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Abstract: In this study, a backpropagation artificial neural network snow simulation model
(BPANNSIM) is built using data collected from the National Climate Reference Station to obtain
simulation data of China’s future daily snow depth in terms of representative concentration pathways
(RCP4.5 and RCP8.5). The input layer of the BPANNSIM comprises the current day’s maximum tem-
perature, minimum temperature, snow depth, and precipitation data, and the target layer comprises
snow depth data of the following day. The model is trained and validated based on data from the Na-
tional Climate Reference Station over a baseline period of 1986–2005. Validation results show that the
temporal correlations of the observed and the model iterative simulated values are 0.94 for monthly
cumulative snow cover duration and 0.88 for monthly cumulative snow depth. Subsequently, fu-
ture daily snow depth data (2016–2065) are retrieved from the NEX-GDPP dataset (Washington,
DC/USA: the National Aeronautics and Space Administration(NASA)Earth Exchange/Global Daily
Downscaled Projections data), revealing that the simulation data error is highly correlated with
that of the input data; thus, a validation method for gridded meteorological data is proposed to
verify the accuracy of gridded meteorological data within snowfall periods and the reasonability of
hydrothermal coupling for gridded meteorological data.

Keywords: future daily snow depth; simulation; artificial neural network; snow cover

1. Introduction

Snow cover is an important component of the cryosphere and indicator of climate
change [1] as its properties change rapidly in response to changes in heat and water on the
earth’s surface [2–4]. Snowfall also has an important impact on socioeconomic factors of
humanity; for example, insufficient snowfall in spring can lead to drought, and excessive
snowfall can create disasters, such as snow-melt floods, and major property losses [5–9].
Therefore, the effective prediction and detection of various snowfall parameters are crucial
for alleviating or minimizing these effects. At present, the primary methods of acquir-
ing snow parameter data include (1) on-site observations of meteorological stations [10];
(2) optical remote sensing methods for identifying the extent of snow cover, based on the
high reflectivity of snow in the visible band, and low reflectivity in the NIR band to define
a normalized difference snow index (NDSI) [11]; (3) passive microwave remote sensing
for global/regional snow depth and snow water equivalent observations [12–14]; and
(4) fusion of optical and microwave remote sensing inversions [15]. Thus, snow depth
data acquisition mainly depends on two approaches: remote sensing observations and
onsite observations.
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Under changing global climate conditions, snow cover can serve as an important
indicator. Accordingly, scientists have carried numerous studies examining the change in
snow cover over historical periods [3,4,6,16], the relationship between snow cover change
and climate, and the impact of snow cover change on human productivity. Some analyses
have also studied future changes in snow cover based on the experimental data of the
Coupled Model Intercomparison Project (CMIP) organized by the World Climate Research
Programme (WCRP) [17,18]; however, there are few studies on the future daily snow depth,
as snow accumulation and melting is a complex process affected by many factors, such
as temperature, precipitation, wind speed, solar radiation, underlying surface type, and
altitude [11,15,19].

Here, using NASA Earth Exchange/Global Daily Downscaled Projections data, future
daily depth was simulated based on a selection of factors affecting the snow accumulation
process in accordance with Leathers and Luff who found that the duration of snow is highly
correlated with snowfall and temperature [20]. Here, snowfall (weight equivalent to solid
precipitation in NEX-GDDP data) and temperature were selected as the input variables
for simulating snow depth. A backpropagation neural network snow simulation model
(BPNNSIM) was built using MATLAB, and data on the current daily snow depth, daily
minimum air temperature, daily maximum air temperature, and daily precipitation were
used to predict the next day’s snow depth. The neural network was trained, and model
accuracy was verified with Climate Reference Station data. Based on the BPNNSI, the
NEX-GDDP data were used as model input to simulate future snow depth in China. The
NEX-GDDP data comprise the first multimodal high-resolution dataset based on Coupled
Model Intercomparison Project Phase 5 (CMIP5) released by NASA in 2015 (Table 1). A
statistical downscaling method was used to convert the daily precipitation, maximum and
minimum air temperature data from 21 CMIP5 models during the historical period from
1986 to 2005, and two future climate scenarios (RCP4.5 and RCP8.5) over the projection
period from 2006 to 2100, at a spatial resolution of 0.25◦ × 0.25◦ [21]. Comparatively,
NEX-GDDP data have a higher and more uniform spatial resolution than CMIP5, and
many studies have shown that the former can better reflect the characteristics of regional
climate change in China than the direct use of CMIP5 data [22–24]. CMIP6 data are in
the release and preliminary application stage, and the resolution of each mode varies
greatly [25]; thus, the consistently higher and more uniform resolution of NEX-GDDP will
continue to maintain high application value. Accordingly, the future daily snow depth
dataset simulated using the NEX-GDDP can inform future research on snow cover and
snow disaster risk assessment.

This paper is structured as follows: methods and data are presented in Section 2;
Section 3 contains the results of the findings, including BPNNSIM construction, validation,
and simulation of future daily snow depths in China; sources of errors in simulated snow
depth data are discussed in Section 4; conclusions are presented in Section 5.

Table 1. Information for the 21 CMIP5 global climate models in NEX-GDDP dataset.

No. Model Name Country Organization

1 ACCESS1-0 Australia CSIRO-BOM
2 bcc-csm1-1 China BCC
3 BNU-ESM China GCESS
4 CanESM2 Canada CCCMA
5 CCSM4 The United States NCAR
6 CESM1-BGC The United States NSF-DOE-NCAR
7 CNRM-CM5 France CERFACS
8 CSIRO-Mk3-6-0 Australia CSIRO-QCCCE
9 GFDL-CM3 The United States NOAA-GFDL
10 GFDL-ESM2G The United States NOAA-GFDL
11 GFDL-ESM2M The United States NOAA-GFDL
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Table 1. Cont.

No. Model Name Country Organization

12 inmcm4 Russia UNM
13 IPSL-CM5A-LR France IPSL
14 IPSL-CM5A-MR France IPSL
15 MIROC5 Japan MIROC
16 MIROC-ESM Japan MIROC
17 MIROC-ESM-CHEM Japan MIROC
18 MPI-ESM-LR Germany MPI-M
19 MPI-ESM-MR Germany MPI-M
20 MRI-CGCM3 Japan MRI
21 NorESM1-M Norway NCC

2. Materials and Methods
2.1. Data

National Climate Reference Station data (1986–2005) were provided by the National
Meteorological Science Data Center of China (12 December 2021: http://www.cma.gov.cn/
2011qxfw/2011qsjgx/) and contained information on the daily maximum and minimum
temperatures, precipitation, and snow depth. For a more complete time series of the
various meteorological elements, 185 stations were selected. Among them, the data from
155 stations were randomly selected for model training, while data from the remaining 30
stations were used for model validation (Figure 1).

Figure 1. Distribution of the National Climate Reference Stations used for model training (n = 155)
and validation (n = 30).

http://www.cma.gov.cn/2011qxfw/2011qsjgx/
http://www.cma.gov.cn/2011qxfw/2011qsjgx/


Water 2021, 13, 3599 4 of 17

The NEX-GDDP dataset (12 December 2021: https://www.nccs.nasa.gov/services/)
was released by NASA in 2015, and includes historical data for 1986–2005, and those for
two future climate projection scenarios (RCP4.5 and RCP8.5) from 2006–2100, with a spatial
resolution of 0.25◦ × 0.25◦. Information on the 21 CMIP5 global climate models in this
dataset is shown in Table 1.

The long-term snow depth dataset of China was derived from passive microwave
remote sensing data, which provides the daily snow depth distribution in China from
24 October 1978 to 31 December 2012, at a spatial resolution of 0.25◦ × 0.25◦ [13].

2.2. Model Building and Validation Methods
2.2.1. Construction of Snow Depth Simulation Model

Deep learning is a recent research direction in the field of machine learning, where
the rapid development of computer technology has made artificial intelligence (AI) more
attainable. Recently, artificial neural networks (ANNs) have been applied in various fields,
and widely used in geographical research [26,27]. Here, a backpropagation (BP) network
was selected and built using MATLAB (Figure 2). A total of 155 sites were used to train the
BP neural network, comprising 1,133,050 training and test samples.

Figure 2. Conceptual diagram of the model used. (w: weight, b: bias).

1. Selection of input and output layer variables. The input layer included data of daily
maximum and minimum temperatures, daily precipitation, and daily snow depth
from the National Climate Reference Stations to predict the next day snow depth data
at the National Climate Reference Station (Figure 3, Part 1).

2. Determining the number of hidden layer nodes for network training (Equation (1)):

p =
√

n + m + a (1)

where p is the number of hidden nodes, n is the number of input layer nodes (n = 4
here), m is the number of output layer nodes (m = 1 here), and a is a constant in the
range from 1 to 10. Through trial and error, it was revealed that the training effect
was the best when the p = 10.

3. Setting the network training parameter is critical to model accuracy. To this end,
trained sample data and test samples were compared numerous times, for determin-
ing the number of parameters in the BPNNSIM (Table 2).

Table 2. Basic parameter settings of the backpropagation artificial neural network snow simulation
model (BPNNSIM).

Parameter Name Value Definitions

activation function Tansig, purelin Transfer functions between neurons
net.trainParam.epochs 1000 Maximum times of training

net.trainParam.goal 1 × 10−7 Minimum error in training goal
net.trainParam.lr 0.01 Learning rate

net.trainParam.mc 0.9 Additional momentum factors
net.trainParam.show 25 The display frequency

https://www.nccs.nasa.gov/services/


Water 2021, 13, 3599 5 of 17

Figure 3. Technology process.

2.2.2. Verification of Model Iteration Simulation Accuracy

Based on the simulation model building and training, to determine the precision of
the model iteration simulation, we used daily precipitation, daily minimum temperature,
and daily maximum temperature data at 30 randomly selected National Climate Reference
Stations. A day without snow cover was used as the model iteration starting simulation
time. The daily simulation snow depth data were obtained on a daily time scale (Figure 4).

Figure 4. BPNNSIM iterative simulation process.

The simulated snow depths were used for comparison with the observations from the
corresponding stations (Figure 3, Part 2) according to the following follow process. First,
multisite monthly values of cumulative snow depth and snow cover days were calculated
using the simulated and observed values from the 30 validation sites. Next, the Nash and
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correlation coefficients [28] between the simulated and observed values across the time
series were calculated according to (Equations (2)–(5)):

E = 1 − ∑T
t=1
(
St

0−St
m
)2

∑T
t=1
(
St

0 − S0
)2 (2)

where E is the Nash coefficient, Sm is the observation value, St
0 is the observation value in

month t, St
m is the simulated value in month t, and S0 is the total average of the observations.

If E is close to 1, model quality is high and is credible, whereas if E is close to 0, it indicates
that the simulation is close to the mean level of the observed values, although process
errors are large. If E is much less than zero, the model is not credible.

The correlation value (r) is calculated as follows:

δx =
{
∑ n

i=1(xi − x)2
} 1

2 (3)

δy =
{
∑ n

i=1(yi − y)2
} 1

2 (4)

r =
1

δxδy

[
n

∑
i=1

(xi − x)(yi − y)

]
(5)

where x refers to the simulated value, x refers to the average of the simulations, y refers
to the observation values, y refers to the average of the observations, and n refers to the
number of mouths.

2.2.3. A Comparative Method for Remote Sensing and NEX-GDDP Snow Depth

First, annual snow depth observations from the climate stations were used to calculate
a standard value of cumulative snow depth data for all stations. Further, annual averages
of the cumulative snow depth data at the climate station locations were calculated using
depth information derived from NEX-GDDP or microwave remote sensing data, and these
were regarded as the simulated values for the corresponding model in NEX-GDDP or
remote sensing. Lastly, the differences between the standard and simulated values were
analyzed according to their RMSE and correlation coefficient.

RMSE =

√√√√{ 1
n

n

∑
i=1

[xi − yi]
2

}
(6)

where x denotes the simulated model, y is the observation values, and n represents the
number of years, where a smaller RMSE indicates better simulation capability.

3. Results
3.1. Model Building

Model accuracy peaked at 904 training cycles, with a minimum root square error
(MSE) of validation of 0.22 (Figure 5). The correlation coefficients (r) between the various
simulated and actual values for the trained BP neural network were >0.95.
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Figure 5. Validation error curves.

3.2. Validation Results of Model Iterative Simulation Capabilities

Figures 6 and 7 show the correlation between the iterative simulations and observed
values of cumulative monthly snow depth and snow cover days during the principal
snow cover months (October to April). Simulated results were underestimated at larger
cumulative snow depths and overestimated for cumulative snow cover days. The multi-
year, monthly average of observed cumulative snow depth across all stations was 13.77 cm,
compared to a modeled value of 12.40 cm. The monthly average observed cumulative
snow cover days was 4.06 day, compared to a modeled value of 4.98 day.

Figure 6. Variation of simulated and observed monthly snow depths (October to April; same below).
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Figure 7. Variation of simulated and observed snow cover days per month.

Figure 8 shows the correlation between the iterative observed and simulated values
for monthly cumulative snow depth (R2 = 0.88) and snow cover days (R2 = 0.94). A Nash
coefficient of 0.91 for cumulative snow depth and 0.87 for snow cover duration were also
revealed between the observed and simulated values.

Figure 8. Correlation between simulated and observed monthly values on monthly for (a) cumulative snow depth, and
(b) cumulative snow cover days.

To clarify the regional differences in model simulation capabilities, the observed and
iterative simulated average values of cumulative snow depth and cover duration for all
stations within each provincial unit were tallied. The results yielded variability between the
simulated and observed values of cumulative snow depth, and consistently overestimated
values of cumulative snow cover duration across all provinces. At the provincial scale,
the correlation coefficient between the observed and simulated monthly average values of
cumulative snow depth was 0.93 (R2 = 0.85), and that for cumulative snow cover duration
was 0.97 (R2 = 0.93) (Figures 9 and 10).
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Figure 9. Observed and iterative simulated values at the provincial scale for: (a) cumulative snow depth, and (b) cumulative
snow cover days.

Figure 10. Correlation of observed and simulated values at the provincial scale for: (a) cumulative snow depth, and
(b) cumulative snow cover days.
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3.3. Daily Snow Depth Simulation Based on NEX-GDDP

Based on the spatiotemporal accuracy evaluation of the iterative simulation, the NEX-
GDDP data were selected as the input values for the BPNNSIM to iteratively simulate the
daily snow depth data from the corresponding model in NEX-GDDP. The simulated data
corresponds to that of NEX-GDDP, which contains 21 models under two climate scenarios
(RCP4.5 and RCP8.5), at a spatial resolution of 0.25◦ × 0.25◦ for the periods of 1986–2005
and 2016–2065. The average annual snow depth distribution in China based on NEX-GDDP
data is shown in Figure 11, and reveals that the future coverage under the RCP4.5 scenario
is similar to that of the historical period. Moreover, under the RCP8.5 scenario, the coverage
shows notable southward expansion, whereas Northeast and Northwest China, as well as
the Qinghai-Tibet Plateau, comprise the primary snowfall regions in the country.

Figure 11. Average annual snow depth distribution in China based on NEX-GDDP data, according
to: (a) 1986–2005; (b) RCP4.5, 2016–2035; (c) RCP8.5 2016–2035; (d) RCP4.5 2046–2065; and (e) RCP8.5
2046–2065.

4. Discussion
4.1. Comparison of Remote Sensing and NEX-GDDP Snow Depth

To clarify the differences between NEX-GDDP and remotely derived snow depth
data, the dataset was compared with the long-term snow depth dataset for the period
from 1986 to 2005 [13]. Figure 12 shows the time series variability of annual cumulative
snow depth data from the simulations and station observations. The multi-year average of
cumulative snow depth from the observation stations was 178.06 cm·y−1, 266.25 cm·y−1

from remote sensing data, and 75.55 cm·y−1 from NEX-GDDP data. In general, the snow
depth values from remote sensing and NEX-GDDP data were higher and lower than the
observations, respectively.

Simulation accuracy of snow depth data varied by models in the NEX-GDDP dataset.
In terms of RMSE, the two models with the smallest simulation errors were GFDL-ESM2G
and MPI-ESM-MR (29.88 and 29.97 cm, respectively). In terms of r, the two best models
were GFDL-ESM2G and bcc-csm1-1 (0.58 and 0.50, respectively). Thus, the most accurate
model was GFDL-ESM2G. Compared with remotely derived snow depth estimates, the
RMSE and r were 28.78 and 0.52, respectively (Table 3), with an insignificant difference in
accuracy between the two snow depth simulations, thus maintaining a similar ability to
depict cumulative snow depth and cumulative snow cover days over China.
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Figure 12. Temporal changes in annual cumulative snow depth during 1986–2005 as derived from observations, NEX-GDDP,
and remote sensing data over China.

Table 3. RMSE & r between the two sets of simulations and observed snow depth data.

Model Name Remote ACCESS1-0 BNU-ESM CCSM4 CESM1-BGC

RMSE 28.78 32.01 32.39 30.67 33.20
r 0.52 * −0.31 −0.04 0.03 −0.24

Model name CNRM-CM5 CSIRO-Mk3-6-0 CanESM2 GFDL-CM3 GFDL-ESM2G

RMSE 33.61 32.80 32.61 33.70 29.88
r 0.05 −0.23 0.10 −0.38 0.58 **

Model name GFDL-ESM2M IPSL-CM5A-LR IPSL-CM5A-MR MIROC-ESM-
CHEM MIROC-ESM

RMSE 32.71 33.67 32.59 34.94 34.44
r −0.24 0.32 −0.03 −0.12 −0.15

Model name MIROC5 MPI-ESM-LR MPI-ESM-MR MRI-CGCM3 NorESM1-M

RMSE 30.75 32.41 29.97 32.34 35.40
r 0.06 −0.31 0.02 −0.26 0.35

Model name bcc-csm1-1 inmcm4

RMSE 31.52 33.23
r 0.50 * −0.39

Correlation is significant at the * p < 0.05 and ** p < 0.01 level.

4.2. Simulated Snow Depth Error Sources in GFDL-ESM2G Model

For conveniently simulated snow depth data using in future, the GFDL-ESM2G model
provided the most accurate performance; however, the sources of error present deserve
discussion. First, at the provincial scale, the difference in snowfall (DS, cm) and the
difference in accumulated snow time (DST, days) between the snow depth data from the
GFDL-ESM2G simulation and meteorological stations were calculated based on the station
points. Figures 13 and 14 show that the average annual snowfall levels from the GFDL-
ESM2G simulation in Tibet, Yunnan, Shandong, Sichuan, Qinghai, and Liaoning provinces
were higher than the observed values, whereas in Inner Mongolia, Henan, Jilin, Xinjiang,
and Heilongjiang provinces, estimates were lower than the observations. Except for Tibet
(where DS = 437 cm·year−1), the simulated values of snow duration according to the GFDL-
ESM2G model were less than the station measured data for primary snowfall provinces.
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Figure 13. Difference in snowfall (DS) between the snow depth data from the GFDL-ESM2G model
and meteorological station observations for each province.

Figure 14. Difference in accumulated snow time (DST) between the GFDL-ESM2G model and
meteorological station observations for each province.

Here, the model built for snow depth simulation was based on snow precipitation
after the temperature has fallen to a certain value. As the model input variables were
daily precipitation, as well as daily maximum and minimum temperatures, the amount of
precipitation directly affected the amount of snowfall, while the snow cover duration was
determined by a combination of air temperature and snowfall. Accordingly, to help resolve
the differences in the DS and DST across all regions, we need to be clear about the difference
in precipitation (DP) and difference in temperature (DT) between the snow depth data
from the GFDL-ESM2G simulation and meteorological stations during snowfall periods.

4.2.1. Relationship between DS and DP

DP was first analyzed across different provinces during snowfall periods, and based
on the initial results, further comparisons were made between the correlation of DP and
DS. The results showed that the modeled precipitation of GFDL-ESM2G was higher than
that of the meteorological station observations over Sichuan, Qinghai, and Tibet during the
snowfall period; however, the remainder of the major snowfall provinces displayed the
opposite phenomenon (Figure 15). Further, the correlation coefficient between DP and DS
was 0.894 (R2 = 0.80, Figure 16).
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Figure 15. Difference in precipitation (DP) between the GFDL-ESM2G model and meteorological
station observations for each province during snowfall periods.

Figure 16. Correlation of DP and DS during snowfall periods.

4.2.2. Relationship between DST, DT, and DP

DT for the daily maximum and minimum temperatures were also calculated under
different snow depth conditions, with the results showing that the temperature values
from GFDL-ESM2G were higher than those from the meteorological stations in the major
snow provinces during snowfall periods. In the provinces of Liaoning, Xinjiang, Inner
Mongolia, Jilin, and Heilongjiang, DS and DT of both the daily maximum and minimum
temperatures were positively correlated; however, other major snowfall provinces showed
the opposite trend (Table 4, Figure 17). Accordingly, the relationship between average
DT, DS, and DST was further studied by multi-factor analysis, revealing the following
relationship (Equation (7)):

L = −6.255T + 0.08S − 3.719 (7)

where L is the DST, T is the DT, S is the DS, and the formula maintains an R2 of 0.912. From
Equation (7), it was determined that DT is the most influential factor on DST, corresponding
to relatively small differences in the snowfall amount. Therefore, excluding Tibet, a region
with a large DS, the relationship between DST and DT was analyzed for other provinces
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as well, revealing that the higher the DT, the lower the DST value (Figure 18). More
specifically, DT and DST showed a negative correlation (R2 = 0.811), a result consistent
with the findings of Leathers and Luff [20], who concluded that the duration of snow is
highly correlated with snowfall and temperature.

Table 4. Difference in temperature (DT) between the GFDL-ESM2G model and meteorological station observations for each
province under different snow depth conditions.

Province DT of Daily Maximum Temperature DT of Daily Minimum Temperature Avg DT

Snow Depth (cm) 1–3 3–5 5–10 10–15 >15 1–3 3–5 5–10 10–15 >15

Hainan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Taiwan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Macao 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hong Kong 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tianjin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Guangdong 0.83 0.48 0.47 0.24 0.00 0.07 −0.11 −0.19 −0.24 0.00 0.15
Guangxi 1.54 −0.72 0.38 0.00 0.00 0.20 −0.23 −0.37 0.00 0.00 0.08

Fujian 0.09 1.39 0.44 −0.29 0.00 0.45 −0.84 −0.09 −0.21 0.00 0.09
Shanghai 4.11 1.61 0.00 0.00 0.00 0.87 4.94 0.00 0.00 0.00 1.15
Zhejiang 1.10 −2.96 −0.44 −2.31 0.00 1.34 −0.27 0.63 0.20 0.00 −0.27
Jiangxi 1.07 0.57 0.10 −1.65 −1.83 0.81 0.13 −0.01 −1.71 −0.19 −0.27

Chongqing 1.85 −3.62 −0.60 −1.97 0.00 −0.03 −2.71 −2.01 −2.45 0.00 −1.15
Guizhou 0.38 −1.68 −3.14 −1.25 0.00 −0.22 −1.22 −0.83 2.07 0.00 −0.59
Hunan 1.00 −0.26 −0.04 0.26 −2.53 1.01 0.00 −0.24 −0.79 −0.45 −0.20
Jiangsu 1.28 0.85 −1.73 −1.43 −2.70 −0.19 −1.01 −1.24 −3.49 −0.05 −0.97
Yunnan 1.30 −0.92 0.65 −0.84 −1.80 −1.03 −0.67 −1.13 −0.44 −0.30 −0.52
Hubei 0.66 −0.68 −2.05 −2.70 0.00 −0.58 −1.38 −1.40 −0.63 0.00 −0.88

Shaanxi 0.67 −0.30 −0.83 −1.14 0.00 0.37 −0.61 1.37 3.18 0.00 0.27
Shandong 1.29 1.36 −0.15 −0.77 0.63 −0.82 −1.01 −1.31 2.98 2.95 0.52

Beijing 2.62 0.97 −2.94 −4.80 0.00 −1.34 −0.84 −1.43 1.50 0.00 −0.63
Ningxia 6.53 3.48 0.00 0.00 0.00 4.07 −1.12 0.00 0.00 0.00 1.30
Anhui 0.38 −0.12 −0.05 −0.96 −1.31 −0.12 0.12 0.07 −2.96 −0.73 −0.57

Sichuan 0.45 −0.13 −0.49 −0.26 −0.53 0.13 −0.66 −0.08 −0.38 0.89 −0.11
Tibet 2.82 3.04 2.95 2.13 1.78 1.54 0.64 0.25 −4.62 −3.95 0.66
Hebei 4.72 3.20 2.53 0.45 0.00 2.97 1.06 2.55 3.82 0.00 2.13
Gansu 3.62 2.46 1.49 1.62 0.93 5.23 7.01 4.71 3.36 0.53 3.09
Henan 0.57 −0.44 −0.87 −1.48 0.00 −0.56 −1.52 −1.31 2.76 0.00 −0.29
Shanxi 3.03 3.50 4.62 0.59 0.00 1.47 2.79 4.35 −0.54 0.00 1.98

Qinghai 5.86 3.90 2.79 0.33 0.98 6.38 4.75 4.86 1.39 2.11 3.33
Liaoning 2.87 2.62 2.96 3.48 3.73 1.00 0.38 2.77 4.18 7.53 3.15

Inner Mongolia 10.07 8.32 7.51 4.92 0.00 7.83 7.88 11.65 12.48 0.00 7.07
Jilin 0.83 1.73 3.67 4.59 3.81 −0.58 −0.31 3.32 4.56 2.78 2.44

Xinjiang −0.63 −0.78 0.33 2.22 2.75 −1.64 −0.85 1.11 4.39 4.54 1.14
Heilongjiang 1.69 6.00 9.33 7.71 6.12 0.71 4.68 9.42 7.56 14.13 6.74

Figure 17. Average difference in temperature (DT) between the GFDL-ESM2G model and meteoro-
logical station observations for each province during snowfall periods.
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Figure 18. Correlation of DT and DST during snowfall periods.

Collectively, the error sources of daily snow depth data from GFDL-ESM2G varied by
province, primarily in the form of precipitation data errors during snowfall periods over
Tibet, and the temperature data errors in the northeastern provinces and Xinjiang. Overall,
the coupling of precipitation and temperature data from the GFDL-ESM2G model was
relatively poor during snowfall periods.

4.3. Extending the Snow Depth Simulation Model
4.3.1. Accuracy of the Gridded Meteorological Data

This study implemented a novel approach for verifying the raster data accuracy of
temperature and precipitation in alpine regions. Currently, such validations are primarily
based on either meteorological station, or interpolated, gridded meteorological data derived
from these stations; however, station-based validation methods often do not reflect the
integrated accuracy of gridded data, especially in poorly represented areas, or those with
high terrain variability [29,30]. Accordingly, the new method for raster meteorological
data validation proposed here was based on the results of the current study and designed
according to the following process. The first step was to obtain highly accurate daily
snow depth values via remote sensing, photogrammetry, or station observation data. The
gridded meteorological data to be validated were converted into daily snow depth data
using the model developed in the present study. The DS between the two snow depth
datasets, or the DST between the two snow depth datasets were calculated. Finally, the
differences between the validated grid meteorological data and the true weather data, as
inferred from the relationship between DS, DST, DP, and DT, were obtained.

The following points should be noted when implementing this verification method:
(1) The gridded meteorological data can only be verified during the snowfall period;
thus, this method is most suitable for alpine weather data verification. (2) The validation
error of this method is causally related to the grid cell size of the meteorological data;
accordingly, obtaining high quality daily snow data are an important prerequisite for
ensuring validation accuracy.

4.3.2. Simulated Snow Accumulation and Melting

The snow depth simulation model here also provides a route for the accurate sim-
ulation of snow accumulation and melting processes, provided that the complete set of
influencing factors can be considered, and the spatiotemporal scales of the study can be
controlled. ANNs model relationships using various influential factors on snow melt and



Water 2021, 13, 3599 16 of 17

snow melt data. Based on this training, the model can accurately simulate the snow melting
process, although this method requires a large number of observations.

5. Conclusions

Based on previous findings of the most influential factors controlling snow accumu-
lation, temperature and precipitation were selected here as the input variables for the
backpropagation artificial neural network snow simulation model (BPANNSIM) created
here using MATLAB. The model was trained and validated using the National Climate
Reference Station data, and the results showed that the iterative simulation capability of
the model was stronger for both spatiotemporal sequences, with temporal and regional
correlations (R2) of monthly snow cover duration equal to 0.94 and 0.97, and 0.88 and 0.91
for monthly cumulative snow depth, respectively. The corresponding Nash coefficients
between the observed and simulated values for the cumulative snow depth and duration
were 0.91 and 0.87, respectively. Thus, the model’s temporal and snow depth, and iterative
simulation capabilities were slightly weaker than its regional and snow cover duration
abilities. The NEX-GDDP dataset was used as the input value for BPANNSIM to simulate
the daily snow depth across China, and the corresponding snow depth data obtained from
GFDL-ESM2G showed the highest level of accuracy. Finally, the causes of simulation errors
in the GFDL-ESM2G model were also analyzed, revealing that the coupling of precipitation
and temperature data from the GFDL-ESM2G model was relatively poor during snowfall
periods. It was also found that DS and DST were highly correlated with DP and DT, and a
new validation method for gridded meteorological data was proposed here based on this
correlation. This method can verify the accuracy of gridded meteorological data within
snowfall periods and verify whether the hydrothermal coupling of this data is reasonable.
However, this method is applicable to the validation of meteorological data during the
snowfall period. Meanwhile, the validation error of this method is causally related to the
grid cell size of the meteorological data.
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