
water

Article

Inorganic Nitrogen Production and Removal along the
Sediment Gradient of a Stormwater Infiltration Basin

Qianyao Si 1,†,‡, Mary G. Lusk 1,* and Patrick W. Inglett 2

����������
�������

Citation: Si, Q.; Lusk, M.G; Inglett,

P.W Inorganic Nitrogen Production

and Removal along the Sediment

Gradient of a Stormwater Infiltration

Basin. Water 2021, 13, 320.

https://doi.org/10.3390/w13030320

Academic Editor: Peter Weiss

Received: 21 December 2020

Accepted: 21 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Soil and Water Sciences Department, Gulf Coast Research and Education Center, University of Florida,
Wimauma, FL 33598, USA; qianyaosi@ufl.edu

2 Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville,
FL 32611, USA; pinglett@ufl.edu

* Correspondence: mary.lusk@ufl.edu
† Current address: Environmental Science and Technology Department, University of Maryland, College Park,

MD 20742, USA.
‡ Former Member of University of Florida.

Abstract: Stormwater infiltration basins (SIBs) are vegetated depressions that collect stormwater and
allow it to infiltrate to underlying groundwater. Their pollutant removal efficiency is affected by the
properties of the soils in which they are constructed. We assessed the soil nitrogen (N) cycle processes
that produce and remove inorganic N in two urban SIBs, with the goal of further understanding the
mechanisms that control N removal efficiency. We measured net N mineralization, nitrification, and
potential denitrification in wet and dry seasons along a sedimentation gradient in two SIBs in the
subtropical Tampa, Florida urban area. Net N mineralization was higher in the wet season than in
the dry season; however, nitrification was higher in the dry season, providing a pool of highly mobile
nitrate that would be susceptible to leaching during periodic dry season storms or with the onset of
the following wet season. Denitrification decreased along the sediment gradient from the runoff inlet
zone (up to 5.2 µg N/g h) to the outermost zone (up to 3.5 µg N/g h), providing significant spatial
variation in inorganic N removal for the SIBs. Sediment accumulating around the inflow areas likely
provided a carbon source, as well as maintained stable anaerobic conditions, which would enhance
N removal.

Keywords: stormwater infiltration basins; nitrogen; urban runoff; stormwater best management prac-
tices

1. Introduction

The effects of stormwater runoff on receiving waterbodies have attracted more atten-
tion as urban expansion and development increase globally and as impervious surfaces
have taken the place of watershed vegetation and soils. As stormwater runoff washes over
impervious surfaces, it can cause flooding and erosion, as well as mobilize and transport
various pollutants (e.g., nutrients, metals, and pathogens) that diminish the quality of
downstream waterbodies [1–3]. The nutrient loads of stormwater runoff can be especially
problematic since excess nitrogen (N) and phosphorus (P) loading to aquatic ecosystems
can cause eutrophication and algal proliferation in surface waters and has detrimental
effects in groundwater and groundwater-fed ecosystems such as natural springs [4–6].
Sources of N and P in stormwater include atmospheric deposition on impervious roads and
buildings, leaking or poorly sited septic tanks, sanitary sewer systems, fertilizer residue in
lawns and other urban green spaces, leaf litter and grass clippings, and pet waste [7–11].

Stormwater infiltration basins (SIB) are one of the best management practices (BMPs)
for controlling both stormwater volumes and stormwater pollutant loads [12,13]. They are
designed as dry, excavated basins that hold and release the stormwater runoff through
infiltration to underlying soils over a short time period (several days) [12]. The vegetation
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on the basin bottom and sides may maintain and improve infiltration and remove soluble
nutrients by biological uptake, as well as help to slow the rate of runoff from the surround-
ing area, collecting and trapping sediment from stormwater [14]. Both vegetation and soil
in SIBs play a role in N removal through plant uptake, denitrification, and adsorption of
ammonium (NH4

+), although the overall removal efficiencies of total N are highly variable
for SIBs, ranging from negative to 100% [15]. The majority of removal efficiencies of N,
however, are in the 20 to 50% range for SIBs [3,13,15].

The variability in N treatment among SIBs comes from a number of environmental
factors, including storm events that produce alternating dry and wet soil conditions in the
basins [16]. On the one hand, the basins’ sediment surfaces can be flooded by the rapid
accumulation of stormwater runoff when a rainfall event occurs. On the other hand, the
water seeps into the soil in a short time (several days) such that the basin soils become
dry again between storm events. In natural systems, such drying–rewetting cycles create
fluctuations between an aerobic and an anaerobic environment [17] and have great impacts
on N dynamics in soil, including N mineralization, microbial biomass, denitrification, and
ammonia volatilization [18,19]. From the research, we know that in most cases, microbial
biomass decreases during dry periods but is stimulated after rewetting [20]. Such dry–
rewetting phenomenon often makes for a higher net N mineralization as compared with
continuously moist soils [21]. Concomitantly, owing to the restricted diffusion of ions in
water films and limited uptake and utilization by plants and microbes, inorganic N often
accumulates in dry soil systems [22]. Upon rewetting after storm events, flooded soil,
however, could provide sediments with oxygen-limited conditions and carbon-rich organic
matter to conduct denitrification and/or plant uptake, such that inorganic N is lost from
the soil [23,24].

Denitrification is the crucial factor for permanent N removal in natural and engineered
systems, but a carbon source and low oxygen conditions are required in this process [25].
Fluctuating oxygen conditions both between rainfall events and among different SIBs, result
from drying and rewetting of sediments and produce temporal and spatial variability in
denitrification for SIBs [26]. Denitrification is low in SIBs when incoming nitrate (NO3

−) in
runoff has limited opportunities to interact with anaerobic soil zones. In the Morse et al.
study [26], while 58% of incoming inorganic N was denitrified in a stormwater basin when
standing water was present, only 1% of incoming dissolved inorganic N was denitrified
when there was rarely standing water after rainfall entered the basins [27]. While only a
few studies have looked at denitrification in SIBs [27–29], we know from studies of natural
systems (that also have periodic flooding such as coastal marshes) that shallow sediments
periodically inundated by tidal water could enhance the occurrence of anoxic conditions
needed for denitrification [30]. Within a constructed wetland, the denitrification potential
was higher at the inlet trough than at mid and outlet locations [31]. This difference in
denitrification was attributed to the fact that the inlet trough experienced the highest
concentrations of NO3 as compared with other locations in the constructed wetland. The
prolonged flooding time was found to be a catalyst to enhance denitrification in a wetland
study [32].

A second environmental factor that may affect the efficacy of SIBs for N treatment
is the accumulation of organic matter that likely occurs as the basins receive sediment-
laden runoff. The gradual influx of suspended matter in runoff could fill the soil pores,
which leads to pore blockage and a reduction of the basins’ infiltration treatment capac-
ity. However, as mentioned above, it could alternatively improve the basins’ N removal
through denitrification because of the associated addition of carbon necessary for denitrifi-
cation [33–35]. Several studies have observed a spatial gradient of organic-rich sediments
in SIB soils from the inlet pipe to the other end of the basin [36,37], creating a sedimentation
gradient along the basins’ flow paths. In natural systems, the potential denitrification
ability is often positively correlated with the organic matter content in soil [26], because
the accumulation of organic matter facilitates the formation of carbon-rich and anaerobic
soil zones that increase denitrification [32]. However, the decomposition of soil organic
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matter also releases nutrients, including dissolved inorganic N into soil [38,39]. Thus, the
expected sedimentation gradient in SIBs likely gives rise to spatial variability in the basins’
N treatment potential, but little work has been done to assess the impact of changes in
organic matter accumulation and water infiltration on N transformations and treatment in
the infiltration basins.

To gain a better understanding of the roles that wet versus dry seasons and a hy-
drologic sediment gradient in SIBs play in a variable N cycling process and a potential
inorganic N transport to the underlying groundwater, in this paper, basic sediment prop-
erties and N cycling process rates were analyzed including potential net mineralization,
nitrification, and denitrification rates in an urban subtropical SIB. The purpose of this
research is to elucidate soil processes that may influence N cycling within SIBs in a Florida
urban residential setting, with the following research questions: (1) How do soil N cycling
processes vary during the summer rainy season and winter dry season? and (2) How will
N removal efficacy via denitrification vary spatially in the sediments of urban stormwa-
ter infiltration basins? To the best of our knowledge, our work is the first to investigate
temporal and spatial gradients in N treatment for SIBs, with specific attention to sediment
gradients that arise from the flow path of water entering the basins.

2. Materials and Methods
2.1. Site Description

Soil and water samples were collected from two SIBs located in the Oak Grove neigh-
borhood, a medium-density residential community in Lutz (28◦9′ N, 82◦27′ W, part of the
Tampa metropolitan area), Florida, USA, between April 2019 and January 2020 (Figure 1).
This region is characterized by a humid subtropical climate with annual average precipita-
tion of 130 cm. The area has a hot and wet season from May to October and a mild and dry
season from November through April. The wet season accounts for nearly two thirds of
the precipitation during the year on an average basis. The basins are underlain by natural
predevelopment soils, which are of the Narcoossee and Panoma series, both of which
are deep, sandy Spodosols [40]. The predominant vegetation of both basins is Bahiagrass
(Paspalum notatum), a deep-rooted perennial turfgrass which is native to South America and
productive on drought prone, sandy soil with low fertility. Each basin (hereafter referred
to as SIB 1 or SIB 2) was designed as a grassed basin with one inflow pipe and runoff from
the surrounding impervious surfaces directed into the basins via the inflow pipes, which
were 0.9 m diameter concrete pipes.

Figure 1. Map of the research site and aerial image of the research stormwater infiltration basins
(SIBs) in Lutz, Florida, USA (part of the Tampa FL metropolitan area).
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2.2. Soil Sampling

Soils from each SIB were sampled once in each dry season (March 2019) and wet
season (August 2019). To investigate the effect of the sediment gradient from the basins’
inflow pipes outward, soil samples were collected at the distances of 5, 13, and 21 m from
the inlet pipe within each basin (Figure 2), under the premise that sediment loads from
inflowing runoff would accumulate most near the inflow pipe and be deposited to a lesser
extent moving outward from the pipe. Zones 1, 2, and 3, in Figure 2, represent areas of
frequent flooding, occasional flooding, and rare flooding, respectively. Within each of these
zones, three soil replicates were sampled at three depths (0–30, 30–60, and 60–90 cm) in SIB
1 and two depths (0–30 and 30–60 cm ) in SIB 2 since the seasonal high-water table was
reached at the depth of 60 cm in SIB 2. Replicate soil samples for each distance and depth
were composited by mixing in the field and returned to the lab in plastic bags and stored
in a cooler. Within 24 h after sampling, the soil was sieved through a #10 sieve and stored
at 4 ◦C until analysis for basic soil physiochemical properties, inorganic N production, and
denitrification rates.

Figure 2. Diagram showing soil sampling point (red dots) and water sampling well (gray circles)
distribution in zones of SIB sites. Zone 1 is the frequently flooded zone with hypothesized higher
sediment accumulation than the other zones. Zone 2 is occasionally flooded and Zone 3 is rarely
flooded.

2.3. Soil Physicochemical Properties

We measured soil moisture content by subtracting the weight of soil after oven-drying
for 24 h at 105 ◦C from the original weight of wet soils. The soil organic matter content was
determined by the loss-on-ignition (LOI) method, which required a 4 h soil combustion in
a muffle furnace at 550 ◦C. The soil pH was measured in a 1:2 (soil/water) suspension after
settling for 20 min with a Thermo Scientific Advanced Electrochemistry Meter. Soil total
N and total C were measured at the Wetland Biogeochemistry Laboratory, University of
Florida with an elemental analyzer (Thermo Flash EA 1112, CE Elantech Inc., Lakewood,
NJ, USA). Soil inorganic C was determined by measuring the CO2 pressure after mixing
soil samples and with ferrous chloride solution and the results were compared with CaCO3
standards from the Wetland Biogeochemistry Laboratory at the University of Florida [41].
Particle size analysis of soils was conducted via the hydrometer method.

2.4. Biogeochemical Analyses of Soils

For extractable inorganic N of SIB soils, 10 g wet soil samples were extracted by 50 mL
2 M KCl solution, with agitation for 1 h at 90 rpm on a Boekel Flask Dancer. Then, the
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extracts were filtered through #42 Whatman filter paper and analyzed for NOx-N and
NH3-N with a continuous segmented flow analyzer (Seal Analytical, Mequon, WI, USA).

For net mineralization and nitrification, we carried out a 14-day soil incubation
experiment following the methods of Groffman and Crawford, 2003 [42]. Briefly, 10 g
wet soil was weighed into flasks that were covered by a layer of paper in order to keep
air circulating while minimizing moisture loss. At the end of the 14 days, samples were
extracted with 2 M KCl solution and extracts were analyzed for inorganic N fractions, as
described above. Net mineralization rates were determined by comparing the difference
between the sum of inorganic N (NH4-N and NO3-N) contents before and after lab aerobic
incubation. Nitrification rates were obtained by calculating the difference between NO3-N
concentrations before and after the incubation.

Denitrification was assessed via the denitrification enzyme activity (DEA) method,
utilizing the acetylene inhibition method to determine N2O production [43]. Soil samples
(10 g) were amended with 10 mL DEA solution composed of 0.202 g/L KNO3, 0.25 g/L
chloramphenicol, and 0.360 g/L glucose and were sealed with rubber septa stoppers in
60 mL serum bottles. Then, N2 gas was introduced into the serum bottles to remove oxygen
inside and to produce anoxic conditions. Approximately 10% headspace was replaced
with acetylene gas to block N2O production to N2. Samples were, then, incubated at
room temperature (22 ± 1 ◦C) in the dark with gentle shaking (110 rpm) for two hours.
The concentration of headspace N2O was sampled every 30 min and measured using
a Shimadzu gas chromatograph (GC-14A, Hewlett Packard) with an electron capture
detector. The result was reported as N2O-N produced per gram of dry weight soil per hour,
combining the N2O gas in air and liquid phases using Bunsen coefficient (0.544 at 25 ◦C,
1 atm pressure).

2.5. Statistical Analyses

Data analysis was performed using RStudio software. A 95% confidence level (α = 0.05)
was selected for all statistical analysis. Two-way analysis of variance (ANOVA) was
conducted to test for differences among wet–dry season, the distance from inflow pipe
(horizontal sediment gradient), soil depth, and their interactions on individual response
variables, including potential denitrification rate, net mineralization, and nitrification rate.
Since ANOVA had revealed significant differences among the results, a Tukey’s honestly
significant difference (HSD) test was performed as a post hoc test. The relationship be-
tween various soil basic variables was evaluated by correlation and regression analysis. A
correlation matrix chart was made in order to investigate and visualize the dependence
between multiple variables, including potential denitrification rate, mineralization, and
nitrification rate with SIB soil features.

3. Results and Discussion
3.1. Soil Physiochemical Properties

Basic soil physicochemical properties are shown in Table 1. There is a negative
correlation between soil pH values in both basins and increasing distance from the inlet
pipes, likely due to increased inorganic C being deposited from incoming runoff near
the basins’ inlets, which likely comes from concrete materials such as sidewalks and
stormwater pipes that convey stormwater runoff [44]. Soil organic matter contents in
both basins ranged from 1 to 4%, with soil TOC ranging from 1 to 10 g/kg. Soil C/N
and organic matter content decreased moving from inlet to outlet and with depth at each
sampling point. All soils had a sandy texture, except for the first layer of soil around the
inlet pipe area in SIB 2, which was sandy clay. While the soil exchangeable NH4-N was
highly variable and ranged from 1 to 14 mg/kg, extractable NO3-N concentrations in soil
samples were generally below 1 mg/kg (Table 2).



Water 2021, 13, 320 6 of 12

Table 1. Mean SIB soil properties (± standard error) at the 0–30 cm depth in the wet and dry season and in the 3 sediment zones.
Zone 1, frequently flooded; Zone 2, occasionally flooded; Zone 3, rarely flooded.

Location
and Season Zone Gravimetric

Moisture (%)
Organic

Matter (g/kg) Texture pH Inorganic
C, g/kg

Total C
(g/kg)

Total N
(g/kg) C:N

SIB 1-wet
season

1 21.6 (1.5) 34 (24) Sand 8.0 (0.4) 0.69 (1.03) 2.8 (3.8) 0.2 (0.1) 8.4 (8.2)

2 21.5 (1.6) 33 (25) Sand 6.4 (0.2) 0.02 (0.03) 1.2 (1.4) 0.2 (0.1) 4.6 (3.5)

3 18.3 (11.0) 28 (23) Sand 6.4 (0.2) 0.04 (0.04) 0.9 (0.8) 0.2 (0.1) 4.4 (2.5)

SIB 1-dry
season

1 0.8 (0.4) 21 (3) Sand 8.6 (0.2) 1.25 (0.61) 4.8 (2.1) 0.3 (0.1) 13.3 (3.2)

2 1.7 (0.9) 16 (6) Sand 7.5 (0.7) 0.18 (0.04) 1.0 (0.7) 0.2 (0.1) 4.6 (2.6)

3 3.2 (2.2) 11 (5) Sand 6.4 (0.3) 0.17 (0.02) 0.4 (0.5) 0.2 (0.1) 2.1 (2.2)

SIB 2-wet
season

1 20.4 (1.3) 24 (5) Sandy clay 7.5 (0.9) 0.18 (0.17) 3.7 (1.9) 0.4 (0.1) 8.6 (2.6)

2 21.9 (2.1) 24 (4) Sand 5.9 (0.4) 0.09 (0.05) 4.4 (1.0) 0.4 (0.1) 11.1 (2.8)

3 19.5 (3.9) 22 (73) Sand 6.0 (0.7) 0.04 (0.02) 4.8 (20.4) 0.4 (0.1) 12.7 (2.8)

SIB 2-dry
season

1 24.3 (4.1) 116 (71) Sandy clay 8.6 (0.8) 1.82 (1.23) 25.1 (21.1) 2.2 91.7) 9.7 (3.4)

2 18.7 (2.9) 38 (29) Sand 6.4 (0.4) 0.35 (0.20) 1.9 (1.7) 0.3 (0.1) 5.6 (2.5)

3 15.2 (3.8) 37 (27) Sand 6.2 (0.9) 0.31 (0.28) 2.0 (6.2) 0.4 (0.3) 5.1 (6.0)

Table 2. Mean exchangeable inorganic N pools (± standard error) in SIB soils at the 0–30 cm depth in
the wet and dry season and in the 3 sediment zones (Zone 1, frequently flooded; Zone 2, occasionally
flooded; Zone 3, rarely flooded).

Location and Season Zone Exchangeable
NO3-N (mg/kg)

Exchangeable
NH4-N (mg/kg)

SIB 1-wet season

1 0.8 (0.4) 2.0 (1.2)

2 0.8 (0.3) 2.1 (1.2)

3 0.5 (0.5) 1.6 (0.2)

SIB 1-dry season

1 0.7 (0.0) 7.4 (0.4)

2 0.7 (0.1) 8.1 (2.8)

3 0.5 (0.0) 7.8 (1.2)

SIB 2-wet season

1 1.1 (0.7) 6.3 (4.0)

2 0.4 (0.1) 10.0 (3.7)

3 0.5 (0.1) 5.1 (1.5)

SIB 2-dry season

1 12.4 (11.8) 14.7 (2.3)

2 0.7 (0.1) 8.9 (0.6)

3 1.0 (0.2) 8.6 (1.4)

3.2. Inorganic N Production and Denitrification in SIB Soils
3.2.1. Net N Mineralization

There was no significant effect of sediment gradient on net N mineralization in the
SIBs (p-value 0.78). However, there was a significant effect of season on mineralization,
with the wet season soils showing significantly higher mineralization than the dry season
soils (p-value < 0.001). Net N mineralization was negligible in SIB 1 during the dry season
but increased to an average of 14–15 mg N/kg/day in the wet season, indicating higher
rates of NH4-N production in the wet season than in the dry season for SIB 1 (Figure 3).
In SIB 2, across all sediment zones, there was also more N mineralization in the wet
season, but mineralization rates were much lower for SIB 2 soils than they were for SIB
1 soils (Figure 3). In other human-dominated and natural systems with cycles of wet
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and dry seasons, a number of studies have also shown decreased soil N mineralization
during dry episodes [20,45]. During dry periods, a likely death of microbial biomass leads
to reduced turnover of both carbon and N, which reduces N mineralization rates [46].
Several studies have also shown that the microbial community structure differs in wet
versus dry soils, with fungal communities better adapted than bacterial communities
to survive dry episodes [20,47]. Fungal-dominated systems have been associated with
slower N mineralization rates than bacterial-dominated systems [20]. Thus, a dry season
shift in community structure toward more fungal communities may explain reduced
mineralization in the dry season, though it is beyond the scope of this paper to investigate
the microbial drivers of soil mineralization.
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A significant increase in N mineralization during the wet season demonstrates that
there was a pool of labile N that may be susceptible to leaching losses at the beginning of
the wet season. The increase in net N mineralization during the wet season was consistent
with other studies that have observed that microbial death during the dry season leaves
behind a supply of readily degraded organic compounds that can fuel microbial growth
when the subsequent wet season stimulates soil microbial growth [48,49]. In this way,
the microbial biomass that is killed under dry conditions is readily utilized by microbes
upon soil rewetting, and soils undergo increases in both carbon and N mineralization [46].
This phenomenon of microbes being sustained during wet episodes by organic substrates
produced by cell death during dry episodes has led some authors to assert that soils
undergoing wet–dry cycling have N mineralization rates as much as two times those
of continuously moist soils [50–52]. This process would presumably lead to losses of
NH4-N via leaching from the SIBs during wet season flooding events, thus, reducing
their N treatment efficiency unless the increased available N is utilized by plant roots. As
SIBs are designed to undergo periodic wet and dry conditions, the effect of shifts in N
mineralization rates has important implications, namely that future studies should attempt
to constrain the mechanisms responsible and investigate SIB design options to increase
plant uptake of NH4-N during wet episodes.

3.2.2. Nitrification

In contrast to net N mineralization, nitrification rates were highest in the dry season
and were negligible during the wet season in both SIBs, with the seasonal difference being
significant (p-value < 0.001) (Figure 4). While nitrifying bacteria are generally considered
to be highly susceptible to water stress, this study is not the only study to observe higher
rates of soil nitrification during episodic dry periods [50,53]. We propose that nitrifying
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bacteria in the SIBs were able to survive dry episodes and lacked the aerobic environments
they needed during wet episodes. Because oxygen in the SIB soil pores would be replaced
by water after rain events in the wet season, oxygen-restricted conditions would exert
temporary negative impacts on the abundance and activity of nitrifying bacteria. High
nitrification rates coupled with low potential denitrification (as discussed below) are
important for SIB treatment efficiency and N leaching and enrichment of groundwater.
Davis et al. [54] showed that NOx anions created by the nitrification process had low
sorption to soils and high mobility to groundwater in Florida sandy soils. Thus, the high
NO3

- production in SIB soils during the dry season would result in the risk of degradation
of groundwater quality during sporadic rain events in the dry season, which account for
30–35% of annual precipitation in Florida.

Figure 4. Nitrification rates of SIB soils by zones and seasons. Zone 1, frequently flooded; Zone 2,
ocassionally flooded; Zone 3, rarely flooded. Values represent data from the entire soil profile (all
three sampling depths).

Nitrification rates significantly decreased along the sediment gradient in both SIBs
(p-value < 0.001), indicating that nitrate production in each SIB is expected to have a strong
spatial trend that increases as does the spatial frequency of flooding in the SIBs. While
our study does not investigate the causal mechanisms of this trend, we did observe that
nitrification rates were significantly positively related to soil pH (p-value 0.01), soil total
N (p-value 0.001), and soil total C (p-value 0.01). The optimum pH for nitrification in
soils is around 8.5 [55], with nitrification generally decreasing with soil pH values below
8.5 (Table 2). In this study, SIB soils had pH values closer to this optimum value near
the inflows (Zone 1) where flooding and sediment accumulation was more frequent and
nitrification was higher. Higher concentrations of inorganic C (carbonates, as buffering
material, Table 1) accumulated at the inflow of SIBs may be the reason for higher pH
values in Zone 1. Sources of material that induce high alkalinity in this zone could include
concrete and other construction materials in the neighborhood streets and stormwater
conveyance pipes [56,57]. Further study should be done to better identify the mechanisms
that drive nitrification rate trends in SIBs. If a pH difference is indeed one of these driving
mechanisms, as suggested by this study, then use of concrete gutters to convey stormwater
should be reconsidered, as it may have pH effects that drive increased NO3

- production in
SIB soils.

Both net mineralization and nitrification rates decreased with soil depth (Supple-
mentary Materials Table S1), which was related to the concomitant decreases in organic
matter and moisture content, showing that the carbon- and nutrient-rich and moist topsoil
provided a favorable environment for microbial survival and activity.

3.2.3. Denitrification

As one process that can permanently remove N from the soil, denitrification is a key
factor in this study to identify the N removal efficiency in SIBs. Denitrification rates were



Water 2021, 13, 320 9 of 12

generally higher in the inlet surface layer (0–30 cm) of the SIBs and decreased along the
depth gradient, indicating that higher inorganic N removal would be expected closer to the
SIB topsoils and inlet zones (Figure 5 and Supplemental Table S1). Likewise, denitrification
generally decreased along the sediment gradient from Zone 1 to Zone 3, indicating that
higher inorganic N removal would be expected closer to the SIB inlet zones (Figure 5). It is
likely that sediment-enriched soils around the inlet pipes may be hotspots of N removal.
This is likely because sediments accumulating around the inflow areas are more likely
to stay inundated and drive stable soil moisture during dry–rewetting conditions, which
in turn promotes the anaerobic soil conditions necessary for denitrification [26]. The
sediments from inflowing stormwater also supply organic C, which is also necessary for
denitrification [10,58].

Figure 5. Potential dentrification rates in SIB soils by zones and seasons. Zone 1, frequently flooded; Zone 2, occasionally
flooded; Zone 3, rarely flooded. Values represent data from the entire soil profile (all three sampling depths).

Although we expected to see significant denitrification potential differences between
wet and dry seasons, the increase of the overall potential denitrification rate from dry to
wet season was not significant. We expected to measure much higher DEA in the wet
season than in dry season due to an increased anaerobic condition from soil inundation.
The possible explanation of our unexpected results might be the adaption of the microbial
community to fluctuating soil moisture conditions. For example, unlike ponds and reten-
tion basins that are built to hold water in urban systems, frequent drought condition in
SIBs can induce physiological adaptation of denitrifers, and thus flatten their metabolic
responses [59], accounting for the insignificant seasonal denitrification potential change in
this system. Future studies should investigate the microbial mechanisms and drivers of
our observation that denitrification did not vary between wet and dry season.

4. Implications for Stormwater Control Measure Efficiency

Identifying the spatiotemporal differences of N production and removal capability
of SIBs can be essential for improving the role of SIBs in pollutant control, as well as
providing a reference for future urban SCM construction and designs. Each season of
our study had a characteristic inorganic N form in SIB soils, i.e., NH4

+ during the wet
season and NO3

− during the dry season. As a highly mobile form of N, NO3
− produced

during the dry season would be likely to leach during periodic dry season storms or
after the onset of the wet season, potentially reducing the N treatment efficiency of our
SIBs as a stormwater BMP. Our study also demonstrated a spatial trend of inorganic N
removal via denitrification, reaching its highest value near SIB inflow pipes where frequent



Water 2021, 13, 320 10 of 12

flooding and organic sediment accumulation likely create a denitrification hotspot. In
order to accomplish the goal of improving urban water quality, the primary purpose of
constructing BMP infrastructure is to reduce the transport of excess nutrients and pollutants
into groundwater. This is a preliminary study, but it helps to understand and predict the
influence of a hydrological sediment gradient and seasonal variation during the production
and removal of inorganic N by urban SIBs. To mitigate the pollution threat of excess N
to water bodies in urban areas, future research should address soil drivers of N cycling
in SIBs, with particular emphasis on important factors suggested here, namely potential
effects of microbial community composition on inorganic N production, potential effects of
high pH on increasing nitrate production, and spatial gradients in denitrification that may
arise due to differences in flooding and organic sediment accumulation in SIBs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/3/320/s1, Supplementary Table S1. Average Rates of N-cycling Activities and Extractable
Inorganic N (±SE) in Different Seasons and Hydrological Zones.
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