Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methodology
2.3. Reagents, Instrumentation, and Analytical Procedure
3. Results
3.1. Initial Sampling Campaign Results
3.2. The 1-Year Monitoring Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kookana, R.S.; Williams, M.; Boxall, A.B.A.; Larsson, D.G.J.; Gaw, S.; Choi, K.; Yamamoto, H.; Thatikonda, S.; Zhu, Y.-G.; Carriquiriborde, P. Potential ecological footprints of active pharmaceutical ingredients: An examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369. [Google Scholar] [CrossRef] [PubMed]
- Martínez Bueno, M.J.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; García-Reyes, J.F.; Fernández-Alba, A.R. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal. Chem. 2007, 79, 9372–9384. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estevez, E.; Hernandez-Moreno, J.M.; Fernandez-Vera, J.R.; Palacios-Diaz, M.P. Ibuprofen adsorption in four agricultural volcanic soils. Sci. Total Environ. 2014, 468–469, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Estevez, E.; Cabrera, M.D.C.; Fernández-Vera, J.R.; Molina-Díaz, A.; Robles-Molina, J.; Palacios-Díaz, M.D.P. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes. Sci. Total Environ. 2016, 551–552, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.P.; Mendoza-Grimon, V.; Fernández, F.; Fernandez-Vera, J.R.; Hernandez-Moreno, J.M. Sustainable reclaimed water management by subsurface drip irrigation system: A study case for forage production. Water Pract. Technol. 2008, 3. [Google Scholar] [CrossRef]
- Tiehm, A.; Schmidt, N.; Lipp, P.; Zawadsky, C.; Marei, A.; Seder, N.; Ghanem, M.; Paris, S.; Zemann, M.; Wolf, L. Consideration of emerging pollutants in groundwater-based reuse concepts. Water Sci. Technol. 2012, 66, 1270–1276. [Google Scholar] [CrossRef] [Green Version]
- Zemann, M.; Majewsky, M.; Wolf, L. Accumulation of pharmaceuticals in groundwater under arid climate conditions—Results from unsaturated column experiments. Chemosphere 2016, 154, 463–471. [Google Scholar] [CrossRef]
- Estévez, E.; Cabrera, M.D.C.; Molina-Díaz, A.; Robles-Molina, J.; Palacios-Díaz, M.D.P. Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Sci. Total Environ. 2012, 433, 538–546. [Google Scholar] [CrossRef]
- Bloetscher, F.; Pleitez, F.; Hart, J.; Stambaugh, D.; Cooper, J.; Kennedy, K.; Burack, L.S. Comparing contaminant removal costs for aquifer recharge with wastewater with water supply benefits. J. Am. Water Resour. Assoc. 2014, 50, 324–333. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado, Real Decreto 1620/2007, Las Palmas de Gran Canaria, Spain, 7 de Diciembre. Available online: https://www.boe.es/eli/es/rd/2007/12/07/1620 (accessed on 1 October 2020).
- Durán-Álvarez, J.C.; Sánchez, Y.; Prado, B.; Jiménez, B. The transport of three emerging pollutants through an agricultural soil irrigated with untreated wastewater. J. Water Reuse Desalin. 2014, 4, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Wode, F.; van Baar, P.; Dünnbier, U.; Hecht, F.; Taute, T.; Jekel, M.; Reemtsma, T. Search for over 2000 current and legacy micropollutants on a wastewater infiltration site with a UPLC-high resolution MS target screening method. Water Res. 2015, 69, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, Y.; Candela, L.; Ronen, D.; Teijon, G. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). J. Hazard. Mater. 2012, 239–240, 32–39. [Google Scholar] [CrossRef] [PubMed]
- McEachran, A.D.; Shea, D.; Nichols, E.G. Pharmaceuticals in a temperate forest-water reuse system. Sci. Total Environ. 2017, 581–582, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozman, D.; Hrkal, Z.; Váňa, M.; Vymazal, J.; Boukalová, Z. Occurrence of pharmaceuticals in wastewater and their interaction with shallow aquifers: A case study of Horní Beřkovice, Czech Republic. Water 2017, 9, 218. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Gall, H.E.; Elkin, K.R.; Ayers, B.; Veith, T.L.; Miller, M.; Jacob, S.; Hayden, K.R.; Watson, J.E.; Elliott, H.A. Fate of pharmaceuticals in a spray-irrigation system: From wastewater to groundwater. Sci. Total Environ. 2019, 654, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Chen, W.; Qian, J.; Wen, X.; Xu, J. Prioritizing environmental risks of pharmaceuticals and personal care products in reclaimed water on urban green space in Beijing. Sci. Total Environ. 2019, 697. [Google Scholar] [CrossRef]
- Turner, R.D.R.; Warne, M.S.J.; Dawes, L.A.; Thompson, K.; Will, G.D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci. Total Environ. 2019, 669, 570–578. [Google Scholar] [CrossRef]
- Moreau, M.; Hadfield, J.; Hughey, J.; Sanders, F.; Lapworth, D.J.; White, D.; Civil, W. A baseline assessment of emerging organic contaminants in New Zealand groundwater. Sci. Total Environ. 2019, 686, 425–439. [Google Scholar] [CrossRef]
- Close, M.E.; Humphries, B.; Northcott, G. Outcomes of the first combined national survey of pesticides and emerging organic contaminants (EOCs) in groundwater in New Zealand 2018. Sci. Total Environ. 2021, 754. [Google Scholar] [CrossRef]
- Cruz-Fuentes, T.; Heredia, J.; Cabrera, M.C.; Custodio, E. Behaviour of a small sedimentary volcanic aquifer receiving irrigation return flows: La Aldea, Gran Canaria, Canary Islands (Spain)|Fonctionnement d’un petit aquifère volcano-sédimentaire bénéficiant de l’excédent d’eaux d’irrigation: La Aldea, Grande, C. Hydrogeol. J. 2014, 22, 865–882. [Google Scholar] [CrossRef]
- Cruz-Fuentes, T.; Cabrera, M.D.C.; Heredia, J.; Custodio, E. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea, Gran Canaria, Canary Islands, Spain. Sci. Total Environ. 2014, 484, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Moreno, C. El Gran Volcán. La Caldera y el Pico de Bandama; Cabildo de Gran Canaria: Las Palmas de Gran Canaria, Spain, 2008; p. 359. [Google Scholar]
- Ministerio de Agricultura, Pesca y Alimentación, Las Palmas de Gran Canaria, Spain. Available online: http://eportal.mapa.gob.es/websiar/ResultadoConsultaDatos.aspx (accessed on 1 September 2020).
- Cabrera, M.C.; Palacios, M.P.; Estévez, E.; Cruz, T.; Hernández-Moreno, J.M.; Fernández-Vera, J.R. The reuse of regenerated water for irrigation of a golf course: Evolution geochemistry and probable affection to a volcanic aquifer (Canary Islands)|La reutilización de aguas regeneradas para riego de un campo de golf: Evolución geoquímica y probable af. Bol. Geol. Min. 2009, 120, 543–552. [Google Scholar]
- Estevez, E.; Cabrera, M.C.; Fernandez-Vera, J.R.; Hernandez-Moreno, J.M.; Mendoza-Grimon, V.; Palacios-Diaz, M.P. Twenty-five years using reclaimed water to irrigate a golf course in gran canaria|Veinticinco años regando con agua depurada un campo de golf en gran canaria. Spanish J. Agric. Res. 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.-H.; Jiang, W.-T.; Sarkar, B.; Wang, W.; Li, Z. The triple mechanisms of atenolol adsorption on ca-montmorillonite: Implication in pharmaceutical wastewater treatment. Materials 2019, 12, 2858. [Google Scholar] [CrossRef] [Green Version]
- Kodesova, R.; Kocarek, M.; Klement, A.; Fer, M.; Golovko, O.; Grabic, R.; Jaksik, O. Impact of soil properties on selected pharmaceuticals adsorption in soils. In Geophysical Research Abstracts; EGU2014-6736-1; EGU General Assembly: Vienna, Austria, 2014; Volume 16. [Google Scholar]
- Monteiro, S.C.; Boxall, A.B.A. Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ. Toxicol. Chem. 2009, 28, 2546–2554. [Google Scholar] [CrossRef]
- Flores-Mangual, M.L.; Hernández-Maldonado, A.J.; Ortíz-Martínez, K.; Quiñones, N.P. Emerging contaminants uptake by an Ultisol and a Vertisol from Puerto Rico. Agrosyst. Geosci. Environ. 2020, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
Nicotine | Atenolol | Metamizole | Paraxanthine | Caffeine | Fluoxetine | |
---|---|---|---|---|---|---|
Irrigation water (sprinkler) | 132.6 ± 9.0 | 208.7 ± 17.6 | nd | 158.0 ± 13.3 | 116.1 ± 6.8 | 126.7 ± 16.1 |
Irrigation water (pond) | 102.0 ± 6.9 | 57.0 ± 4.8 | nd | 45.4 ± 3.8 | 38.1 ± 2.2 | 35.7 ± 4.5 |
Lysimeter water | 180.3 ± 12.3 | nd | nd | 153.9 ± 12.9 | 167.0 ± 9.9 | 28.8 ± 3.7 |
Gallery (Autumn) | 68.7 ± 4.7 | 6.9 ± 0.6 | nd | 39.9 ± 3.4 | 21.8 ± 1.3 | nd |
Gallery (Winter) | 32.3 ± 2.2 | 8.2 ± 0.7 | nd | 11.8 ± 1.0 | 10.4 ± 0.6 | nd |
Borehole | 71.5 ± 4.9 | 34.8 ± 2.9 | nd | 193.0 ± 16.2 | 36.7 ± 2.2 | 21.5 ± 2.7 |
Well 1 | 45.0 ± 3.1 | nd | nd | 40.1 ± 3.4 | 29.9 ± 1.8 | nd |
Well 2 | 36.7 ± 2.5 | nd | 3.3 ± 0.1 | nd | nd | nd |
Well 3 | 23.2 ± 1.6 | nd | nd | nd | 19.6 ± 1.2 | nd |
Well 4 | nd | 4.3 ± 0.4 | nd | 13.5 ± 1.1 | 37.7 ± 2.2 | nd |
Well 5 | nd | nd | nd | nd | nd | nd |
Well 6 | 43.5 ± 3.0 | 23.6 ± 2.0 | nd | 65.3 ± 5.5 | 3.3 ± 0.2 | nd |
Well 7 | 73.9 ± 5.0 | nd | nd | 33.9 ± 2.9 | 35.7 ± 2.1 | nd |
Well 8 | 58.1 ± 4.0 | 18.4 ± 1.6 | 16.0 ± 0.7 | 49.4 ± 4.2 | 26.4 ± 1.6 | 47.2 ± 6.0 |
Well 9 | 113.6 ± 7.7 | 21.4 ± 1.8 | 33.3 ± 1.5 | 89.5 ± 7.5 | 14.1 ± 0.8 | 34.1 ± 4.3 |
Well 10 | 111.9 ± 7.6 | 67.7 ± 5.7 | 15.1 ± 0.7 | 22.3 ± 1.9 | 44.9 ± 2.6 | 59.2 ± 7.5 |
Well 11 | 108.7 ± 7.4 | 9.1 ± 0.8 | nd | 144.2 ± 12.1 | 38.3 ± 2.3 | nd |
Well 12 | 40.8 ± 2.8 | nd | nd | nd | nd | nd |
Well 13 | 110.6 ± 7.5 | 38.1 ± 3.2 | nd | 146.6 ± 12.3 | 39.2 ± 2.3 | nd |
Well 14 | 35.5 ± 2.4 | nd | nd | nd | nd | nd |
Date | Nicotine | Atenolol | Metamizole | Paraxanthine | Caffeine | Fluoxetine | |
---|---|---|---|---|---|---|---|
Irrigation water (sprinkler) | 03/11/09 | 143.2 ± 9.7 | 58.1 ± 4.9 | nd | 108.3 ± 9.1 | 104.6 ± 6.2 | 67.7 ± 8.6 |
Lysimeter | 02/03/09 | 947.0 ± 64.4 | nd | nd | nd | 293.0 ± 17.3 | nd |
12/03/09 | 1344.1 ± 91.4 | nd | nd | 52.0 ± 4.4 | 291.9 ± 17.2 | nd | |
Water gallery | 07/05/09 | 63.7 ± 4.3 | 1.7 ± 0.1 | nd | 49.8 ± 4.2 | 148.1 ± 8.7 | nd |
14/07/09 | 95.8 ± 6.5 | nd | nd | nd | 21.5 ± 1.3 | nd | |
03/11/09 | 143.2 ± 9.7 | 11.2 ± 0.9 | nd | 14.5 ± 1.2 | 115.6 ± 6.8 | nd | |
Well 3 | 29/04/09 | 39.0 ± 2.7 | nd | nd | nd | 33.7 ± 2.0 | nd |
29/07/09 | 27.9 ± 1.9 | nd | nd | nd | 101.7 ± 6.0 | nd | |
Well 4 | 29/04/09 | 64.6 ± 4.4 | nd | nd | 6.6 ± 0.6 | 53.6 ± 3.2 | nd |
13/07/09 | 36.5 ± 2.5 | nd | nd | nd | 17.3 ± 1.0 | nd | |
03/11/09 | 54.1 ± 3.7 | 8.6 ± 0.7 | nd | nd | 24.9 ± 1.5 | 57.6 ± 7.3 | |
Well 5 | 29/04/09 | 64.8 ± 4.4 | nd | nd | nd | 17.7 ± 1.0 | nd |
13/07/09 | 49.7 ± 3.4 | 2.8 ± 0.2 | nd | 15.9 ± 1.3 | 41.4 ± 2.4 | nd | |
03/11/09 | 47.4 ± 3.2 | nd | nd | nd | 103.0 ± 6.1 | nd | |
Well 6 | 29/04/09 | 55.6 ± 3.8 | nd | nd | nd | 30.9 ± 1.8 | nd |
13/07/09 | 92.3 ± 6.3 | nd | nd | nd | 32.1 ± 1.9 | nd | |
03/11/09 | 58.5 ± 4.0 | nd | nd | nd | 22.0 ± 1.3 | 52.6 ± 6.7 | |
Well 8 | 29/04/09 | 71.6 ± 4.9 | 5.0 ± 0.4 | nd | 33.0 ± 2.8 | 76.4 ± 4.5 | nd |
13/07/09 | 39.6 ± 2.7 | nd | nd | nd | 19.6 ± 1.2 | nd | |
03/11/09 | 59.2 ± 4.0 | nd | nd | 15.1 ± 1.3 | 73.3 ± 4.3 | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesdeoca-Esponda, S.; Palacios-Díaz, M.d.P.; Estévez, E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Cabrera, M.d.C. Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water 2021, 13, 262. https://doi.org/10.3390/w13030262
Montesdeoca-Esponda S, Palacios-Díaz MdP, Estévez E, Sosa-Ferrera Z, Santana-Rodríguez JJ, Cabrera MdC. Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water. 2021; 13(3):262. https://doi.org/10.3390/w13030262
Chicago/Turabian StyleMontesdeoca-Esponda, Sarah, María del Pino Palacios-Díaz, Esmeralda Estévez, Zoraida Sosa-Ferrera, José Juan Santana-Rodríguez, and María del Carmen Cabrera. 2021. "Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain)" Water 13, no. 3: 262. https://doi.org/10.3390/w13030262
APA StyleMontesdeoca-Esponda, S., Palacios-Díaz, M. d. P., Estévez, E., Sosa-Ferrera, Z., Santana-Rodríguez, J. J., & Cabrera, M. d. C. (2021). Occurrence of Pharmaceutical Compounds in Groundwater from the Gran Canaria Island (Spain). Water, 13(3), 262. https://doi.org/10.3390/w13030262