Pollen Geochronology from the Atlantic Coast of the United States during the Last 500 Years
Abstract
:1. Introduction
2. Study Sites
3. Materials and Methods
3.1. Sediment Sampling
3.2. Chronology
3.2.1. Pollen Processing and Analysis
3.2.2. Radiocarbon
3.2.3. Radionuclide 137Cs
3.2.4. Pollution Markers
3.2.5. Bayesian Inferences
4. Results
4.1. Connecticut
4.2. New York
4.3. New Jersey
4.4. Delaware
4.5. Maryland
4.6. North Carolina
4.7. Northern Florida
4.8. Southern Florida
5. Discussion
5.1. Validation of Pollen Chronohorizons
5.2. Application of Pollen Chronohorizons to Improve the Age–Depth Model
5.3. Improving Pollen Chronohorizons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Connecticut [48] | New York [51] | New Jersey [52] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | |
Radiocarbon | OS-88674 | 56 ± 2 | 175 ± 30 | 3–284 | OS-102551 | 60 ± 1 | 165 ± 25 | 6–280 | 14C10 | 76 ± 1 | 120 ± 30 | 18–265 |
OS-86561 | 66 ± 2 | 345 ± 25 | 318–480 | OS-108259 | 70 ± 1 | 380 ± 30 | 325–500 | 14C12 | 82 ± 1 | 230 ± 25 | 1–305 | |
OS-86562 | 78 ± 2 | 550 ± 30 | 523–633 | OS-108260 | 81 ± 1 | 285 ± 25 | 294–432 | 14C4 | 86 ± 1 | 250 ± 40 | 4–431 | |
OS-89141 | 90 ± 2 | 835 ± 25 | 696–786 | OS-102552 | 95 ± 1 | 770 ± 30 | 672–733 | 14C11 | 94 ± 1 | 285 ± 30 | 289–447 | |
OS-86567 | 111 ± 2 | 1080 ± 30 | 936–1053 | OS-115123 | 105 ± 1 | 695 ± 20 | 574–676 | 14C8 | 111 ± 1 | 400 ± 25 | 336–505 | |
OS-86616 | 146 ± 2 | 1300 ± 25 | 1186–1284 | OS-109016 | 123 ± 1 | 1420 ± 30 | 1294–1369 | 14C5 | 122 ± 1 | 520 ± 40 | 508–29 | |
OS-86560 | 156 ± 2 | 1490 ± 25 | 1323–1410 | OS-115122 | 127 ± 1 | 1120 ± 15 | 979–1056 | 14C1 | 135 ± 1 | 770 ± 30 | 672–733 | |
OS-89764 | 158 ± 2 | 1490 ± 30 | 1317–1480 | OS-102598 | 137 ± 1 | 1180 ± 35 | 996–1213 | 14C2 | 145 ± 1 | 865 ± 25 | 720–890 | |
OS-89059 | 165 ± 2 | 1570 ± 25 | 1406–1525 | OS-102553 | 155 ± 1 | 1560 ± 25 | 1396–1522 | 14C6 | 160 ± 1 | 960 ± 40 | 785–936 | |
OS-88962 | 184 ± 2 | 1790 ± 25 | 1629–1807 | OS-102554 | 161 ± 1 | 1630 ± 35 | 1419–1605 | 14C3 | 171 ± 1 | 1100 ± 30 | 946–1061 | |
14C13 | 180 ± 1 | 1120 ± 25 | 969–1069 | |||||||||
14C7 | 194 ± 1 | 1190 ± 35 | 1008–1225 | |||||||||
14C9 | 208 ± 1 | 1350 ± 30 | 1193–1307 | |||||||||
Depth (cm) | Age (year CE) | Age Marker | Depth (cm) | Age (year CE) | Age Marker | Depth (cm) | Age (year CE) | Age Marker | ||||
Other Age Markers | 1 ± 4 | 1980 ± 5 | Gas Pb Peak | 5 ± 2 | 1980 ± 5 | Gas Pb Peak | 4.5 ± 4 | 1997 ± 5 | Ni Peak | |||
3 ± 4 | 1970 ± 5 | Hg Peak | 7 ± 2.5 | 1963 ± 1 | 137Cs Peak | 21 ± 4 | 1980 ± 5 | Gas Pb Peak | ||||
4 ± 4 | 1963 ± 1 | 137Cs Peak | 11 ± 2 | 1974 ± 5 | Pb Peak | 21 ± 4 | 1974 ± 5 | Pb Peak | ||||
9 ± 6 | 1974 ± 5 | Pb Peak | 11 ± 2 | 1970 ± 5 | V Peak | 36.5 ± 12 | 1969 ± 11 | Ni Onset | ||||
13 ± 6 | 1965 ± 5 | Zn Peak | 11 ± 1.5 | 1954 ± 2 | 137Cs Onset | 29 ± 4 | 1965 ± 5 | Gas Pb Min | ||||
19 ± 6 | 1935 ± 6 | Great Depression Pb Min | 13 ± 6 | 1970 ± 5 | Cu Peak | 17 ± 2 | 1963 ± 1 | 137Cs Peak | ||||
21 ± 4 | 1905 ± 5 | Hg Peak | 17 ± 6 | 1965 ± 5 | Gas Pb Min | 24.5 ± 4 | 1963 ± 7 | Cd Peak | ||||
22 ± 6 | 1880 ± 20 | UMV Decline | 21 ± 4 | 1937 ± 5 | Peak Incin. | 28.5 ± 4 | 1956 ± 13 | Zn Peak | ||||
31 ± 6 | 1900 ± 5 | Cu Onset | 27 ± 2 | 1933 ± 6 | Great Depression Pb Min | 29 ± 4 | 1948 ± 15 | Pb Min | ||||
33 ± 6 | 1925 ± 5 | Pb Peak | 33 ± 2 | 1900 ± 5 | Cu Onset | 33 ± 4 | 1925 ± 5 | Pb Peak | ||||
33 ± 4 | 1865 ± 10 | Hg Onset | 39 ± 2 | 1925 ± 5 | Pb Peak | 32.5 ± 4 | 1900 ± 10 | Cu Onset | ||||
37 ± 6 | 1858 ± 5 | UMV Peak | 41 ± 8 | 1857 ± 5 | UMV Peak | 44.5 ± 8 | 1890 ± 10 | Zn Onset | ||||
43 ± 6 | 1875 ± 5 | Pb Onset | 51 ± 2 | 1827 ± 5 | UMV Onset | 45 ± 4 | 1880 ± 5 | UMV Decline | ||||
43 ± 6 | 1827 ± 5 | UMV onset | 49 ± 4 | 1875 ± 5 | Pb Onset | |||||||
59 ± 4 | 1857 ± 5 | UMV Peak | ||||||||||
69 ± 4 | 1827 ± 5 | UMV Onset | ||||||||||
North Carolina [42,53] | Northern Florida [27] | |||||||||||
Sample Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | |||||
Radiocarbon | HP14C1 | 60 ± 2 | 203 ± 11 | 0–286 | OS-99682 | 27 ± 1 | 185 ± 20 | 2–284 | ||||
HP14C2 | 80 ± 2 | 338 ± 10 | 321–455 | OS-94713 | 33 ± 1 | 380 ± 35 | 322–501 | |||||
RC1 | 87 ± 2 | 315 ± 25 | 309–457 | OS-96816 | 41 ± 1 | 515 ± 25 | 513–610 | |||||
RC2 | 99 ± 2 | 535 ± 30 | 517–627 | OS-94715 | 51 ± 1 | 850 ± 30 | 699–884 | |||||
RC3 | 114 ± 2 | 725 ± 25 | 658–692 | OS-96817 | 64 ± 1 | 1100 ± 25 | 956–1055 | |||||
RC4 | 120 ± 2 | 755 ± 30 | 667–727 | OS-99683 | 74 ± 1 | 1400 ± 25 | 1289–1342 | |||||
RC5 | 135 ± 2 | 900 ± 50 | 714–918 | OS-96497 | 82 ± 1 | 1660 ± 25 | 1529–1612 | |||||
RC6 | 144 ± 2 | 910 ± 30 | 750–910 | OS-96495 | 91 ± 1 | 1830 ± 40 | 1640–1860 | |||||
RC7 | 158 ± 2 | 1000 ± 25 | 812–957 | OS-94640 | 110 ± 1 | 2280 ± 30 | 2179–2345 | |||||
RC8 | 168 ± 2 | 1080 ± 30 | 937–1053 | OS-96501 | 125 ± 1 | 2420 ± 25 | 2361–2673 | |||||
RC9 | 189 ± 2 | 1190 ± 30 | 1017–1216 | |||||||||
RC10 | 204 ± 2 | 1520 ± 40 | 1330–1518 | |||||||||
RC11 | 217 ± 2 | 1600 ± 25 | 1417–1545 | |||||||||
RC12 | 228 ± 2 | 1730 ± 35 | 1563–1711 | |||||||||
RC13 | 248 ± 2 | 1920 ± 45 | 1742–1970 | |||||||||
RC14 | 258 ± 2 | 2090 ± 35 | 1973–2143 | |||||||||
RC15 | 268 ± 2 | 2120 ± 25 | 2012–2157 | |||||||||
RC16 | 285 ± 2 | 2620 ± 45 | 2551–2833 | |||||||||
RC17 | 299 ± 2 | 2420 ± 35 | 2360–2683 | |||||||||
Depth (cm) | Age (year CE) | Age Marker | Depth (cm) | Age (year CE) | Age Marker | |||||||
Other Age Markers | 18 ± 1 | 1996 ± 2 | Bomb Spike 14C | 3 ± 4 | 1998 ± 3 | Cu Peak | ||||||
19 ± 1 | 1989 ± 2 | Bomb Spike 14C | 5 ± 4 | 1980 ± 5 | Pb Gas Peak | |||||||
21 ± 1 | 1987 ± 2 | Bomb Spike 14C | 9 ± 4 | 1963 ± 1 | 137Cs Peak | |||||||
23 ± 1 | 1988 ± 1 | Bomb Spike 14C | 9 ± 4 | 1972 ± 6 | Cu Peak | |||||||
23 ± 4 | 1963 ± 1 | 137Cs Peak | 11 ± 4 | 1974 ± 5 | Pb Peak | |||||||
26 ± 1 | 1974 ± 1 | Bomb Spike 14C | 11 ± 4 | 1965 ± 5 | Pb Gas Min | |||||||
28 ± 1 | 1957 ± 1 | Bomb Spike 14C | 16 ± 6 | 1900 ± 10 | Coal Pb Peak | |||||||
29 ± 1 | 1958 ± 1 | Bomb Spike 14C | 17 ± 4 | 1935 ± 6 | Great Depression Pb Min | |||||||
17 ± 4 | 1900 ± 10 | Cu Onset | ||||||||||
19 ± 4 | 1925 ± 5 | Pb Peak | ||||||||||
23 ± 4 | 1875 ± 5 | Pb Onset | ||||||||||
23 ± 4 | 1870 ± 10 | Coal Pb Onset |
Appendix B
B.1. Southern Delaware
B.2. Maryland
B.3. Southern Florida
Appendix C
Appendix D
References
- Crowley, T.J. Causes of Climate Change Over the Past 1000 Years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, D.J.; Scourse, J.D.; Halloran, P.R.; Nederbragt, A.J.; Wanamaker, A.D.; Butler, P.G.; Richardson, C.A.; Heinemeier, J.; Eiriksson, J.; Knudsen, K.L.; et al. Annually resolved North Atlantic marine climate over the last millennium. Nat. Commun. 2016, 7, 13502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.C.; Bernhardt, C.E.; Krauss, K.W.; Noe, G.B. The impact of late Holocene land use change, climate variability, and sea level rise on carbon storage in tidal freshwater wetlands on the southeastern United States coastal plain. J. Geophys. Res. Biogeosci. 2017, 122, 3126–3141. [Google Scholar] [CrossRef] [Green Version]
- Stager, J.C.; Wiltse, B.; Hubeny, J.B.; Yankowsky, E.; Nardelli, D.; Primack, R. Climate variability and cultural eutrophication at Walden Pond (Massachusetts, USA) during the last 1800 years. PLoS ONE 2018, 13, e0191755. [Google Scholar] [CrossRef]
- Gorham, E.; Brush, G.S.; Graumlich, L.J.; Rosenzweig, M.L.; Johnson, A.H. The value of paleoecology as an aid to monitoring ecosystems and landscapes, chiefly with reference to North America. Environ. Rev. 2001, 9, 99–126. [Google Scholar] [CrossRef]
- Schurer, A.P.; Mann, M.E.; Hawkins, E.; Tett, S.F.B.; Hegerl, G.C. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Chang. 2017, 7, 563–568. [Google Scholar] [CrossRef]
- Reiners, P.W.; Carlson, R.W.; Renne, P.R.; Cooper, K.M.; Granger, D.E.; McLean, N.M.; Schoene, B. Geochronology and Thermochronology; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Noller, J.; Sowers, J.M.; Coleman, S.M.; Pierce, K. Introduction to Quaternary Geochronology; American Geophysical Union: Washington, DC, USA, 2000. [Google Scholar]
- Libby, W.F.; Anderson, E.C.; Arnold, J.R. Age Determination by Radiocarbon Content: World-Wide Assay of Natural Radiocarbon. Science 1949, 109, 227–228. [Google Scholar] [CrossRef]
- Stuiver, M.; Reimer, P.J.; Bard, E.; Beck, J.W.; Burr, G.S.; Hughen, K.A.; Kromer, B.; McCormac, G.; Van Der Plicht, J.; Spurk, M. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 1998, 40, 1041–1083. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. INTCAL13 and MARINE13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef] [Green Version]
- Hua, Q. Radiocarbon: A chronological tool for the recent past. Quat. Geol. 2009, 4, 378–390. [Google Scholar] [CrossRef]
- Stuiver, M. Radiocarbon timescale tested against magnetic and other dating methods. Nature 1978, 273, 271–274. [Google Scholar] [CrossRef]
- Keeling, C.D. The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 1979, 2, 229–230. [Google Scholar] [CrossRef]
- Tans, P.P.; Mook, W.G. Design, construction, and calibration of a high accuracy Carbon-14 counting system. Radiocarbon 1978, 21, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Reimer, R.W. Radiocarbon Dating: Calibration. In Encyclopedia of Quaternary Science; Elais, S.A., Ed.; Elsevier: Oxford, UK, 2007; pp. 2941–2949. [Google Scholar]
- Hua, Q.; Barbetti, M.; Rakowski, A.Z. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 2013, 55, 2059–2072. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, E.D. Geochronology with 210Pb Radioactive Dating; International Atomic Energy Agency: Vienna, Austria, 1963; Volume 121, p. 130. [Google Scholar]
- Appleby, P.G.; Oldfield, F. Application of 210-Pb to sedimentation studies. In Uranium-Series Disequilibrium: Applications to Earth, Marine, & Environmental Studies; Ivanovich, M., Harmon, R.S., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 731–778. [Google Scholar]
- Robbins, J.A. Geochemical and geophysical applications of radioactive lead. In Biogeochemistry of Lead in the Environment; Elsevier Scientific: Oxford, UK, 1978; pp. 285–293. [Google Scholar]
- Cutshall, N.H.; Larsen, I.L.; Olsen, C.R. Direct analysis of 210Pb in sediment samples: Self-absorption corrections. Nucl. Instrum. Methods Phys. Res. 1983, 206, 309–312. [Google Scholar] [CrossRef]
- He, Q.; Walling, D.E. Rates of Overbank Sedimentation on the Floodplains of British Lowland Rivers Documented Using Fallout 137Cs. Geogr. Ann. Ser. A Phys. Geogr. 1996, 78, 223–234. [Google Scholar] [CrossRef]
- Walling, D.E.; He, Q. Models for converting 137-Cs measurements to estimates of soil redistribution rates on cultivated and uncultivated soils (including software for model implementation). In Report to IAEA; University of Exeter: Exeter, UK, 1997. [Google Scholar]
- Brush, G.S. Rates and patterns of estuarine sediment accumulation. Limnol. Oceanogr. 1989, 34, 1235–1246. [Google Scholar] [CrossRef]
- Cooper, S.R.; McGlothlin, S.K.; Madritch, M.; Jones, D.L. Paleoecological Evidence of Human Impacts on the Neuse and Pamlico Estuaries of North Carolina, USA. Estuaries 2004, 27, 617–633. [Google Scholar] [CrossRef]
- Kemp, A.C.; Bernhardt, C.E.; Horton, B.P.; Kopp, R.E.; Vane, C.H.; Pertier, W.R.; Hawkes, A.D.; Donnelly, J.P.; Parnell, A.C.; Cahill, N. Late Holocene sea- and land-level change on the U.S. southeastern Atlantic Coast. Mar. Geol. 2014, 357, 90–100. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, A.B.; Hardie, S.M.L.; Farmer, J.G.; Eades, L.J.; Pulford, I.D. Analytical and sampling constraints in 210Pb dating. Sci. Total Environ. 2011, 409, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, M.; Garcia-Tenorio, R.; Schirone, A.; Rozmaric, M.; Ruiz-Fernández, A.C.; Sanchez-Cabeza, J.A.; Delbono, I.; Conte, F.; Godoy, J.D.O.; Heijnis, H.; et al. Challenges and limitations of the 210Pb sediment dating method: Results from an IAEA modelling interlaboratory comparison exercise. Quat. Geochronol. 2020, 59, 101093. [Google Scholar] [CrossRef]
- Varekamp, J.C.; Kreulen, B.; Buchholtz ten Brink, M.R.; Mecrey, E.L. Mercury contamination chronologies from Connecticut wetlands and Long Island Sound sediments. Environ. Geol. 2003, 4, 468–482. [Google Scholar] [CrossRef]
- Schottler, S.P.; Engstrom, D.R. A chronological assessment of Lake Okeechobee (Florida) sediments using multiple dating markers. J. Paleolimnol. 2006, 36, 19–36. [Google Scholar] [CrossRef]
- Metcalfe, S.; Derwent, D. Atmospheric Pollution and Environmental Change; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Katz, A.; Kaplan, I.R. Heavy metal behavior in coastal sediments of southern California: A critical review and synthesis. Mar. Chem. 1981, 10, 261–299. [Google Scholar] [CrossRef]
- Sanchez-Cabeza, J.A.; Druffel, E.R. Environmental records of anthropogenic impacts on coastal ecosystems: An introduction. Mar. Pollut. Bull. 2009, 59, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Kemp, A.C.; Sommerfield, C.S.; Vane, C.H.; Horton, B.P.; Chenery, S.R.; Anisfeld, S.; Nikitina, D. Use of lead isotopes for developing chronologies in recent salt-marsh sediments. Quat. Geochronol. 2012, 12, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Brush, G.S. Patterns of recent sediment accumulation in Chesapeake Bay (Virginia-Maryland, USA) tributaries. Chem. Geol. 1984, 44, 227–242. [Google Scholar] [CrossRef]
- Matlack, G.R. Four Centuries of Forest Clearance and Regeneration in the Hinterland of a Large City. J. Biogeogr. 1997, 24, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Roe, H.M.; Van de Plassche, O. Modern pollen distribution in a Connecticut saltmarsh: Implications for studies of sea-level change. Quat. Sci. Rev. 2005, 24, 2030–2049. [Google Scholar] [CrossRef]
- Hilgartner, W.B.; Brush, G.S. Prehistoric habitat stability and post-settlement habitat change in a Chesapeake Bay freshwater tidal wetland, USA. Holocene 2006, 16, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, C.E.; Willard, D.A. Pollen and spores of terrestrial plants. In Handbook of Sea-Level Research; Shennan, I., Long, A.J., Horton, B.P., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 218–232. [Google Scholar]
- Pederson, D.C.; Peteet, D.M.; Kurdyla, D.; Guilderson, T. Medieval Warming, Little Ice Age, and European impact on the environment during the last millennium in the lower Hudson Valley, New York, USA. Quat. Res. 2005, 63, 238–249. [Google Scholar] [CrossRef]
- Kemp, A.C.; Kegel, J.J.; Culver, S.J.; Barber, D.C.; Mallinson, D.J.; Leorri, E.; Bernhardt, C.E.; Bernhardt, C.E.; Cahill, N.; Riggs, S.R.; et al. Extended late Holocene relative sea-level histories for North Carolina, USA. Quat. Sci. Rev. 2017, 160, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.P.; Roll, S.; Wengren, M.; Butler, J.; Lederer, R.; Webb III, T. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology 2001, 29, 615–618. [Google Scholar] [CrossRef] [Green Version]
- Brugam, R.B. Pollen indicators of land-use change in southern Connecticut. Quat. Res. 1978, 9, 349–362. [Google Scholar] [CrossRef]
- Clark, J.S.; Patterson, W.A. Pollen, Pb-210, and opaque spherules; an integrated approach to dating and sedimentation in the intertidal environment. J. Sediment. Res. 1984, 54, 1251–1265. [Google Scholar]
- Mudie, P.J.; Byrne, R. Pollen evidence for historic sedimentation rates in California salt-marshes. Estuar. Coast. Mar. Sci. 1980, 10, 305–316. [Google Scholar] [CrossRef]
- Bernabo, J.C.; Webb, T. Changing patterns in the Holocene pollen record of northeastern North America: A mapped summary. Quat. Res. 1977, 8, 64–96. [Google Scholar] [CrossRef]
- Barbier, E.D.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of Human-Driven Change in Salt-Marsh Ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–144. [Google Scholar] [CrossRef] [Green Version]
- Craft, C.; Clough, J.; Ehman, J.; Joye, S.; Park, R.; Pennings, S.; Guo, H.; Machmuller, M. Forecasting the Effects of Accelerated Sea-Level Rise on Tidal Marsh Ecosystem Services. Front. Ecol. Environ. 2008, 7, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Deegan, L.A.; Johnson, D.S.; Warren, R.S.; Peterson, B.J.; Fleeger, J.W.; Fagherazzi, S.; Wollheim, W.M. Coastal eutrophication as a driver of salt marsh loss. Nature 2012, 490, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Horton, B.P.; Shennan, I.; Bradley, S.L.; Cahill, N.; Kirwan, M.; Kopp, R.E.; Shaw, T.A. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.C.; Hawkes, A.D.; Donnelly, J.P.; Vane, C.H.; Horton, B.P.; Hill, T.D.; Anisfeld, S.C.; Parnell, A.C.; Cahill, N. Relative sea-level change in Connecticut (USA) during the last 2200 yrs. Earth Planet. Sci. Lett. 2015, 428, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Parnell, A.C. Bchron: Radiocarbon Dating, Age-Depth Modelling, Relative Sea Level Rate Estimation, and Non-Parametric Phase Modelling. Available online: https://rdrr.io/cran/Bchron/ (accessed on 15 June 2018).
- USDA Forest Service. USFS Forest Inventory and Analysis (FIA) Program; Geospatial Technology and Applications Center (GTAC) National Forest Type Dataset. Available online: https://data.fs.usda.gov/geodata/rastergateway/forest_type/ (accessed on 12 February 2019).
- Kemp, A.C.; Hill, T.D.; Vane, C.H.; Cahill, N.; Orton, P.M.; Talke, S.A.; Parnell, A.C.; Sanborn, K.; Hartig, E.L. Relative sea-level trends in New York City during the past 1500 years. Holocene 2017, 27, 1169–1186. [Google Scholar] [CrossRef]
- Kemp, A.C.; Horton, B.P.; Vane, C.H.; Bernhardt, C.E.; Corbett, D.R.; Engelhart, S.E.; Anisfeld, S.C.; Parnell, A.C.; Cahill, N. Sea-level change during the last 2500 years in New Jersey, USA. Quat. Sci. Rev. 2013, 81, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Kemp, A.C.; Buzas, M.A.; Horton, B.P.; Culver, S.J. Influence of patchiness on modern salt-marsh foraminifera used in sea-level studies (North Carolina, USA). J. Foraminifer. Res. 2011, 41, 114–123. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.; Shisler, J. Nest site selection and competitive interactions of herring and laughing gulls in New Jersey. Auk 1978, 95, 252–266. [Google Scholar]
- Rozsa, R. Human impacts on tidal wetlands: History and regulations. Vol. Bulletin No. 34. In Tidal Marshes of Long Island Sound: Ecology, History and Restoration; Dreyer, G.D., Niering, W.A., Eds.; The Connecticut Arboretum Press: New London, CT, USA, 1995; pp. 42–50. [Google Scholar]
- Miller, J.R. The Control of Mosquito-Borne Diseases in New York City. J. Urban Health Bull. N. Y. Acad. Med. 2001, 78, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, K.D.; Bertness, M.D. Reconstructing New England Salt-marsh Losses Using Historical Maps. Estuaries 2005, 28, 823–832. [Google Scholar] [CrossRef]
- McAndrews, J.H. Human disturbance of North American forests and grasslands: The fossil pollen record. In Handbook of Vegetation Science; Huntley, B., Webb, T., III, Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1988; Volume 7. [Google Scholar]
- Alexander, T.R.; Crook, A.G. Recent vegetational changes in southern Florida. Environments of Southern Florida: Present and Past. Memoir 1974, 2, 61–72. [Google Scholar]
- Morton, J.F. The Australian pine or Beefwood (Casuarina equisetifolia), and invasive “weed” tree in Florida. Proc. Fla. Hortic. Soc. 1980, 93, 87–95. [Google Scholar]
- De Vleescheuwer, F.; Chambers, F.M.; Swindles, G.T. Coring and sub-sampling of peatlands for paleoenvironmental research. Mires Peat 2010, 7, 1–10. [Google Scholar]
- Faegri, K.; J Iverson, J. Textbook on Pollen Analysis, 4th ed.; Hafner: New York, NY, USA, 1989. [Google Scholar]
- Foster, D.R.; Zebryk, T.; Schoonmaker, P.; Lezberg, A. Post-settlement history of human land-use and vegetation dynamics of a Tsuga canadensis (hemlock) woodlot in central New England. J. Ecol. 1992, 80, 773–786. [Google Scholar] [CrossRef]
- Nevel, R.L., Jr.; Stochia, E.L.; Wahl, T. New York Timber Industries—A Periodic Assessment of Timber Output, Resource Bulletin NE-73; United States Department of Agriculture, Forest Service, Northeast Forest Experimental Station: Upper Darby, PA, USA, 1982.
- Burrows, E.G.; Wallace, M. Gotham: A History of New York City to 1898; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Russell, E.W.B. Vegetational Change in Northern New Jersey from Precolonization to the Present: A Palynological Interpretation. Bull. Torrey Bot. Club 1980, 107, 432–446. [Google Scholar] [CrossRef]
- Fain, J.J.; Volk, T.A.; Fahey, T.J. Fifty Years of Change in an Upland Forest in South-Central New York: General Patterns. Bull. Torrey Bot. Club 1994, 121, 130–139. [Google Scholar] [CrossRef]
- Wacker, P.O. Land and People: A Cultural Geography of Preindustrial New Jersey Origins and Settlement Patterns; Rutgers University Press: Newark, NJ, USA, 1975; Volume 1. [Google Scholar]
- Wacker, P.O.; Clemens, P.G.E. Land Use in Early New Jersey; A Historical Geography; Rutgers University Press: Newark, NJ, USA, 1994. [Google Scholar]
- Bones, J.T. The Timber Industries of New Jersey and Delaware, Resource Bulletin NE-28; United States Department of Agriculture, Forest Service, Northeastern Forest Experimental Station: Upper Darby, PA, USA, 1973.
- Jones, C.F. A landscape of energy abundance: Anthracite. Coal Canals and the Roots of American Fossil Fuel Dependence, 1820–1860. Environ. Hist. 2010, 15, 449–484. [Google Scholar] [CrossRef]
- Johannes, J.H. Yesterday’s Reflections: Nassau County, Florida: A Pictorial History. Nassau Co. Florida: T.O. Richardson. 1976. Available online: http://www.wnhsfl.org/nassau-county-history.html (accessed on 12 February 2019).
- Wingard, G.L.; Hudley, J.W.; Holmes, C.W.; Willard, D.A.; Marot, M. Synthesis of Age Data and Chronology for Florida Bay and Biscayne Bay Cores Collected for Ecosystem History of South Florida’s Estuaries Project; No. 2007-1203; US Geological Survey: Reston, VA, USA, 2007.
- Marshall, F.E.; Bernhardt, C.E.; Wingard, G.L. Estimating Late 19th Century Hydrology in the Greater Everglades Ecosystem: An Integration of Paleoecologic Data and Models. Front. Environ. Sci. 2020, 8, 3. [Google Scholar] [CrossRef]
- Niu, M.; Heaton, T.J.; Blackwell, P.G.; Buck, C.E. The Bayesian approach to radiocarbon calibration curve estimation: The IntCal13, Marine13, and SHCal13 methodologies. Radiocarbon 2013, 55, 1905–1922. [Google Scholar] [CrossRef] [Green Version]
- UNSCEAR. Sources and Effects of Ionizing Radiation; Report to the General Assembly; United Nations: New York, NY, USA, 2000. [Google Scholar]
- He, Q.; Walling, D.E. The distribution of fallout 137-Cs and 210-Pb in undisturbed and cultivated soils. Appl. Radioact. Isot. 1997, 48, 677–690. [Google Scholar] [CrossRef]
- Marcantonio, F.; Zimmerman, A.; Xu, Y.; Canuel, E. A Pb isotope record of mid-Atlantic U.S. atmospheric Pb emissions in Chesapeake Bay sediments. Mar. Chem. 2002, 77, 123–132. [Google Scholar] [CrossRef]
- Lima, A.L.; Bergquist, B.A.; Boyle, E.A.; Reuer, M.K.; Dudas, F.O.; Reddy, C.M.; Eglinton, T.I. High-resolution historical records from Pettaquamscutt River basin sediments: 2. Pb isotopes reveal a potential new stratigraphic marker. Geochim. Cosmochim. Acta 2005, 69, 1813–1824. [Google Scholar] [CrossRef]
- Hurst, R.W. Lead isotopes as age-sensitive genetic markers in hydrocarbons. 3. Leaded gasoline, 1923–1990 (ALAS model). Environ. Geosci. 2002, 9, 43–50. [Google Scholar] [CrossRef]
- Bricker-Urso, S.; Nixon, S.W.; Cochran, J.K.; Hirschberg, D.J.; Hunt, C. 1989. Accretion rates and sediment accumulation in Rhode Island salt-marshes. Estuaries 1989, 12, 300–317. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Bryant, S.S.; Butler, J.; Dowling, J.; Fan, L.; Hausmann, N.; Newby, P.; Shuman, B.; Stern, J.; Westover, K.; et al. A 700-year sedimentary record of intense hurricane landfalls in southern New England. Geol. Soc. Am. Bull. 2001, 113, 714–727. [Google Scholar] [CrossRef] [Green Version]
- Haslett, J.; Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. 2008, 3, 399–418. [Google Scholar] [CrossRef]
- Parnell, A.C.; Haslett, J.; Allen, J.R.M.; Buck, C.E.; Huntley, B. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat. Sci. Rev. 2008, 27, 1872–1885. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.M.; Cook, G.; Naysmith, P. The fifth international radiocarbon intercomparison (VIRI): An assessment of laboratory performance in stage 3. Radiocarbon 2010, 53, 859–865. [Google Scholar] [CrossRef] [Green Version]
- David, H.A.; Nagaraja, H.N. Order Statistics; Wiley Series in Probability and Statistics: New York, NY, USA, 2003. [Google Scholar]
- Sharma, P.; Gardner, L.R.; Moore, W.S.; Bollinger, M.S. Sedimentation and bioturbation in a salt-marsh as revealed by 210Pb, 137Cs, and 7Be studies. Limnol. Oceanogr. 1987, 32, 313–326. [Google Scholar] [CrossRef]
- Vernberg, F.J. Salt-marsh processes: A review. Environ. Toxicol. Chem. 1993, 12, 2167–2195. [Google Scholar] [CrossRef]
- Leorri, E.; Martin, R.E.; Horton, B.P. Field experiments on bioturbation in salt-marshes (Bombay Hook National Wildlife Refuge, Smyrna, DE, USA: Implications for sea-level studies. J. Quat. Sci. 2009, 24, 139–149. [Google Scholar] [CrossRef]
- Jacobson, G.L.; Bradshaw, R.H.W. The Selection of Sites for Paleovegetational Studies. Quat. Res. 1981, 16, 80–96. [Google Scholar] [CrossRef]
- MacDonald, G.M. Fossil pollen analysis and the reconstruction of plant invasions. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 1993; Volume 24, pp. 67–110. [Google Scholar]
- Dubinski, B.J.; Simpson, R.L.; Good, R.E. The retention of heavy metals in sewage sludge applied to a freshwater tidal wetland. Estuaries 1986, 9, 102–111. [Google Scholar] [CrossRef]
- Bryant, C.L.; Farmer, J.G.; MacKenzie, A.B.; Baily-Watt, A.E.; Kirika, A. Distribution and behaviour of radiocaesium in Scottish freshwater loch sediments. Environ. Geochem. Health 1993, 15, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Amos, K.J.; Croke, J.C.; Timmers, H.; Owens, P.N.; Thompson, C. The application of caesium-137 measurements to investigate floodplain deposition in a large semi-arid catchment in Queensland, Australia: A low-fallout environment. Earth Surf. Process. Landf. 2009, 34, 515–529. [Google Scholar] [CrossRef]
- Kemp, A.C.; Nelson, A.R.; Horton, B.P. Radiocarbon Dating of Plant Macrofossils from Tidal-Marsh Sediment. In Methods in Geomorphology, in Treatise on Geomorphology; Switzer, A.D., Kennedy, D.M., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 14, pp. 370–388. [Google Scholar]
- Marshall, W. Chronohorizons: Indirect and unique event dating methods for sea-level reconstructions. In Handbook for Sea-Level Research; Shennan, I., Long, A.J., Horton, B.P., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 373–385. [Google Scholar]
- Schueler, S.; Schlünzen, K.H. Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ. Model. Assess. 2006, 11, 179–194. [Google Scholar] [CrossRef]
- Trondman, A.K.; Gaillard, M.J.; Mazier, F.; Sugita, S.; Fyfe, R.; Nielsen, A.B.; Twiddle, C.; Barratt, P.; Birks, H.J.B.; Bjune, A.E.; et al. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob. Chang. Biol. 2015, 21, 676–697. [Google Scholar] [CrossRef]
- Traverse, A. Paleopalynology, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 28. [Google Scholar]
- McLauchlan, K.K.; Barnes, C.S.; Craine, J.M. Interannual variability of pollen productivity and transport in mid-North America from 1997 to 2009. Aerobiologia 2011, 27, 181–189. [Google Scholar] [CrossRef]
- Zink, K.; Vogel, H.; Vogel, B.; Magyar, D.; Kottmeier, C. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int. J. Biometeorol. 2012, 56, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Willard, D.A.; Cronin, T.M.; Verardo, S. Late-Holocene climate and ecosystem history from Chesapeake Bay sediment cores, USA. Holocene 2003, 13, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Anderson, T.W. The chestnut pollen decline as a time horizon in lake sediments in eastern North America. Can. J. Earth Sci. 1974, 11, 678–685. [Google Scholar] [CrossRef]
- Anagnostakis, S.L.; Hillman, B. Evolution of the Chestnut Tree and Its Blight. Arnoldia 1992, 52, 2–10. [Google Scholar]
- Anagnostakis, S.L. Chestnuts and the Introduction of Chestnut Blight. The Agricultural Connecticut Experimental Station. Available online: https://www.ct.gov/CAES/cwp/view.asp?a=2815&q=376754 (accessed on 10 October 2018).
- Anagnostakis, S.L. American Chestnuts in the 21st Century. Arnoldia 2009, 66, 23–31. [Google Scholar]
- Nicolaides, B.; Wiese, A. Suburbanization in the United States after 1945; Oxford Research Encyclopedias: American History; Oxford University Press: Oxford, UK, 2017; Available online: http://americanhistory.oxfordre.com/view/10.1093/acrefore/9780199329175.001.0001/acrefore-9780199329175-e-64 (accessed on 10 October 2018).
- Anagnostakis, S.L.; Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA. Personal communication, 2018.
- Ellison, J.C. Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 74, 327–341. [Google Scholar] [CrossRef]
- Neulieb, T.; Levac, E.; Southon, J.; Lewis, M.; Pendea, I.F.; Chmura, G.L. Potential pitfalls of pollen dating. Radiocarbon 2013, 55, 1142–1155. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Peglar, S.M. Temporally-precise studies of vegetation history. In Vegetation History; Springer: Dordrecht, The Netherlands, 1988; pp. 753–777. [Google Scholar]
- Bennington, J.B.; Rutherford, S.D. Precision and reliability in paleocommunity comparisons based on cluster-confidence intervals; how to get more statistical bang for your sampling buck. Palaios 1999, 14, 506–515. [Google Scholar] [CrossRef]
- Hovenac, C. Reconstructing the Erosional History of 19th-Century Earthen Fortifications along the Coastline of the Chesapeake Bay, Maryland, USA. Master’s Thesis, University of Delaware, Newark, DE, USA, 2015. [Google Scholar]
- Torgensen, T.; Longmore, M. 137Cs diffusion in the highly organic sediment of -Hidden Lake, Fraser Island, Queensland. Mar. Freshw. Res. 1984, 35, 537–548. [Google Scholar] [CrossRef]
- Farmer, J.G. The perturbation of historical pollution records in aquatic sediments. Environ. Geochem. Health 1991, 13, 76–83. [Google Scholar] [CrossRef]
- Abril, J.M. Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environ. Pollut. 2004, 129, 31–37. [Google Scholar] [CrossRef]
- Campbell, C.A.; Paul, E.A.; Rennie, D.A.; McCallum, R.J. Mid-infrared spectroscopy as a method of characterizing changes in soil organic matter. Soil Sci. Soc. Am. Proc. 1967, 77, 1591–1600. [Google Scholar]
- Thompson, J.; Dyer, F.M.; Croudace, I.W. Records of radionuclide deposition in two salt marshes in the United Kingdom with contrasting redox and accumulation conditions. Geochim. Cosmochim. Acta 2002, 66, 1011–1023. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A.; Bennett, K.D.; Reimer, P.J. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quat. Sci. Rev. 2018, 188, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Telford, R.J.; Heegaard, E.; Birks, H.J.B. All age–depth models are wrong: But how badly? Quat. Sci. Rev. 2004, 23, 1–5. [Google Scholar] [CrossRef]
- Brush, G.S.; Martin, E.A.; Defries, R.S.; Rice, C.A. Comparisons of 210Pb and Pollen Methods for Determining Rates of Estuarine Sediment Accumulation. Quat. Res. 1982, 18, 196–217. [Google Scholar] [CrossRef]
- Bertness, M.D.; Wikler, K.; Chatkupt, T. Flood tolerance and the distribution of Iva frutescens across New England salt-marshes. Oecologia 1992, 91, 171–178. [Google Scholar] [CrossRef]
- Smith, J.B. The New Jersey Salt-Marsh and Its Improvement; New Jersey Agricultural Environmental Station: New Brunswick, NJ, USA, 1907. [Google Scholar]
- Hamilton, W.D.; Kenney, J. Multiple Bayesian modelling approaches to a suite of radiocarbon dates from ovens excavated at Ysgol yr Hendre, Caernarfon, North Wales. Quat. Geol. 2014, 25, 72–82. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef] [Green Version]
- Blaauw, M.; Christen, J.A. Radiocarbon Peat Chronologies and Environmental Change. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2005, 54, 805–816. [Google Scholar] [CrossRef]
- Stedman, S.M. Sedimentology and Stratigraphy of the Great Marsh, Lewes, Delaware. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 1990. [Google Scholar]
- Wolfe, R.J. Effects of open marsh water management on selected tidal marsh resources: A review. J. Am. Mosq. Control Assoc. 1996, 12, 701–712. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Weather Service. US Climate Data. Available online: https://www.usclimatedata.com/ (accessed on 15 June 2018).
- Smithsonian Environmental Research Center. Available online: https://serc.si.edu/ (accessed on 18 November 2019).
State | Location | Lat. | Long. | Environment Type | Dominant Vegetation | Regional Vegetation | Citation (Published Sites) |
---|---|---|---|---|---|---|---|
Connecticut | East River Marsh, Long Island Sound | 41.28° | −72.65° | Salt marsh |
| Oak/hickory forest | Pollen unpublished, other data in [53] |
New York | Bronx, near Pelham Bay | 40.87° | −73.81° | Salt marsh |
| Oak/hickory forest | [56] |
New Jersey | Cape May Courthouse | 39.09° | −74.81° | Salt marsh |
| Pine- dominated forests | [57] |
Delaware | Great Marsh Preserve, near Lewes | 38.78° | −75.18° | Salt marsh |
| Pine- dominated forests | Unpublished |
Maryland | Smithsonian Environmental Research Center, Chesapeake Bay | 38.87° | −76.55° | Salt marsh |
| Oak/hickory forest | Unpublished |
North Carolina | Croatan Sound | 35.89° | −75.68° | Salt marsh |
| Pine- dominated forests | [42,58] |
N. Florida | Nassau River, Florida-Georgia border | 30.59° | −81.67° | Salt marsh |
| Pine- dominated forests | [27] |
S. Florida | Swan Key | 25.34° | −80.25° | Mangrove swamp |
| Tropical hardwood, Dade pine | Unpublished |
Delaware | Maryland | Southern Florida | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | Lab Code | Depth (cm) | Age (14C Years) | Calibrated Age Range (YBP) | |
Radiocarbon | OS-132389 | 67 ± 4 | 260 ± 15 | 287–313 | OS-115941 | 62 ± 2 | 95 ± 20 | 33–255 | OS-134377 | 33.5 ± 1 | 105 ± 20 | 29–258 |
OS-132390 | 83 ± 4 | 205 ± 20 | 1–294 | OS-114600 | 78 ± 2 | 385 ± 15 | 339–497 | OS-132811 | 50.5 ± 1 | 350 ± 15 | 324–473 | |
OS-124588 | 98 ± 4 | 335 ± 15 | 319–457 | OS-115940 | 92 ± 2 | 240 ± 15 | 156–303 | OS-132812 | 77.5 ± 1 | 1030 ± 20 | 927–963 | |
OS-121533 | 113 ± 4 | 190 ± 20 | 1–285 | OS-130621 | 97 ± 2 | 405 ± 15 | 463–503 | OS-134336 | 91.5 ± 1 | 1140 ± 15 | 987–1066 | |
OS-130673 | 114 ± 4 | 315 ± 15 | 311–434 | OS-115939 | 110 ± 2 | 405 ± 15 | 464–503 | OS-132813 | 98.5 ± 1 | 1110 ± 15 | 972–1053 | |
OS-124587 | 126 ± 4 | 435 ± 15 | 493–512 | OS-130554 | 117 ± 2 | 665 ± 15 | 568–665 | OS-132814 | 107.5 ± 1 | 1530 ± 25 | 1361–1515 | |
OS-123152 | 133 ± 4 | 590 ± 20 | 546–641 | OS-114599 | 133 ± 2 | 850 ± 20 | 712–787 | OS-134379 | 126.5 ± 1 | 1720 ± 20 | 1569–1693 | |
OS-121534 | 139 ± 4 | 710 ± 20 | 656–681 | OS-115938 | 154 ± 2 | 980 ± 20 | 805–931 | OS-129823 | 145.5 ± 1 | 1800 ± 15 | 1647–1803 | |
OS-123153 | 149 ± 4 | 945 ± 20 | 799–919 | OS-114598 | 175 ± 2 | 1120 ± 20 | 974–1059 | OS-134337 | 159.5 ± 1 | 1700 ± 15 | 1563–1682 | |
OS-124589 | 155 ± 4 | 905 ± 20 | 765–903 | OS-115937 | 194 ± 2 | 1170 ± 25 | 1005–1172 | OS-133069 | 178.5 ± 1 | 2150 ± 20 | 2071–2292 | |
OS-132391 | 159 ± 4 | 1030 ± 15 | 929–960 | OS-114597 | 206 ± 2 | 1220 ± 20 | 1076–1229 | OS-134690 | 191.5 ± 1 | 2330 ± 20 | 2333–2354 | |
OS-121535 | 162 ± 4 | 1270 ± 25 | 1178–1272 | OS-115936 | 225 ± 2 | 1290 ± 20 | 1185–1278 | OS-133066 | 211.5 ± 1 | 2160 ± 15 | 2124–2294 | |
OS-130880 | 164 ± 4 | 1230 ± 20 | 1018–1249 | OS-114596 | 247 ± 2 | 1460 ± 25 | 1309–1389 | OS-134574 | 236.5 ± 1 | 2350 ± 25 | 2338–2436 | |
OS-132392 | 170 ± 4 | 1240 ± 15 | 1110–1251 | OS-115935 | 265 ± 2 | 1650 ± 20 | 1529–1597 | OS-129771 | 250.5 ± 1 | 2500 ± 20 | 2499–2715 | |
OS-130881 | 176 ± 4 | 1190 ± 20 | 1065–1174 | OS-115934 | 286 ± 2 | 1800 ± 20 | 1639–1809 | OS-134380 | 261.5 ± 1 | 2580 ± 30 | 2546–2753 | |
OS-130679 | 181 ± 4 | 1500 ± 15 | 1352–1403 | OS-114595 | 302 ± 2 | 1740 ± 20 | 1585–1702 | OS-132815 | 278.5 ± 1 | 2790 ± 20 | 2850–2944 | |
OS-121536 | 188 ± 4 | 1480 ± 20 | 1322–1398 | OS-114594 | 329 ± 2 | 1910 ± 20 | 1824–1891 | OS-134691 | 297.5 ± 1 | 2940 ± 20 | 3016–3158 | |
OS-130798 | 203 ± 4 | 1770 ± 15 | 1627–1713 | OS-114593 | 348 ± 2 | 2050 ± 25 | 1947–2100 | OS-132816 | 318.5 ± 1 | 2970 ± 20 | 3077–3203 | |
OS-132393 | 205 ± 4 | 1600 ± 15 | 1420–1535 | OS-130622 | 362 ± 2 | 2100 ± 15 | 2010–2118 | OS-134692 | 330.5 ± 1 | 3180 ± 25 | 3367–3447 | |
OS-130697 | 213 ± 4 | 1670 ± 20 | 1538–1610 | OS-124303 | 382 ± 2 | 2660 ± 25 | 2749–2828 | OS-129824 | 349.5 ± 1 | 3550 ± 20 | 3739–3889 | |
OS-121537 | 219 ± 4 | 1660 ± 20 | 1534–1605 | OS-130623 | 391 ± 2 | 2210 ± 20 | 2157–2306 | OS-134338 | 361.5 ± 1 | 3470 ± 20 | 3655–3822 | |
OS-130698 | 228 ± 4 | 1730 ± 15 | 1579–1693 | OS-124302 | 410 ± 2 | 2180 ± 20 | 2135–2300 | OS-134381 | 394.5 ± 1 | 3600 ± 30 | 3843–3975 | |
OS-130699 | 238 ± 4 | 1860 ± 15 | 1737–1858 | OS-130555 | 420 ± 2 | 2360 ± 20 | 2345–2429 | OS-133068 | 415.5 ± 1 | 3870 ± 20 | 4237–4402 | |
OS-132394 | 244 ± 4 | 1880 ± 20 | 1747–1871 | OS-130624 | 436 ± 2 | 2420 ± 15 | 2364–2644 | OS-134575 | 439.5 ± 1 | 3830 ± 20 | 4158–4303 | |
OS-121538 | 248 ± 4 | 1650 ± 20 | 1529–1598 | OS-124549 | 451 ± 2 | 2560 ± 20 | 2586–2745 | OS-129772 | 455.5 ± 1 | 4260 ± 25 | 4825–4857 | |
OS-132395 | 249 ± 4 | 1940 ± 15 | 1864–1921 | OS-126364 | 472 ± 2 | 2560 ± 20 | 2579–2745 | OS-134382 | 473.5 ± 1 | 4250 ± 25 | 4732–4854 | |
OS-124301 | 483 ± 2 | 2200 ± 20 | 2154–2304 | OS-132818 | 490.5 ± 1 | 4410 ± 25 | 4880–5199 | |||||
OS-127727 | 488 ± 2 | 2690 ± 25 | 2757–2844 | OS-134576 | 532.5 ± 1 | 4650 ± 20 | 5319–5450 | |||||
OS-127728 | 506 ± 2 | 2890 ± 30 | 2937–3133 | OS-129825 | 548.5 ± 1 | 5290 ± 20 | 5997–6173 | |||||
OS-130625 | 513 ± 2 | 3530 ± 20 | 3728–3868 | OS-134693 | 568.5 ± 1 | 4960 ± 25 | 5618–5733 | |||||
OS-130626 | 522 ± 2 | 2850 ± 15 | 2897–2996 | OS-129826 | 648.5 ± 1 | 5000 ± 20 | 5663–5853 | |||||
OS-124300 | 534 ± 2 | 3210 ± 20 | 3388–3457 | OS-134339 | 657.5 ± 1 | 5120 ± 25 | 5763–5918 | |||||
OS-130632 | 545 ± 2 | 3010 ± 120 | 2881–3455 | OS-132820 | 676.5 ± 1 | 5230 ± 25 | 5928–6094 | |||||
OS-130556 | 575 ± 2 | 3560 ± 20 | 3785–3899 | OS-134384 | 691.5 ± 1 | 5380 ± 30 | 6035–6272 | |||||
OS-115933 | 593 ± 2 | 3680 ± 20 | 3940–4081 | OS-132821 | 714.5 ± 1 | 5340 ± 25 | 6014–6209 | |||||
OS-129827 | 750.5 ± 1 | 5370 ± 20 | 6045–6266 | |||||||||
Depth (cm) | Age (year CE) | Age Marker | Depth (cm) | Age (year CE) | Age Marker | Depth (cm) | Age (year CE) | Age Marker | ||||
Other Age Markers | 15 ± 4 | 1974 ± 5 | Pb Peak | 0 ± 1 | 2014 ± 1 | Core Date | 4 ± 3 | 1970 ± 10 | Ba Onset | |||
21 ± 4 | 1963 ± 1 | 137Cs Peak | 15 ± 2 | 1963 ± 1 | Pb Decline | 7.5 ± 2 | 1955 ± 5 | As Onset | ||||
33 ± 4 | 1954 ± 3 | 137Cs Onset | 17 ± 2 | 1954 ± 3 | 137Cs Peak | |||||||
41 ± 4 | 1925 ± 5 | Pb Peak | 17 ± 5 | 1974 ± 5 | 137Cs Onset | |||||||
43 ± 4 | 1890 ± 10 | Zn Peak | 35 ± 5 | 1875 ± 25 | Pb Peak | |||||||
47 ± 4 | 1880 ± 20 | UMV Decline | 33 ± 5 | 1880 ± 20 | Pb Onset | |||||||
48 ± 6 | 1875 ± 5 | Pb Onset | 41 ± 5 | 1858 ± 5 | UMV Decline | |||||||
49 ± 4 | 1858 ± 5 | UMV Peak | 10 ± 2 | 1980 ± 5 | UMV Onset | |||||||
53 ± 4 | 1827 ± 5 | UMV Onset |
Site | Pollen Chronohorizon | Pollen Chronohorizon Age (CE) | Indicator | Explanation of Chronohorizons Age and Error, and Chosen Range for Date Analysis | Depth, Range (cm) Bchron Age (CE) | Agreement between Pollen Chronohorizons and Bchron Predicted Age? |
---|---|---|---|---|---|---|
Connecticut | Land clearance: Initial (1a) [44,69] | 1700 ± 60 | Decrease in arboreal pollen, increase in Ambrosia | European settlement began in 1640 in southeastern Connecticut [44] and regional settlement and light agriculture occurred from 1650–1740, with extensive agriculture starting in 1750 [69]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 62 cm, 58–66 cm 1515–1670 | Yes |
Connecticut | Land clearance: Beginning of the forestry industry (1d) [45,70] | 1825 ± 25 | Strong decrease of arboreal pollen | 1800 is the start of the cordwood industry in Long Island [45]. It is suggested that the forestry industry in this region was active starting in 1800 until 1850 [70]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 46 cm, 42–50 cm 1730–1840 | Yes |
Connecticut | Introduction and loss of taxa: Chestnut blight (3a) [44,45] | 1920 ± 10 | Disappearance of Castanea pollen | Chestnut decline due to the chestnut blight peaked by 1920 in the region of Connecticut located near Long Island [44,45]. Only the portion of the age/depth range between the assigned depth and the pollen sample above it was used to determine consistency as Castanea pollen dropped in abundance between 6 and 10 cm. | 10 cm, 6–10 cm 1960–1970 | No |
New York | Land clearance: Initial (1a) [41,71] | 1680 ± 25 | Decrease in arboreal pollen, such as Carya, increase in Ambrosia and Plantago | Changes in pollen relevant to initial deforestation can be dated to 1680 ± 25 [41,71]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 59.5 cm, 54.5–64.5 cm 1655–1800 | Yes |
New York | Land clearance: Beginning of the forestry industry (1d) [45,70] | 1825 ± 25 | Strong decrease of arboreal pollen, increase of Plantago | 1800 is the start of the cordwood industry in Long Island [45]. It is suggested that the forestry industry in this region was active starting in 1800 until 1850 [70]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 49.5 cm, 46.5–54.5 cm 1755–1830 | Yes |
New York | Reforestation (2a) [72,73] | 1960 ± 25 | Restoration of arboreal pollen | Timber industry activities reduced tree cover until about 1939, and the basal area of forests had doubled by 1985 [72,73]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 16.5 cm, 13.5–19.5 cm 1950–1965 | Yes |
New Jersey | Land clearance: Initial (1a) [74,75] | 1710 ± 50 | Decrease in arboreal pollen, increase in Ambrosia | The area near Cape May Courthouse was settled between 1695 and 1725 [74,75]. This was broadened to account for lag times. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 87.5 cm, 82.5–92.5 cm 1570–1670 | Yes |
New Jersey | Land clearance: lowest amount of forest cover (1c) [25,36,37,76,77] | 1800 ± 20 | Quercus:Ambrosia is less than 1.0 | Many forests were clear-cut in Delaware and New Jersey between 1750 and 1850 [76]. Coal came into use in the region around 1820 as firewood became scarce [77]. A date of 1840 ± 20 is suggested for lowest forest cover in Maryland [25,36]; however, in Delaware, records suggest that 1800 is more appropriate [37]. Only the portion of the age/depth range between the assigned depth and the pollen sample below it was used to determine consistency as relevant changes in pollen abundance occurred exclusively between 62.5 and 67.5 cm. | 62.5 cm, 62.5–67.5 cm 1825–1850 | No |
Delaware | Land clearance: Peak deforestation for agriculture (1b) [25,36,37] | 1785 ± 15 | Quercus:Ambrosia is less than 5.0 | A date of 1785 +/− 15 years is suggested based on palynological research in the Chesapeake [25,36]. This is supported by a summary of contemporaneous observations of decreasing forest cover in the Delaware region [37]. Only the portion of the age/depth range between the assigned depth and the pollen sample below it was used to determine consistency as relevant changes in pollen abundance occurred exclusively between 60 and 64 cm. | 60 cm, 60–64 cm 1795–1815 | Yes |
Delaware | Land clearance: Lowest amount of forest cover (1c) [25,36,37,76,77] | 1800 ± 20 | Quercus:Ambrosia is less than 1.0 | Many forests were clear-cut in Delaware and New Jersey between 1750 and 1850 [76]. Coal came into use in the region around 1820 as firewood became scarce [77]. A date of 1840 ± 20 is suggested for lowest forest cover in Maryland [25,36]; however, in Delaware, records suggest that 1800 is more appropriate [37]. Only the portion of the age/depth range between the assigned depth and the pollen sample below it was used to determine consistency as relevant changes in pollen abundance occurred exclusively between 62.5 and 67.5 cm. | 56 cm, 56–60 cm 1800–1820 | Yes |
Maryland | Land clearance: Peak deforestation for agriculture (1b) [25,36] | 1785 ± 15 | Quercus:Ambrosia is less than 1.0 | A date of 1785 +/− 15 years is suggested based on palynological research in the Chesapeake [25,36]. Only the portion of the age/depth range between the assigned depth and the pollen sample below it was used to determine consistency as relevant changes in pollen abundance occurred exclusively between 52 and 56 cm. | 52 cm, 52–56 cm 1740–1805 | Yes |
Maryland | Land clearance: Lowest amount of forest cover (1c) [25,36] | 1840 ± 20 | Ambrosia reaches its highest abundance | A date of 1840 ± 20 for lowest forest cover is suggested in Maryland [25,36]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as peak Ambrosia abundance may have occurred on either side of the depth assigned to this chronohorizon. | 32 cm, 30–34 cm 1875–1915 | No |
North Carolina | Land clearance: Initial (1a) [26,44,64] | 1720 ± 20 | Decrease in arboreal pollen, increase in Ambrosia | The decrease in Ambrosia pollen is an indicator of settlement [44,64] and settlement is associated with a date of 1720 ± 20 [26]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 70 cm, 65–75 cm 1610–1750 | Yes |
N. Florida | Land clearance: Railroad expansion (1e) [78] | 1865 ± 15 | Decrease in arboreal pollen, increase in Ambrosia | Construction of railroads in Florida began in 1854, expanded following the Civil War, and were completed in 1881 [78]. Only the portion of the age/depth range between the assigned depth and the pollen sample below it was used to determine consistency as relevant changes in pollen abundance occurred exclusively between 20.5 and 21.5 cm. | 20.5 cm, 20.5–21.5 cm 1880–1905 | Yes |
N. Florida | Land clearance: Beginning of the forestry industry (1d) [27,79] | 1935 ± 10 | Decrease in Pinus and Quercus, Increase in Ambrosia | The forestry industry in Florida started in 1935 [79]. The error for this chronohorizon should be 10 years [27]. The entire age/depth range between the pollen sample above and below was analyzed to determine consistency as relevant pollen abundance changes occurred on both sides of the depth assigned to this chronohorizon. | 12.5 cm, 10.5–13.5 cm 1940–1970 | Yes |
S. Florida | Introduction or loss of taxa Casuarina introduction (3b) [65,66,79,80] | 1910 ± 15 | Appearance of Casuarina pollen | This chronohorizon is defined as the appearance of Casuarina pollen [65,66]. The timing was determined by using literature-derived values of 1900 [80] and 1910 +/- 15 years [79]. Only the portion of the age/depth range between the assigned depth and the pollen sample below it was used to determine consistency as Casuarina appeared between 25.5 and 29.5 cm. | 25.5 cm, 25.5–29.5 cm 1750–1885 | No |
S. Florida | Land Clearance: Beginning of the forestry industry (1d) [27,78] | 1935 ± 10 | Decrease in Pinus pollen | The forestry industry in Florida started in 1935 [78]. The error for this chronohorizon should be 10 years [27]. Only the portion of the age/depth range between the assigned depth and the pollen sample above it was used to determine consistency as Pinus pollen dropped between 9.5 and 13.5 cm. | 13.5 cm, 9.5–13.5 cm 1895–1945 | Yes |
Site | Pollen Chronohorizon | Depth Range for Pollen Chronohorizon (cm) | Average Change of 50% UI Width (years) | Improved Precision? | Average Change in Location of Median (Years) | Location Change? |
---|---|---|---|---|---|---|
Connecticut | (1a) Initial land clearance | 56–66 | +5 | No | +19 | Yes |
Connecticut | (1d) Beginning of the forestry industry | 43–56 | −7 | Yes | +5 | Yes |
Connecticut | (3a) Chestnut blight | 5–15 | <5 | <5 | No | |
Connecticut | All chronohorizons | 5–66 | <5 | +5 | Yes | |
New York | (1a) Initial land clearance | 51–70 | <5 | −9 | Yes | |
New York | (1d) Beginning of the forestry industry | 41–51 | <5 | <5 | No | |
New York | (2a) Reforestation | 10–20 | <5 | <5 | No | |
New York | All chronohorizons | 10–70 | <5 | −7 | Yes | |
New Jersey | (1a) Initial land clearance | 68–94 | +14 | No | +8 | Yes |
New Jersey | (1c) Lowest amount of forest cover | 59–69 | <5 | <5 | No | |
New Jersey | All chronohorizons | 59–94 | +9 | No | <5 | No |
Delaware | (1b) Peak deforestation for agriculture | 53–67 | +11 | No | −7 | Yes |
Delaware | (1c) Lowest amount of forest cover | 53–67 | +8 | No | −6 | Yes |
Delaware | All chronohorizons | 53–67 | +16 | No | −18 | Yes |
Maryland | (1b) Peak deforestation for agriculture | 10–62 | −5 | Yes | <5 | No |
Maryland | (1c) Lowest amount of forest cover | 10–62 | <5 | <5 | No | |
Maryland | All chronohorizons | 10–62 | −6 | Yes | <5 | No |
North Carolina | (1a) Initial land clearance | 60–80 | −20 | Yes | +20 | Yes |
N. Florida | (1e) Railroad expansion | 15–25 | <5 | <5 | No | |
N. Florida | (1d) Beginning of the forestry industry | 7–17 | <5 | <5 | No | |
N. Florida | All chronohorizons | 7–25 | <5 | <5 | No | |
S. Florida | (3b) Casuarina introduction | 8–26 | −40 | Yes | +28 | Yes |
S. Florida | (1d) Beginning of the forestry industry | 8–26 | −19 | Yes | <5 | No |
S. Florida | All chronohorizons | 8–26 | −41 | Yes | +23 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christie, M.A.; Bernhardt, C.E.; Parnell, A.C.; Shaw, T.A.; Khan, N.S.; Corbett, D.R.; García-Artola, A.; Clear, J.; Walker, J.S.; Donnelly, J.P.; et al. Pollen Geochronology from the Atlantic Coast of the United States during the Last 500 Years. Water 2021, 13, 362. https://doi.org/10.3390/w13030362
Christie MA, Bernhardt CE, Parnell AC, Shaw TA, Khan NS, Corbett DR, García-Artola A, Clear J, Walker JS, Donnelly JP, et al. Pollen Geochronology from the Atlantic Coast of the United States during the Last 500 Years. Water. 2021; 13(3):362. https://doi.org/10.3390/w13030362
Chicago/Turabian StyleChristie, Margaret A., Christopher E. Bernhardt, Andrew C. Parnell, Timothy A. Shaw, Nicole S. Khan, D. Reide Corbett, Ane García-Artola, Jennifer Clear, Jennifer S. Walker, Jeffrey P. Donnelly, and et al. 2021. "Pollen Geochronology from the Atlantic Coast of the United States during the Last 500 Years" Water 13, no. 3: 362. https://doi.org/10.3390/w13030362
APA StyleChristie, M. A., Bernhardt, C. E., Parnell, A. C., Shaw, T. A., Khan, N. S., Corbett, D. R., García-Artola, A., Clear, J., Walker, J. S., Donnelly, J. P., Hasse, T. R., & Horton, B. P. (2021). Pollen Geochronology from the Atlantic Coast of the United States during the Last 500 Years. Water, 13(3), 362. https://doi.org/10.3390/w13030362