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Abstract: Landslides, debris flows, and other secondary disasters caused by earthquakes threaten the
safety and stability of river basins. Earthquakes occur frequently in Japan. Therefore, it is necessary
to study the impact of earthquakes on sediment transport in river basins. In this study, consid-
ering the influence of reservoirs, the Soil and Water Assessment Tool-calibration and uncertainty
program (SWAT-CUP) was employed to analyze the runoff parameter sensitivity and to optimize
the parameters. We manually corrected the sediment transport parameters after earthquake, using
the Soil and Water Assessment Tool (SWAT) model to assess the process of runoff and sediment
transport in the Atsuma River basin before and after the 2018 Hokkaido Eastern Iburi Earthquake.
The applicability of the SWAT model to runoff simulation in the Atsuma River basin and the changes
of sediment transport process after the earthquake were studied. The research results show that the
SWAT model can accurately simulate the runoff process in the Atsuma River basin, the Nash–Sutcliffe
efficiency coefficient (NSE) is 0.61 in the calibration period, and is 0.74 in the verification period. The
sediment transport increased greatly after the earthquake and it is roughly estimated that the amount
of sediment transport per unit rainfall increased from 3.5 tons/mm/year before the earthquake to
6.2 tons/mm/year after the earthquake.

Keywords: SWAT model; SWAT-CUP software; runoff; sediment transport; Atsuma River basin;
2018 Hokkaido Eastern Iburi Earthquake

1. Introduction

Global climate change has caused natural disasters to occur frequently [1–3], Hence,
it is important for human beings to adapt and respond to disasters [4]. In recent years,
earthquakes have occurred frequently. From 2017 to 2019, a total of 332 earthquakes with
intensity of 6 or more occurred globally, including 35 earthquakes with intensity of 7
or more and 2 earthquakes with intensity of 8 or more [5]. Earthquakes and secondary
disasters associated to it have plagued humans for a long time [6,7]. The process and
mechanism of gravity erosion in river basins after an earthquake are complicated, gravity
erosion usually occurs randomly, and it combines with hydraulic erosion. They have
a significant effect on runoff, sediment production, and sediment transport. Moreover,
processes and mechanisms are also hotpots in the research fields of debris flow, soil erosion,
and river sediment transport [8].

To improve the understanding of the impact of earthquakes on sediment transport
processes in a river basin, the use of hydrological modeling is investigated. With the
development of computer science and human understanding of various natural processes
in river basins, the hydrological model has become a powerful tool for watershed research
and management. The distributed hydrological model can accurately simulate various
hydrological processes in river basins, and become an important tool in hydrological
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simulation research in river basins [9–11]. At the end of the last century, with the rapid
development of computer technology, geographic information system (GIS), remote sensing
(RS), and other innovative technologies, the development of distributed hydrological model
had a solid, real-time technical platform, and the Soil and Water Assessment Tool (SWAT)
model was developed in this period [12]. At present, the SWAT model is the most widely
used distributed hydrological model worldwide. The SWAT model has been validated
in regions of different spatial scales in the world, and is used to solve water resources
management [13], rainfall-runoff analysis [14–16], watershed sediment transport process
research [17,18], and other research fields [19].

Research has been conducted previously on the 2018 Hokkaido Eastern Iburi Earth-
quake. The research focused on earthquake-induced damage to natural slopes, the physical
features and the mechanical properties of the collapsed pyroclastic fall deposits distributed
in the Atsuma River basin, the complicated rupture process of earthquake, and the influ-
ence of earthquake on people [20–25]. However, there are no studies that focus on the
impacts of the 2018 Hokkaido Eastern Iburi Earthquake and its secondary disasters on
the Atsuma River system, and the changes in sediment transport processes in the Atsuma
River basins after the earthquake. Hence, this research aims to focus on this problem.

After the 2018 Hokkaido Eastern Iburi Earthquake, a large-scale mountain collapse
occurred in the Atsuma River basin, and therefore a large amount of the sediment accu-
mulated on the slopes and along the river channels. The river environment, biological
environment, ecosystems, and even the marine environment in the seas were severely
impacted. This study uses the SWAT model to assess the effect of the earthquake on the
sediment transport in the Atsuma River basin. The research aims to (1) study the runoff
simulation accuracy of the SWAT model in the Atsuma River basin, considering the in-
fluence of reservoirs. We ran the model for a warm-up period, calibration period, and
verification period; (2) analyzed the changes of sediment transport processes in the Atsuma
River basin before and after the earthquake, based on high-precision runoff simulation,
turbidity change characteristics, and the correlation between turbidity with sediment trans-
port; (3) corrected the sediment transport parameters after earthquake in the Atsuma River
basin, and evaluated the increase in sediment transport after the 2018 Hokkaido Eastern
Iburi Earthquake, according to previous research, field investigation, and the correlation
between sediment transport with turbidity.

2. Materials and Methods
2.1. Atsuma River Basin

The study area is the Atsuma River basin in southern Hokkaido. The area of the
Atsuma River basin is 366.9 km2, the length of the main river channel is 52.3 km, and the
altitude of the basin is 0–600 m above sea level. There are two reservoirs in the Atsuma
River basin which are Atsuma dam (started operation in 1970, watershed area 52 km2,
effective water storage capacity 9.5 × 106 m3) and Apporo dam (started operation in 2017,
watershed area 105.3 km2, effective water storage 4.3 × 107 m3). The watershed area of
the Apporo dam occupies about one third of the entire Atsuma River basin, hence it can
be inferred that it has a great influence on the runoff and sediment transport in the lower
reaches of the Atsuma River basin. The basement complex of area where Atsuma River
basin is located consists mainly of sedimentary rocks of the Neogene tertiary system: the
Kawabata Formation and Fureoi Formation (alternate layers of sandstone and mudstone,
sandstone, and conglomerate) and the Karumai Formation (mainly diatomaceous siltstone,
sandstone, and conglomerate). At the western edge of this area, the Moebetsu Formation
(diatomaceous siltstone), which is also of the Neocene tertiary system, or the sedimentary
materials of the Middle Pleistocene of the Quaternary system (a sand gravel layer) forms
the basement complex [21]. This area has developed an anticline/syncline structure with a
north-northwest–south-southeast strike that crosses at a right angle the pressure axis from
the Hidaka Mountain Range to the Yubari Mountain Range [21]. The Pacific coast, where
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the Atsuma river flows to, has abundant marine resources such as scallops and shrimp fish,
and the coastal fishes. The map of the Atsuma River basin is shown in Figure 1.

Water 2020, 12, x FOR PEER REVIEW 3 of 16 

 

Pacific coast, where the Atsuma river flows to, has abundant marine resources such as 
scallops and shrimp fish, and the coastal fishes. The map of the Atsuma River basin is 
shown in Figure 1. 

 
Figure 1. Map of Atsuma River basin ((A) GSI: Geospatial Information Authority of Japan (2020) [26]; (B) Open Street Map 
Japan (2020) [27]). 

On 6 September 2018, an earthquake occurred near Atsuma, Hokkaido, Japan. The 
epicenter was at 42.7° N, 142° E, depth was 37.0 km [22]. Tremors were felt in most of 
Hokkaido. The Japan Meteorological Agency recorded a maximum intensity of 7 in the 
eastern parts of the Hokkaido Iburi region. This was the first time for an earthquake with 
an intensity of 7 or more to be recorded in Hokkaido. The basement rock around the epi-
center mainly consists of Neogene sedimentary rocks that are conglomerate, sandstone, 
and mudstone of Fureoi formation of Middle to Late Miocene, sandstone, hard shale, and 
mudstone of Karumai formation of Late Miocene, and conglomerate, sandstone, hard 
shale, and siltstone of Moebetsu (Nina) formation of Late Miocene to Early Pliocene [28]. 

Uplift of up to ≈7 cm is predominantly distributed in the source region, and eastward 
movement of up to ≈4 cm is widely observed on the eastern side of the source region. The 
fault plane extends in a north–south direction and is dipping to the east with a dip angle 
of 74° and the fault top is positioned at around 15 km in depth. There were 459 earth-
quakes that occurred between 6 September 2018 03:00 and 7 September 2018 23:59, the 
aftershock area extended 25 km horizontally, approximately in the N–S direction, and that 
95% of the hypocenters were distributed at depths from 20 to 40 km [29]. 

The 2018 Hokkaido Eastern Iburi Earthquake caused a large number of shallow land-
slides, and several large-scale deep-seated landslides involving basement rocks such as 
shale and mudstone of Miocene, these landslides occurred over approximately 400 km2 

hilly areas 200–400 m in elevation. The total landslides area is 43.8 km2 which includes 
33.1 km2 in the Atsuma River basin; the total accumulation area is 11.8 km2 which includes 
9.6 km2 in the Atsuma River basin, and the total volume of landslides is 30 million m3 [21]. 
After 2018 Hokkaido Eastern Iburi Earthquake and large-scale landslides, within the 
Atsuma River basin, the safety factors under natural condition are all large indicating that 
no slopes would slide with no rainfall [30]. 

An example of the landslides that occurred due to the 2018 Hokkaido Eastern Iburi 
Earthquake in the Atsuma River basin is shown in Figure 2. About 4500 landslides oc-
curred after earthquake in the Atsuma River basin, and large quantities of sediment and 
woody debris were deposited in river channels and plains. The distribution of slope col-
lapse/sediment accumulations in the Atsuma River basin caused by the earthquake is 
shown in Figure 3. The slope degree map of the Atsuma River basin is shown in Figure 4. 

Figure 1. Map of Atsuma River basin ((A) GSI: Geospatial Information Authority of Japan (2020) [26]; (B) Open Street Map
Japan (2020) [27]).

On 6 September 2018, an earthquake occurred near Atsuma, Hokkaido, Japan. The
epicenter was at 42.7◦ N, 142◦ E, depth was 37.0 km [22]. Tremors were felt in most of
Hokkaido. The Japan Meteorological Agency recorded a maximum intensity of 7 in the
eastern parts of the Hokkaido Iburi region. This was the first time for an earthquake with
an intensity of 7 or more to be recorded in Hokkaido. The basement rock around the
epicenter mainly consists of Neogene sedimentary rocks that are conglomerate, sandstone,
and mudstone of Fureoi formation of Middle to Late Miocene, sandstone, hard shale, and
mudstone of Karumai formation of Late Miocene, and conglomerate, sandstone, hard shale,
and siltstone of Moebetsu (Nina) formation of Late Miocene to Early Pliocene [28].

Uplift of up to ≈7 cm is predominantly distributed in the source region, and eastward
movement of up to ≈4 cm is widely observed on the eastern side of the source region. The
fault plane extends in a north–south direction and is dipping to the east with a dip angle of
74◦ and the fault top is positioned at around 15 km in depth. There were 459 earthquakes
that occurred between 6 September 2018 03:00 and 7 September 2018 23:59, the aftershock
area extended 25 km horizontally, approximately in the N–S direction, and that 95% of the
hypocenters were distributed at depths from 20 to 40 km [29].

The 2018 Hokkaido Eastern Iburi Earthquake caused a large number of shallow
landslides, and several large-scale deep-seated landslides involving basement rocks such
as shale and mudstone of Miocene, these landslides occurred over approximately 400 km2

hilly areas 200–400 m in elevation. The total landslides area is 43.8 km2 which includes
33.1 km2 in the Atsuma River basin; the total accumulation area is 11.8 km2 which includes
9.6 km2 in the Atsuma River basin, and the total volume of landslides is 30 million m3 [21].
After 2018 Hokkaido Eastern Iburi Earthquake and large-scale landslides, within the
Atsuma River basin, the safety factors under natural condition are all large indicating that
no slopes would slide with no rainfall [30].

An example of the landslides that occurred due to the 2018 Hokkaido Eastern Iburi
Earthquake in the Atsuma River basin is shown in Figure 2. About 4500 landslides oc-
curred after earthquake in the Atsuma River basin, and large quantities of sediment and
woody debris were deposited in river channels and plains. The distribution of slope col-
lapse/sediment accumulations in the Atsuma River basin caused by the earthquake is
shown in Figure 3. The slope degree map of the Atsuma River basin is shown in Figure 4.
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2.2. SWAT Model

Currently, the Soil and Water Assessment Tool (SWAT) is the most widely used
distributed hydrological model worldwide. It was developed by the US Department of
Agriculture-Agricultural Research Service (USDA-ARS) [18]. The SWAT model is a river
basin, or watershed scale model developed to predict the impact of land management
practices on water, sediment, and agricultural chemical yields in river basins over long
periods of time.
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2.2.1. Modules and Feature of SWAT Model

The main modules of SWAT model are referring to meteorology, soil, hydrology, plant
growth, nutrients, pollutants, management measures. The river basin is first divided
into several sub-basins with basically the same climatic conditions, and then every sub-
basin is divided into Hydrological Response Units (HRUs) with the same land type, soil
conditions, terrain, and management methods. In each HRU the number of research factors
is calculated separately, and the total amount is calculated finally by confluence calculation.
By dividing sub-basins and HRUs, researchers can analyze the spatial characteristics of
watershed hydrological processes. The process of runoff, and migration of sediment,
nutrients, and pollutants can be simulated by SWAT to reflect the real water cycle process
in a river basin. Furthermore, the water cycle process follows the principle of water balance.
The Equation (1) used by SWAT model is as following:

SWt = SWo + t∑
i=1

(Rday − Qsurf − Ea − Wseep − Qgw) (1)

where SWt is final soil moisture content (mm), SWo is initial water content (mm), t is time
in days, Rday is precipitation (mm), Qsurf is surface runoff (mm), Ea is Evapotranspiration
(mm), Wseep is amount of water seeping into the soil profile (mm), and Qgw is amount of
return flow (mm).

The SWAT model uses the Modified Universal Soil Loss Equation (MUSLE) to model
changes in erosion and sediment transport. MUSLE used the amount of runoff to simulate
erosion and estimate sediment yields. The Equation (2) is defined as the following:

Sed = 11.8 ×
(

Qsurf × qpeak × areahru

)0.56
× K × C × P × LS × CFRG (2)

where Sed is the sediment yield (tons/day) of a HRU, Qsurf is the volume of surface runoff
(mm/103·m2), qpeak is the peak runoff rate (m3/s), areahru is the area of the HRU (103·m2),
K is the Universal Soil Loss Equation (USLE) soil erodibility factor (dimensionless), C is
the USLE cover and management factor (dimensionless), P is the USLE support practice
factor (dimensionless), LS is the USLE topographic factor (dimensionless), and CFRG is
the coarse fragment factor (dimensionless).
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2.2.2. Basic Data of SWAT Model

The SWAT model inputs are a digital elevation model (DEM), land use data, soil data,
and weather data, which are shown in Table 1. All geographic data need to be projected
from geographic coordinate system (WGS84) to metric coordinate system (JGD2000/Japan
Plane Rectangular CSII). SWAT is a watershed modeling package that can be used as an
extension within Geographic Information System (GIS) interface, the QGIS interface of
the SWAT2009 version was used to discretize a watershed and extract the SWAT model
input files.

Table 1. The SWAT model input data for the Atsuma River basin.

Data Type Description Resolution Source

Topography map Digital elevation model (DEM) 10 m Geographical information Authority of
Japan

Land use map Land use classifications 100 m Ministry of Land, Infrastructure,
transport and Tourism of Japan

Soils map Soil types 1/200,000 Ministry of Land, Infrastructure,
Transport and Tourism of Japan

Weather

Precipitation 450 stations Japan Meteorological Business Support
Center

Minimum and maximum temperature
Atsuma station

Japan Meteorological AgencyWind speed
Solar radiation Sapporo station

Relative humidity Tomakomai station

The DEM was used to delineate the catchment and provide topographic parameters.
The catchment area of the Atsuma River basin was delineated and discretized into 65
sub-basins using the 10 m mesh digital elevation model of Geographical Information
Authority of Japan. The land use subdivision mesh data in 2014 of Ministry of Land,
Infrastructure, Transport and Tourism was used as land use data to estimate vegetation
and their parameters were input to the model. The 1/200,000 Land Classification Basic
Survey of Ministry of Land, Infrastructure, Transport and Tourism was used as soil data in
this study. The land use data and the soil data were overlaid to derive 225 unique HRUs.
The DEM, land use, and soil conditions in the Atsuma River basin are shown in Figure 5.Water 2020, 12, x FOR PEER REVIEW 7 of 16 
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Daily precipitation at 450 radar precipitation stations in the Atsuma River basin were
used to run the model. The minimum and maximum temperature data, average wind
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speed data at Atsuma station were used, the relative humidity data at Tomakomai station
was used, the solar radiation data at Sapporo station was used.

The turbidity data is based on the observation data at Kyoei Station which are from
14 April 2018 to December 2019. However, there were four periods of time when data
was not collected. The observation discharge data at Atsuma Bridge station was collected
from 2015 to 2019, but there was a period when no data was collected from 20 July 2017
to 30 September 2017. The outflow data at the Atsuma dam is from 1 January 2015 to
5 September 2018, but there was a period where no data was collected after 2017. The
inflow and outflow data at Apporo dam was from 10 August 2018 to 10 November 2018,
and from 20 March 2019 to 25 June 2019.

2.2.3. Parameters of SWAT Model

The SWAT model itself had the function of generating default parameters according
to the soil data, land use data, and elevation data of the study area. Researchers could also
adjust the parameters by historical hydrological data or the SWAT-CUP software. This
study uses the SWAT-CUP software to analyze the runoff parameter sensitivity and to
modify parameters accordingly. Firstly, sensitivity analysis was performed to identify the
most sensitive runoff parameters for the model calibration using the Global Sensitivity
part of SWAT-CUP. Determining the most sensitive parameters for reproducing runoff
were Snow pack temperature lag factor (TIMP), Curve number (CN2), Melt factor for
snow on 21 December (SMFMN), Melt factor for snow on 21 June (SMFMX), Temperature
lapse rate (TLAPS), Available water capacity (SOL_AWC), Snow melt base temperature
(SMTMP), Effective hydraulic conductivity in main and tributary channel alluvium (CH_K2,
CH_K1), Minimum snow water content that corresponds to 100% snow (SNOCOVMX),
Manning’s “n” value for the main and tributary channel (CH_N2, CH_N1), Soil evaporation
compensation factor (ESCO), Precipitation lapse rate (PLAPS), and Snowfall temperature
(SFTMP). Next, the sensitive runoff parameters were automatically calibrated using the
Sequential Uncertainty Fitting (SUFI-2) algorithm, and the corrected runoff parameters
were obtained. Regarding sediment parameters, because this study does not have measured
sediment transport data, SWAT-CUP cannot be used for sensitivity analysis and correction
of sediment parameters. According to previous research, field investigation, the correlation
between sediment transport with turbidity and multiple simulation attempts, the sediment
transport parameters after earthquake were chosen and corrected manually. The SWAT
model was run daily for 11 years, the warm up period is from 2009 to 2014, the period from
2015 to 2017 was used for the calibration and the period from 2018 to 2019 was used for the
validation. Table 2 shows the parameters in the Atsuma River basin.

Table 2. SWAT parameters in the Atsuma River basin.

Variable Parameter Name Order of
Sensitivity Description Default

Values
Corrected

Values

Runoff

v_TIMP.bsn * 1 Snow pack temperature lag factor 1 0.22

r_CN2.mgt *** 2 Initial SCS runoff curve number for
moisture condition II 73 60

v_SMFMN.bsn ** 3 Melt factor for snow on 21 December
(mm H2O/◦C-day) 4.5 3.17

v_SMFMX.bsn 4 Melt factor for snow on 21 June
(mm H2O/◦C-day) 4.5 10

v_TLAPS.sub 5 Temperature lapse rate (◦C/km) 0 −6

v_SOL_AWC.sol 6 Available water capacity of the soil layer
(mm H2O/mm soil) 0.143 0.0003

v_SMTMP.bsn 7 Snow melt base temperature (◦C) 0.5 −0.83

v_CH_K2.rte 8 Effective hydraulic conductivity in
tributary channel alluvium (mm/hrh) 0 4.58

v_CH_K1.sub 9 Effective hydraulic conductivity in
tributary channel alluvium (mm/h) 0 19.65
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Table 2. Cont.

Variable Parameter Name Order of
Sensitivity Description Default

Values
Corrected

Values

Runoff

v_SNOCOVMX.bsn 10
Minimum snow water content that

corresponds to 100% snowcover, SNO100,
(mm H2O)

1 0.05

v_CH_N2.rte 11 Manning’s “n” value for the main channel 0.014 0.07
v_CH_N1.sub 12 Manning’s “n” value for the main channel 0.014 0.12
v_ESCO.bsn 13 Soil evaporation compensation factor 0.95 0.85
v_PLAPS.bsn 14 Precipitation lapse rate (mm H2O/km) 0 200
v_SFTMP.bsn 15 Snowfall temperature (◦C) 1 −2.93

Variable Parameter Name Description Before
Earthquake

After
Earthquake

Sediment

v_CH_COV.rte Channel cover factor 0 0.8

v_SPCON.bsn Linear re-entrained parameter for channel
sediment routing 0.0001 0.01

v_SPEXP.bsn Exponent of re-entrained parameter for
channel sediment routing 1 1.5

v_CH_EROD.rte Channel erodibility 0 0.5
v_USLE_K.sol USLE soil erodibility factor 0.265 0.65

* The extension (e.g., mgt) refers to the SWAT input file where the parameter occurs. ** The qualifier (v) refers to the substitution of a
parameter by a value from the given range. *** The qualifier (r) refers to relative change in the parameter where the value from the SWAT
database is multiplied by 1 plus a factor in the given range.

2.2.4. Performing Calculation

The collected data was applied to set up the model, then the SWAT model was
configured and parameters were set. The SWAT analysis was conducted in the simulation
window. The simulation manager could perform calculation by combining the rainfall
data, parameters, and other setups. After the calculation, the SWAT model could display
the calculation results at any HRUs or sub-basins in the river basin.

2.3. Methodology
2.3.1. Research Methods

In this research, the changes of sediment transport process in the Atsuma River
basin before and after the 2018 Hokkaido Eastern Iburi Earthquake were studied by the
following procedure.

• Considering the influence of reservoirs, the warm-up period was set from 2009 to 2014,
calibration period from 2015 to 2017. We used the SWAT-CUP software to analyze
the runoff parameter sensitivity and to optimize the parameters. Furthermore, the
corrected parameters were used to reproduce the runoff process from 2018 to 2019 by
SWAT model. The applicability and accuracy of the SWAT model to runoff simulation
in the Atsuma River basin was verified.

• The sediment transport process from 2018 to 2019 was reproduced supposing that no
earthquake occurred in 2018. Then, the changes in turbidity were analyzed before
and after the earthquake, the correlation and relationship changes between sediment
transport and turbidity before and after the earthquake were studied, and it was
proved that the sediment transport process has been changed after the 2018 Hokkaido
Eastern Ibur Earthquake.

• According to previous research, field investigation and the correlation between sedi-
ment transport and turbidity, the sediment transport parameters after the earthquake
were corrected. Furthermore, using the corrected parameters the increase in sediment
transport was evaluated after 2018 Hokkaido Eastern Iburi Earthquake.
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2.3.2. Error Analysis

Model evaluation is an important measure to verify the accuracy of the model. In this
study, the advantages and disadvantages of SWAT model fitness adopt three model eval-
uation methods, including determination coefficient (R2) [32], Nash–Sutcliffe efficiency
coefficient (NSE) [33], and percent bias (PBIAS) [34]. The calculation process formula of R2,
NSE, and PBIAS are shown in Equations (3)–(5):

R2 =

T
∑

i=1

(
Oi −

−
O
)(

Si −
−
S
)

√
T
∑

i=1

(
Oi −

−
O
)2 T

∑
i=1

(
Si −

−
S
)2

(3)

NSE = 1 −

T
∑

i=1
(Oi − Si)

2

T
∑

i=1

(
Oi −

−
O
)2 (4)

PBTAS =


T
∑

i=1
(Oi − Si)

T
∑

i=1
Oi

 (5)

where, T is the calculation time (days); Oi is the observation flow at time i; Si is the calcula-

tion flow at time i;
−
O is the observation average flow;

−
S is the calculation average flow.

Combined with previous experience, in this study, model simulation was judged as
satisfactory if NSE > 0.6, R2 > 0.7 and PBIAS = ±25% for flow [31,32].

3. Results
3.1. Discharge

In this study, the most sensitive parameters for reproducing runoff were Snow pack
temperature lag factor (TIMP), Curve number (CN2), Melt factor for snow on 21 December
(SMFMN), Melt factor for snow on 21 June (SMFMX), Temperature lapse rate (TLAPS),
Available water capacity (SOL_AWC), Snow melt base temperature (SMTMP), Effective
hydraulic conductivity in main and tributary channel alluvium (CH_K2, CH_K1), Mini-
mum snow water content that corresponds to 100% snow (SNOCOVMX), Manning’s “n”
value for the main and tributary channel (CH_N2, CH_N1), Soil evaporation compensation
factor (ESCO), Precipitation lapse rate (PLAPS), and Snowfall temperature (SFTMP). These
runoff parameters were adjusted from the SWAT initial estimates by SWAT-CUP software
to fit the model simulations with the observation discharge. Since the simulation results
after the earthquake are better than before the earthquake, and the GW_Delay, CH_K1,
CH_K2 parameters are big, it can be inferred that after the earthquake, the aquifer recharge
runoff increased in the Atsuma River basin, and the effect of the aquifer delaying rainfall
directly into the river was enhanced. The collapsed soil accumulated in the river channel
due to the earthquake may temporarily store rainfall and river water.

The results are shown in Figure 6. The error analysis results are shown in Table 3.
It can be observed that, during the calibration period, the R2 is 0.69, the NSE is 0.61, and
the PBIAS is 17.3%, and in the verification period, the R2 is 0.77, the NSE is 0.74, and the
PBIAS is −8%. The error of the runoff simulation is small, and the simulation effect is
good. Hence, the overall simulation accuracy is very high, and it proves that the SWAT
model can simulate the runoff process in the Atsuma River basin with high accuracy. The
missing observation discharge data from 20 July 2017 to 30 September 2017 is an important
reason that the accuracy decreased during the calibration period. Water volume budget
is the foundation of water cycle in river basin. As the carrier and source of energy for
sediment transport, the runoff has a huge impact on sediment transport. The ratio of
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annual precipitation to the total amount of sediment transport is an important indicator
that reflects the situation of sediment transport. Table 4 shows the water volume budget
upstream Atsuma Bridge station in the Atsuma River basin. Through analyses, it can be
found that from 2015 to 2019, the proportion of precipitation transform into runoff has
increased. Comparing the precipitation in 2019 with that of 2015–2018, it can be observed
that the precipitation in 2019 is the lowest in the past five years. Comparing the runoff,
it can be observed that the runoff in 2019 is relatively less, and it is significantly lower than
the runoff in 2018. Regarding the precipitation before the earthquake, there were five major
precipitation events from April 2018 to the earthquake. The nearest precipitation event
to the earthquake occurred on 13–18 August 2018, 18 days before the earthquake. These
situations need to be fully considered when studying the process of sediment transport.
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Table 3. Error analysis of SWAT in runoff simulation.

Atsuma Bridge Station R2 NSE PBIAS

Calibration period 0.69 0.61 17.3%
Verification period 0.77 0.74 −8%

Table 4. Water volume budget upstream Atsuma Bridge station.

Year 2015 (m3/a) 2016 (m3/a) 2017 (m3/a) 2018 (m3/a) 2019 (m3/a) Average (m3/a)

Precipitation 2.96 × 108 3.57 × 108 2.74 × 108 3.37 × 108 2.52 × 108 3.03 × 108

Rainfall 2.31 × 108 3.01 × 108 2.5 × 108 2.91 × 108 2.36 × 108 2.63 × 108

Snowfall 6.49 × 107 4.72 × 107 2.43 × 107 4.6 × 107 1.6 × 107 4.0 × 107

Runoff 1.36 × 108 1.93 × 108 9.5 × 107 2.14 × 108 1.78 × 108 1.63 × 108

3.2. Sediment Transport

The turbidity and suspended sediment concentration (SSC) are correlated [35–40],
and turbidity can be used as a surrogate for suspended sediment concentration (SSC) [41].
Since the observed sediment transport data in the Atsuma River basin is absent, the change
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of sediment transport can be judged by analyzing the relationship and correlation between
turbidity and sediment transport.

In this study, the sediment transport means the load of suspended sediment (g/s),
which is equal to the total suspended sediments (mg/L) multiplied by observation dis-
charge (m3/s). It can be observed from Figure 7 that the peak time of turbidity and
sediment transport are close. Hence, it is once again proven that turbidity and sediment
transport are strongly correlated.
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Figure 7. Comparison of turbidity and sediment transport at Kyoei station.

The changes in turbidity data have great reference significance for judging the changes
in sediment transport. Analyzing Figure 7, it can be observed that compared to the turbidity
in 2018, the turbidity increased significantly in 2019. Although, after the 2018 Hokkaido
Eastern Iburi Earthquake, there was no significant increase of turbidity at once. However,
since August 2019, turbidity has increased significantly. This is because the Apporo dam
has returned to normal, the water level of Atsuma River basin has risen, and the sediment
flowing into the river due to the 2018 Hokkaido Eastern Iburi Earthquake has flowed
downstream. The increased turbidity is a favorable evidence for the increase in sediment
transport in 2019.

There is a relationship between the increased turbidity and rainfall. In 2018 and
previously, even during heavy rain with an hourly rainfall of 10 mm/h, the turbidity
increased approximately to 500 NTU in the Atsuma River basin, but in 2019, the maximum
turbidity increased approximately to 1000 NTU. Hence, it can be proved that the value of
turbidity in 2019 is greater, and correspondingly, the sediment transport increased after the
2018 Hokkaido Eastern Iburi Earthquake.

Analyzing the changes in the calculation sediment transport in Figure 7, it can be
found that the sediment transport in 2018 is greater than it was in 2019, which is obviously
inconsistent with the sediment transport corresponded by turbidity. Therefore, it can be
concluded that in the absence of an earthquake, the sediment transport in 2019 would be
less than what it would have been in 2018. However, because of the 2018 Hokkaido Eastern
Iburi Earthquake, a large amount of soil and sand entered into the river, and the bare land
introduced by landslides, caused sediment transport to increase greatly in 2019. According
to Figure 8, it can be found that the correlation between turbidity and sediment transport
before and after the 2018 Hokkaido Eastern Iburi Earthquake at Kyoei Station changed
very significantly, and it portrays the grave impact of 2018 the Hokkaido Eastern Iburi
Earthquake on sediment transport in the Atsuma River basin.
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Earthquake at Kyoei station.

Due to the absence of observation sediment transport data of the Atsuma River basin,
the SWAT-CUP software cannot be used to optimize the sediment transport parameters after
the earthquake or correct the parameters by analyzing the error between the calculation
sediment transport and observation sediment transport. In order to evaluate the increase
in sediment transport after the 2018 Hokkaido Eastern Iburi Earthquake, according to
previous research, field investigation, and the correlation between sediment transport
and turbidity, this study corrected sediment transport parameters after the earthquake,
including Channel cover factor (CH_COV), Linear re-entrained parameter for channel
sediment routing (SPCO), Exponent of re-entrained parameter for channel sediment routing
(SPEXP), Channel erodibility (CH_EROD). The landslides and collapse on both sides of
the river channel caused by earthquake damaged the vegetation on the riverbank and
enhanced the erosion ability of the river channel. The sediment directly entered the river
channel which produced more sediment. By adjusting these sediment transport parameters,
reproducing as much as possible the changes in the Atsuma River basin caused by the
earthquake, the correlation between sediment transport and turbidity after the earthquake
can be made as similar as possible to that before the earthquake.

Figure 8 shows the results obtained after using the corrected sediment parameters to
simulate the process of sediment transport after the 2018 Hokkaido Eastern Iburi Earth-
quake. The correlation between turbidity and sediment transport before and after the
2018 Hokkaido Eastern Iburi Earthquake at Kyoei Station is shown in Figure 8. According
to Figures 8 and 9, it can be observed that using corrected sediment transport param-
eters, the sediment transport simulation results improved greatly and the correlation
between sediment transport and turbidity after the earthquake is more similar with that
before the earthquake. The amount of sediment transport per unit rainfall before and
after the 2018 Hokkaido Eastern Iburi Earthquake at Kyoei Station is shown in Table 5.
It is roughly estimated that the amount of sediment transport per unit rainfall increased
from 3.5 tons/mm/year before the earthquake to 6.2 tons/mm/year after the earthquake.
Although there is no observation sediment transport data for calibration, the sediment
transport increase can be roughly assessed. The predictions presented here should be
viewed more as qualitative trends, rather than as accurate absolute numerical predictions.
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Table 5. The amount of sediment transport per unit rainfall before and after the 2018 Hokkaido
Eastern Iburi Earthquake at Kyoei Station.

Period Sediment Transport
in Total (tons)

Precipitation in Total
(mm)

Ratio
(tons/mm/year)

2018.1–2018.8 2755.3 1053.2 3.5
2018.10–2019.12 9754.6 1261.6 6.2

4. Discussion

By adjusting the parameters and considering the impacts of the reservoirs, the Soil
and Water Assessment Tool (SWAT) model was used to reproduce the process of runoff
and sediment transport before and after the earthquake in the Atsuma River basin.

For runoff, the high-precision simulation can be achieved by adjusting the runoff
parameters and setting the warm-up period and calculation period. This study used the
SWAT-CUP to analyze the runoff parameter sensitivity and modify parameters accordingly.
Sensitivity analysis was performed to identify the most sensitive runoff parameters for
the model calibration using the Global Sensitivity part of SWAT-CUP. The sensitive runoff
parameters were automatically calibrated using the Sequential Uncertainty Fitting (SUFI-2)
algorithm. The applicability of the SWAT model on runoff simulation in the Atsuma River
basin was verified and a decent foundation for reproducing the sediment transport process
in the Atsuma River basin was built.

Based on previous research, after the 2018 Hokkaido Eastern Iburi Earthquak and
large-scale landslides, the safety factor under natural conditions in the Atsuma River basin
is very large, which shows that there will be no slope landslides without rainfall. The
sediments that increased after the earthquake are mostly produced by the erosion processes.
It is reasonable to use the SWAT model to study the sediment transport in the Atsuma
River basin after the earthquake.

For sediment transport, since there is no observation sediment transport data for the
Atsuma River basin, the SWAT-CUP cannot be used for sensitivity analysis and correction
of sediment parameters. Firstly, the simulation of the sediment transport process in the
Atsuma River basin from 2018 to 2019 was performed based on high-precision runoff simu-
lation and assuming that no earthquakes occurred in that period. By analyzing the change
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characteristics of turbidity before and after the earthquake and the correlation between
turbidity and sediment transport, it can be inferred that the sediment transport in the
Atsuma River basin has been increased greatly after the 2018 Hokkaido Eastern Iburi Earth-
quake. Next, in order to evaluate the increased sediment transport after the 2018 Hokkaido
Eastern Iburi Earthquake. This study relies on previous research, field investigation, the
correlation between sediment transport with turbidity and multiple simulation attempts,
and then the sediment transport parameters after earthquake were chosen and corrected
manually. The process of sediment transport after the earthquake was reproduced. To
ensure the high rigor of this research, the predictions presented here should be viewed
more as qualitative trends, rather than as accurate absolute numerical predictions. After
performing calculations, it is roughly estimated that the amount of sediment transport per
unit rainfall increased from 3.5 tons/mm/year before the earthquake to 6.2 tons/mm/year
after the earthquake.

The SWAT model is powerful and can accurately simulate various processes in the
basin. In the process of using the SWAT model, the accuracy of the data and the un-
derstanding of various parameters are very important. The SWAT model also has some
limitations. For example, professional software such as GIS and ENVI are required to
prepare geographic data, which increases the difficulty of use. The operation of the SWAT
model also requires the user to have high hydrological knowledge, so it is difficult for
beginners to get started quickly. Secondly, the SWAT model simulates various processes in
the basin based on the input geographic data, meteorological data, and other data. The
SWAT model is limited by the data and model structure that cannot fully reproduce the
real situation of the basin, and it also has the same results with different parameters, which
requires further optimization.

In this study, based on available observation data, the impact of 2018 Hokkaido Eastern
Iburi Earthquake on the sediment transport in the Atsuma River basin within a year after
was verified, and the long-term impacts need continuous research. In the meantime, large
particles suspended in the river may not move quickly with the runoff and be deposited on
the riverbed. Hence, to research the impact of the 2018 Hokkaido Eastern Iburi Earthquake
fully on the Atsuma River channel, it is necessary to add upstream verification location.

5. Summary

In this study, the Soil and Water Assessment Tool (SWAT) model was used to evaluate
the changes of sediment transport before and after the earthquake in the Atsuma River
basin, the SWAT-CUP software was used to analyze runoff parameters sensitivity and
optimize parameters. The process of runoff and sediment transport in the Atsuma River
basin before and after the 2018 Hokkaido Eastern Iburi Earthquake were reproduced. The
R2, NSE, and PBIAS were employed to evaluate the accuracy of simulation results. The
main conclusions are as follows:

• On the basis of considering the operation of reservoirs, the SWAT model can simulate
runoff process in the Atsuma River basin with high accuracy.

• By comparing the turbidity with sediment transport and analyzing turbidity change
characteristics, it can be proved that sediment transport process characteristics in the
Atsuma River basin before and after the 2018 Hokkaido Eastern Iburi Earthquake
have been changed. The sediment transport increased greatly in the Atsuma River
basin after the earthquake.

• Based on rough calculation, due to the impacts of the earthquake, the amount of
sediment transport per unit rainfall increased from 3.5 tons/mm/year before the
earthquake to 6.2 tons/mm/year after the earthquake.
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