | 2.9444 | 0 | 647.2060 | ||
Simulated | 42.6991 | 82.3302 | 1.9282 | 0.1968 | 500.3120 | |||
ANFIS−PSO | Training | Observed | 85.2852 | 161.9096 | 1.8984 | 0 | 955.0040 | |
Simulated | 71.0791 | 120.7254 | 1.6985 | −0.0036 | 884.2506 | |||
Validation | Observed | 37.9759 | 111.8170 | 2.9444 | 0 | 647.2060 | ||
Simulated | 56.9000 | 109.9396 | 1.9322 | 0.0252 | 670.2476 | |||
RF | Training | Observed | 85.2852 | 161.9096 | 1.8984 | 0 | 955.0040 | |
Simulated | 81.5454 | 127.4940 | 1.5635 | 0.0486 | 622.4522 | |||
Validation | Observed | 37.9759 | 111.8170 | 2.9444 | 0 | 647.2060 | ||
Simulated | 42.5403 | 77.0234 | 1.8106 | 0.0486 | 365.7755 | |||
LSTM | Training | Observed | 85.2852 | 161.9096 | 1.8984 | 0 | 955.0040 | |
Simulated | 84.1479 | 144.4213 | 1.7163 | −52.7124 | 843.7532 | |||
Validation | Observed | 37.9759 | 111.8170 | 2.9444 | 0 | 647.2060 | ||
Simulated | 41.4518 | 87.9488 | 2.1217 | −17.5058 | 512.4590 | |||
Garaet el tarf | ANN−PSO | Training | Observed | 82.9021 | 180.0103 | 2.1714 | 0 | 957.6070 |
Simulated | 89.6066 | 154.6680 | 1.7261 | 0.0427 | 859.5337 | |||
Validation | Observed | 21.0568 | 101.7052 | 4.8301 | 0 | 909.5410 | ||
Simulated | 27.2904 | 79.4557 | 2.9115 | 0.0310 | 776.1455 | |||
ANFIS−PSO | Training | Observed | 82.9021 | 180.0103 | 2.1714 | 0 | 957.6070 | |
Simulated | 64.5640 | 153.1941 | 2.3727 | −111.9880 | 931.0246 | |||
Validation | Observed | 21.0568 | 101.7052 | 4.8301 | 0 | 909.5410 | ||
Simulated | 45.9378 | 124.2811 | 2.7054 | −0.0695 | 1.1821 | |||
RF | Training | Observed | 82.9021 | 180.0103 | 2.1714 | 0 | 957.6070 | |
Simulated | 82.6496 | 150.0450 | 1.8154 | 0.0721 | 687.6447 | |||
Validation | Observed | 21.0568 | 101.7052 | 4.8301 | 0 | 909.5410 | ||
Simulated | 26.3224 | 81.1212 | 3.0818 | 0.0721 | 641.6942 | |||
LSTM | Training | Observed | 82.9021 | 180.0103 | 2.1714 | 0 | 957.6070 | |
Simulated | 79.1898 | 154.0421 | 1.9452 | −32.8914 | 739.1696 | |||
Validation | Observed | 21.0568 | 101.7052 | 4.8301 | 0 | 909.5410 | ||
Simulated | 21.2770 | 73.5315 | 3.4559 | −39.5889 | 711.1299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abda, Z.; Zerouali, B.; Alqurashi, M.; Chettih, M.; Santos, C.A.G.; Hussein, E.E. Suspended Sediment Load Simulation during Flood Events Using Intelligent Systems: A Case Study on Semiarid Regions of Mediterranean Basin. Water 2021, 13, 3539. https://doi.org/10.3390/w13243539
Abda Z, Zerouali B, Alqurashi M, Chettih M, Santos CAG, Hussein EE. Suspended Sediment Load Simulation during Flood Events Using Intelligent Systems: A Case Study on Semiarid Regions of Mediterranean Basin. Water. 2021; 13(24):3539. https://doi.org/10.3390/w13243539
Chicago/Turabian StyleAbda, Zaki, Bilel Zerouali, Muwaffaq Alqurashi, Mohamed Chettih, Celso Augusto Guimarães Santos, and Enas E. Hussein. 2021. "Suspended Sediment Load Simulation during Flood Events Using Intelligent Systems: A Case Study on Semiarid Regions of Mediterranean Basin" Water 13, no. 24: 3539. https://doi.org/10.3390/w13243539
APA StyleAbda, Z., Zerouali, B., Alqurashi, M., Chettih, M., Santos, C. A. G., & Hussein, E. E. (2021). Suspended Sediment Load Simulation during Flood Events Using Intelligent Systems: A Case Study on Semiarid Regions of Mediterranean Basin. Water, 13(24), 3539. https://doi.org/10.3390/w13243539