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Abstract

:

Rainfall erosivity factor (R-factor) is one of the Universal Soil Loss Equation (USLE) input parameters that account for impacts of rainfall intensity in estimating soil loss. Although many studies have calculated the R-factor using various empirical methods or the USLE method, these methods are time-consuming and require specialized knowledge for the user. The purpose of this study is to develop machine learning models to predict the R-factor faster and more accurately than the previous methods. For this, this study calculated R-factor using 1-min interval rainfall data for improved accuracy of the target value. First, the monthly R-factors were calculated using the USLE calculation method to identify the characteristics of monthly rainfall-runoff induced erosion. In turn, machine learning models were developed to predict the R-factor using the monthly R-factors calculated at 50 sites in Korea as target values. The machine learning algorithms used for this study were Decision Tree, K-Nearest Neighbors, Multilayer Perceptron, Random Forest, Gradient Boosting, eXtreme Gradient Boost, and Deep Neural Network. As a result of the validation with 20% randomly selected data, the Deep Neural Network (DNN), among seven models, showed the greatest prediction accuracy results. The DNN developed in this study was tested for six sites in Korea to demonstrate trained model performance with Nash–Sutcliffe Efficiency (NSE) and the coefficient of determination (R2) of 0.87. This means that our findings show that DNN can be efficiently used to estimate monthly R-factor at the desired site with much less effort and time with total monthly precipitation, maximum daily precipitation, and maximum hourly precipitation data. It will be used not only to calculate soil erosion risk but also to establish soil conservation plans and identify areas at risk of soil disasters by calculating rainfall erosivity factors.
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1. Introduction


Climate change and global warming have been concerns for hydrologists and environmentalists [1,2,3]. Hydrologic change is expected to be more aggressive as a result of rising global temperature, that consequently results in a change in the current rainfall patterns [4]. Moreover, the Intergovernmental Panel on Climate Change (IPCC) [5] report showed that increasing rainfall events and rainfall intensity are expected to occur in the coming years [6]. Due to the frequent occurrence of greater intensity rainfall events, rainfall erosivity will increase, thus topsoil will become more vulnerable to soil erosion [7]. Soil erosion by extreme intensive rainfall is a significant issue from agricultural and environmental perspectives [8]. A decrease in soil fertility, the inflow of sediment into the river ecosystem, reduction of crop yields, etc., will occur due to soil erosion [9,10]. Therefore, effective best management practices should be implemented for better sustainable management of soil erosion. Furthermore, there is a need for a regional estimate of soil loss to proper decision-making related to appropriate control practice, since erosion occurs diversely over space and time [11].



During the last few decades, various empirical, physically based, and conceptual computer models [12] such as Soil and Water Assessment Tool (SWAT) [13], European Soil Erosion Model (EUROSEM) [14], Water Erosion Prediction Project (WEPP) [15], Sediment Assessment Tool for Effective Erosion Control (SATEEC) [16], Agricultural Non-Point Source Pollution Model (AGNPS) [17], Universal Soil Loss Equation (USLE) [18], Revised Universal Soil Loss Equation (RUSLE) [19] have been developed. Among the models, the USLE model is one of the most popular and widely used empirical erosion models to predict soil erosion because of its easy application and simple structures [20,21]. The USLE model [18] calculates the annual average amount of soil erosion by taking into account soil erosion factors, such as rainfall erosivity factors, soil erodibility factor, slope and length, crop and cover management factor, and conservation practice factor.



The Ministry of Environment of Korea has supported for use of USLE in planning and managing sustainable land management in Korea. To these ends, the USLE has been extensively used to predict soil erosion and evaluate various soil erosion best management practices (BMPs) in Korea. Various efforts have been made for the development of site-specific USLE parameters over the years [22]. Yu et al. [23] suggested monthly soil loss prediction at Daecheong Dam basin in order to improve the limitation of annual soil loss prediction. They found that over 50% of the annual soil loss occurs during July and August. The rainfall erosivity factor (R-factor) is one of the factors to be parameterized in the evaluation of soil loss in the USLE. The R-factor values are affected by the distribution of rainfall amount and its intensity over time and space.



Rainfall erosivity has been widely investigated due to its impact on soil erosion studies worldwide. Rainfall data at intervals of less than 30 min are required to calculate USLE rainfall erosivity factors. The empirical equations related to R-factor based on rainfall data, such as daily, monthly, or yearly, available in various spatial and temporal extents, have been developed using numerous data [24,25].



Sholagberu et al. [26] proposed a regression equation based on annual precipitation because it is difficult to collect sub-hourly rainfall data to calculate maximum 30-min rainfall intensity. Risal et al. [27] proposed a regression equation that can calculate monthly rainfall erosivity factors from 10-min interval rainfall data. In addition, the Web ERosivity Module (WERM), web-based software that can calculate rainfall erosivity factor, was developed and made available at http://www.envsys.co.kr/~werm. In the study by Risal et al. [27] on the R-factor calculation for South Korea, 10-min interval rainfall data, which cannot give the exact estimate of maximum 30-min rainfall intensity, was used. The Korea Meteorological Administration (KMA) provides 1-min rainfall data for over 50 weather stations in Korea. Estimation of R-factor values for South Korea using a recent rainfall dataset is needed for present and future uses because climate change causes changes in precipitation pattern and intensity to some degrees. However, the process of calculation of R-factor from rainfall data is time-consuming, although the Web ERosivity Module (WERM) software can calculate rainfall erosivity factor [27]. Furthermore, the radar rainfall dataset can be used to calculate spatial USLE R raster values using Web Erosivity Model-Spatial (WERM-S) [28]. These days, Machine Learning/Deep Learning (ML/DL) has been suggested as an alternative to predict and simulate natural phenomena [29]. Thus, ML/DL has been used for the prediction of flow, water quality, and ecosystem services [30,31,32,33,34]. These studies have implied that ML/DL is an efficient and effective way to calculate R factor values using recent rainfall time-series data provided by the KMA.



The objective of this study is to develop machine learning models to predict the monthly R-factor values, which are comparable with those calculated by the USLE method. For this aim, we calculated R-factor using 1-min interval rainfall data to estimate the maximum 30-min rainfall intensity of the target values, which is monthly R factor values at 50 stations in S. Korea. In the previous study by Risal et al. [27], the R-factor values for South Korea were calculated using 10-min interval rainfall data, which cannot give an exact estimate of maximum 30-min rainfall intensity. The procedure used in this study is shown in Figure 1.




2. Methods


2.1. Study Area


Figure 2 shows the location of weather stations where 1-min rainfall data have been observed over the years in South Korea. The fifty points marked in circles are observational stations that provide data used for training and validation to create machine learning models predicting rainfall erosivity factors, while six stations marked in green on the right map—Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae—represent the stations for the final evaluation of the results predicted by machine learning models selected through validation. Thiessen network presented using red lines of the map on the right shows a range of the weather environment around the weather stations.




2.2. Monthly Rainfall Erosivity Calculation


Monthly rainfall erosivity (R-factor) was calculated for each of the 50 weather stations in South Korea from 2013 to 2019. It was calculated based on the equation given in the USLE users’ manual in order to calculate the R-factor value [18]. According to Wischmeier and Smith [18], a rainfall interval of fewer than six hours is considered a single rainfall event. In addition, the least amount of rainfall that could cause soil loss is at least 12.7 mm or more as specified in the USLE users’ manual [35].



However, if the rainfall is 6.25 mm during 15 min, it is defined as a rainfall event that can cause soil loss. The calculations for each rainfall event are as follows.


IF I ≤ 76 mm/hr → e = 0.119 + 0.0873log10 I



(1)






IF I > 76 mm/hr → e = 0.283



(2)






E = Σ (e × P)



(3)






R = E × I30max



(4)




where I (mm h−1) is the intensity of rainfall, e (MJ mm ha−1) is unit rainfall energy, P (mm) is the rainfall volume during a given time period, E (MJ ha−1) is the total storm kinetic energy, I30max (mm h−1) is the maximum 30-min intensity in the erosive event, and R (MJ mm ha−1 h−1) is the rainfall erosivity factor. In this study, the monthly R-factor (MJ mm ha−1 h−1 month−1) was estimated by calculating monthly E and multiplying it by I30max. In addition, the monthly rainfall erosivity factor was calculated using Equations (1)–(4) [18] using the 1-min precipitation data provided on the Meteorological Data Open Portal site of the KMA (Korea Meteorological Administration).




2.3. Machine Learning Models


Machine learning can be largely divided into supervised learning, unsupervised learning, and reinforcement learning [36,37]. In this study, supervised learning algorithms were used. A total of seven methods (Table 1) were used to build models to estimate R-factor. Table 1 shows the information on machine learning models utilized in this study.



Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, and Multilayer Perceptron imported and used the related functions from the Scikit-learn module (Version: 0.21.3), while eXtreme gradient boost was taken from the XGboost library (License: Apache-2.0) and used the regression functions. Deep Neural Network is trained by taking Dense and Dropout functions from “Keras.models.Sequential” module of TensorFlow (Version: 2.0.0) and Keras (Version: 2.3.1) framework. In this study, the standardization method was used during the pre-process for raw data. Moreover, the “StandardScaler” function, a preprocessing library of Scikit-learn, was used.



2.3.1. Decision Tree


The Decision Tree (DT) model uses hierarchical structures to find structural patterns in data for constructing decision-making rules to estimate both dependent and independent variables [38]. It first learns by continuing the yes/no question to reach a decision [39]. In this study, the DT model in the Scikit-learn supports only the pre-pruning. Entropy was based on classification and 2 for min_samples_split was given in Table 2.



A model hyperparameter is a value that is set directly by the user when modeling. Table 2 shows the hyperparameter settings of the regressors used in this study.




2.3.2. Random Forest


Random Forest (RF) is a decision tree algorithm developed by Breiman [40] that applies the Bagging algorithm among the Classification and Registration Tree (CART) algorithm and the ensemble technique. RF creates multiple training data from a single dataset and performs multiple training. It generates several decision trees and improves predictability by integrating the decision trees [41]. Detailed tuning of the hyperparameter in RF is easier than an artificial neural network and support vector regression [42].



In this study, the hyperparameters in the RF are the following: 52 for n_estimators, and 1 for min_samples_leaf.




2.3.3. K-Nearest Neighbors


K-Nearest Neighbors (KNN) is a non-parametric method which can be used for regression and classification [43]. In this study, KNN was used for regression. KNN is an algorithm that finds the nearest “K” neighborhood from the new data in training data and uses the most frequent class of these neighbors as a predicted value [44]. In this study, the number of the nearest neighbors in KNN’s hyperparameter was set as 3. The weights were calculated using a simple mean, and the distance was calculated by the Minkowski method [45].




2.3.4. Gradient Boosting and eXtreme Gradient Boost


Gradient Boosting (GB) is an ensemble algorithm belonging to the boosting family that can perform classification and regression analysis [46,47]. In GB, the gradient reveals the weaknesses of the model that have been learned so far, whereas other machine learning models (e.g., DT and RF) focus on it to boost performance [48]. In other words, the advantage of gradient boosting is that the other loss functions can be used as much as possible. Therefore, the parameters that minimize the loss function that quantifies errors in the predictive model can found for better R-factor prediction. In this study, the hyperparameters in the GB are the following: 0.01 for learning_rate, 4 for min_samples_split.



The eXtreme Gradient Boost (XGB) model is faster in training and classifying data than GB using parallel processing. It also has a regulatory function that prevents overfitting, which results in better predictive performance [49]. XGB is trained only by important features so that it calculates faster and performs better when compared to other algorithms [50,51]. The hyperparameters in the XGB are the following: gbtree for booster, and 10 for max_depth.




2.3.5. Multilayer Perceptron


Multilayer Perceptron (MLP) is a neural network that uses a back-propagation algorithm to learn weights [52]. MLP network consists of an input layer, a hidden layer, and an output layer (the R-factor). In this study, the hidden layer consisted of 50 nodes.



The hidden layers receive the signals from the nodes of the input layer and transform them into signals that are sent to all output nodes, transforming them into the last layer of outputs [53]. The output is used as input units in the subsequent layer. The connection between units in subsequent layers has a weight. MLP learns its weights by using the backpropagation algorithm [52].




2.3.6. Deep Neural Network


Deep Neural Network (DNN) is a predictive model that uses multiple layers of computational nodes for extracting features of existing data and depending on patterns learn to predict the outcome of some future input data [54]. The invention of the new optimizers enables us to train a large number of hyperparameters more quickly. In addition, the regularization and dropout allow us to avoid overfitting. The package used to build DNN in this study was TensorFlow developed by Google. In this study, the DNN model structure consisted of 7 dense layers and 1 dropout (Figure 3). Additional details about DNN can be found in Hinton et al. [55].





2.4. Input Data and Validation Method


Input data were compiled as shown in Table 3 to develop machine learning models to assess the R factor. The corresponding month from Jan. to Dec. was altered to numerical values, because rainfall patterns and their intensity may vary every month over space. Total monthly precipitation, maximum daily precipitation, and maximum hourly precipitation were calculated monthly and selected as the independent variables. The data can be easily downloaded in the form of monthly and hourly data among the Automated Synoptic Obstruction System (ASOS) data from the Korea Meteorological Administration (KMA)’s weather data opening portal site and organized as input data.



The monthly R-factors data in the manner presented in the USLE for the 50 selected sites from 2013 to 2019 were designated as target values, and as the features are given in Table 4, month (1–12), total monthly precipitation, maximum daily precipitation, and maximum hourly precipitation were designated as the features. Among the data, 80% of randomly selected data were trained, the model was created, and then the remaining 20% of data were used for the validation of the trained model.



To assess the performance of each machine learning model, Nash–Sutcliffe efficiency (NSE), Root Mean Squared Errors (RMSE), the Mean Absolute Error (MAE), and coefficient of determination (R2) was used. Numerous studies indicated the appropriateness of these measures to assess the accuracy of hydrological models [56,57,58]. NSE, RMSE, MAE, and R2 for evaluation of the model accuracy can be calculated from Equations (5)–(8).


  N S E = 1 −    ∑    (  O  t   −  M t  )  2     ∑    (  O  t   −    O t   ¯  )  2     



(5)






  R M S E =      ∑    (  O  t   −  M t  )  2   n     



(6)






  M A E =  1 n   ∑  |  M t  −  O t  |  



(7)






   R 2  =      [   ∑   (   O  t   −    O t   ¯   )   (   M t  −    M t   ¯   )   ]   2     ∑    (  O  t   −    O t   ¯  )  2   ∑    (  M  t   −    M t   ¯  )  2     



(8)




where    O t    is the actual value of t,      O t   ¯    is the mean of the actual value,    M t    is the estimated value of t,      M t   ¯    is the mean of the estimated value, and n is the total number of data.





3. Results and Discussion


3.1. USLE R-Factor


For the selected 50 sites, monthly rainfall erosivity factors for each year from 2013 to 2019 were calculated, and the average monthly rainfall erosivity factors for seven years were obtained. Then, the seven-year average monthly rainfall erosivity, R-factor, was generated and shown in Table 1. Moreover, to give a comprehensive look at the degree of rainfall patterns by site, the average annual rainfall erosivity factor for each site is also presented in Table 4.



In this study, rainfall erosivity factor maps were generated to examine patterns of monthly R-factor calculated by USLE using rainfall data from 50 selected sites for evaluation. The R-factor distributions were mapped reflecting the geographical characteristics in South Korea (Figure 4). The high R-factor distribution in all regions during the summer months of July and August can be confirmed.



The monthly R-factors for two months from July to August contribute more than 50% of the total average annual R factor value of Korea. The rainfall occurs mainly in the wet season and the likelihood of erosion is very high compared to the dry season. In such a case, using the average annual R-factor value can give a misleading amount of soil erosion. For these reasons, the monthly R-factor would be helpful in analyzing the impact of the rainfall on soil erosion rather than the average annual R-factor.




3.2. Validation of Machine Learning Models


Table 5 shows the prediction accuracy results (NSE, RMSE, MAE, R2) of seven machine learning models, by comparing the predicted R-factor. The results from the Deep Neural Network (DNN) showed the highest prediction accuracy with NSE 0.823, RMSE 398.623 MJ mm ha−1 h−1 month−1, MAE 144.442 MJ mm ha−1 h−1 month−1, and R2 0.840.



When comparing the results of DNN and the other machine learning models (Decision Tree, Random Forest, K-Nearest Neighbors, Multilayer Perceptron, Gradient Boosting, and eXtreme Gradient Boost), we can see that DNN provided more accurate prediction results over other machine learning algorithms. Moreover, the highest value of NSE, RMSE, MAE, and R2 was found when the DNN was employed for the prediction R-factor values.



DNN had been proven for its good performance in a number of studies about the environment. In the study conducted by Liu et al. [59], the DNN showed better results, compared with results obtained by other machine learning algorithms, in predicting streamflow at Yangtze River. Nhu et al. [60] reported the DNN has the most impactful method in machine learning for the prediction of landslide susceptibility compared to other machine learning such as decision trees and logistic regression. In the study by Lee et al. [61], a DNN-based model showed good performance as a result of evaluating the heavy rain damage prediction compared to the recurrent neural network (RNN) in deep learning. Sit et al. [62] reported the DNN can be helpful in time-series forecasting for flood and support improving existing models. For these reasons, it has been shown that DNN performs better in various studies.



In this study, the second best-predicted model is the K-Nearest Neighbors (KNN). The result from the KNN model showed prediction accuracy with NSE 0.817, RMSE 405.327 MJ mm ha−1 h−1 month−1, MAE 149.923 MJ mm ha−1 h−1 month−1, and R2 0.794 which indicates that the KNN is the most effective, aside from DNN, in predicting R-factor. According to Kim et al. [63], KNN has good performance results in predicting the influent flow rate and four water qualities like chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), and total phosphorus (TP) at a wastewater treatment plant.



On the other hand, Decision Tree has prediction accuracy, with NSE 0.518, RMSE 657.672 MJ mm ha−1 h−1 month−1, MAE 217.408, MJ mm ha−1 month-−1, and R2 0.626. This means that Decision Tree is less predictable than other machine learning models (Random Forest, K-Nearest Neighbors, Multilayer Perceptron, Gradient Boosting, eXtreme Gradient Boost, and Deep Neural Network). Hong et al. [37] also reported Decision Tree has less accuracy for the prediction of dam inflow compared to other machine learning models (Decision tree, Multilayer perceptron, Random forest, Gradient boosting, Convolutional neural network, and Recurrent neural network-long short-term memory).



Figure 5 shows the scattering graphs of the R-factors predicted by the seven machine learning models and calculated by the USLE method. All machine learning results represent a rather distracting correlation with less agreement. However, in Figure 5h, the Deep Neural Network algorithms predicted USLE R values calculated using the method suggested by USLE users’ manual with higher accuracy, NSE value of 0.823.



Among the data, 80% of randomly selected data were trained, the model was created, and then the remaining 20% of data were used for the validation of the trained model. To prevent overfitting, the K-fold cross-validation was implemented for R2 as shown in Table 6. As a result of the five attempts of K-fold cross-validation, the DNN showed the best results with an average R2 of 0.783.



Figure 6 shows the results of the prediction of the five machine learning models (i.e., Multilayer Perceptron, K-Nearest Neighbor, Random Forest, eXtreme Gradient Boost, and Deep Neural Network) at six sites for the testing of the selected models, as well as the time series comparison graph for 2013–2019 of the monthly R-factor values calculated on the USLE basis. At most sites, it showed that the time series trend fits well with a pattern similar to the USLE calculation value. In particular, looking at the distribution in Figure 6b Gangneung, the value of 9303 MJ mm ha−1 h−1 month−1 in October 2019, which represented the peak value of the rainfall erosivity factor, was generally well predicted by all machine learning models. Among the models, the result of the Random Forest model estimated a similar value with 8133 MJ mm ha−1 h−1 month−1.



On the other hand, among six sites, the time series distribution values of the model prediction result in Busan showed a slightly different pattern from the USLE calculation R-factor. In particular, the result was overestimated as the values of 8241 MJ mm ha−1 h−1 month−1 in August 2014, and Multilayer Perceptron was almost twice overestimated at 16,725 MJ mm ha−1 h−1 month−1.



However, the Random Forest (8188 MJ mm ha−1 h−1 month−1) and eXtreme Gradient boost (8395 MJ mm ha−1 h−1 month−1) algorithms were predicting very similar values. Therefore, the machine learning results could be seen as good at predicting the peak value.



A comparison of the machine learning model accuracies of NSE and R2 of the test (validation) results at the six sites is shown in Figure 7. All five models had a coefficient of determination of 0.69 or higher, and the simulated values of the USLE method calculation and machine learning models showed high accuracy prediction. However, compared to Deep Neural Network, the NSE results of the four models (Multilayer Perceptron, K-Nearest Neighbor, Random Forest, eXtreme Gradient Boost) were less than 0.58, and the Deep Neural Network model showed 0.87 in both NSE and R2. Therefore, the monthly average value of the R-factor, predicted by the DNN would be a good candidate algorithm for USLE R factor prediction (Table 5 and Figure 7).



Table 7 shows average monthly rainfall erosivity factor values at the six sites for testing, Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae, along with the USLE calculation and Deep Neural Network (DNN) prediction.



Among average annual vales, the results for Busan showed a good performance with the Deep Neural Network (DNN) resulting in the average annual value of the rainfall erosivity factor of 257 MJ mm ha−1 h−1 year−1 difference over the USLE calculation result. In the case of Chuncheon, DNN also showed a good performance with an average annual rainfall erosivity factor difference of 298 MJ mm ha−1 h−1 year−1 difference over the USLE calculation result. On the other hand, the USLE calculation results for Namhae showed an average annual value of the rainfall erosivity factor difference of 3361 MJ mm ha−1 h−1 year−1 greater than the DNN result.



This is because, in the case of Namhae, the rainfall tendency lasted for a long period in the dry season from February to June compared to the other testing sites like Chuncheon, Gangneung, Suwon, Jeonju, and Busan. Moreover, the monthly R-factor calculation of Namhae in dry seasons was two to four times more than other testing sites. In particular, the monthly R-factor for February in Namhae figure being about five times higher than the monthly R-factor in Busan. This means that if the single set of learning data has a huge deviation or variation from other sets, it may result in the uncertainty of the entire result data. Therefore, the monthly R-factor of Namhae in the dry season from is containing uncertainty. In the future study, when predicting the R-factor of the Namhae, DNN model analysis will be implemented in consideration of rainfall trends by supplement the historical rainfall data.



R-factor can be calculated by machine learning algorithms with high accuracy and time benefit. The spatio-temporal calculation of the rainfall erosivity factor using machine learning techniques can be utilized for the estimation of the soil erosion due to rainfall at the target value. The DNN will be incorporated into the WERM website in the near future after further validation.





4. Conclusions


The main objective of this study is to develop machine learning models to predict monthly R-factor values which are comparable with those calculated by the USLE method. For this, we calculated R-factor using 1-min interval rainfall data for improved accuracy of the target value. The machine learning and deep learning models used in this study were Decision Tree, K-Nearest Neighbors, Multilayer Perceptron, Random forest, Gradient boosting, eXtreme Gradient boost, and Deep Neural Network. All of the models except Decision Tress showed NSE and R2 values of 0.7 or more, which means that most of the machine learning models showed high accuracy for predicting the R-factor. Among these, the Deep Neural Network (DNN) showed the best performance. As a result of the validation with 20% randomly selected data, DNN, among the seven models, showed the greatest prediction accuracy results with NSE 0.823, RMSE 398.623 MJ mm ha−1 h−1 month−1, MAE 144.442 MJ mm ha−1 h−1 month−1, and R2 0.840. Furthermore, the DNN developed in this study was tested for six sites (Chuncheon, Gangneung, Suwon, Jeonju, Busan, and Namhae) in S. Korea to demonstrate a trained model performance with NSE and R2 of both 0.87. As a result of the comparative analysis of R-factor prediction through various models, the DNN was proven to be the best model for R-factor prediction in S. Korea with readily available rainfall data. The model accuracy and simplicity of machine learning and deep learning models insist that the models could replace traditional ways of calculating/estimating USLE R-factor values.



We found that the maximum 30 min intensity derived from 1-min interval rainfall data in this study is more accurate than that estimated from previous research. These methods can provide more accurate monthly, yearly, and event-based USLE R-factor for the entire period. Moreover, if the user has input data (month, the total amount of monthly precipitation, maximum daily precipitation, maximum hourly precipitation) as described in Table 3, the monthly R-factor can be easily calculated for the 50 specific stations in S. Korea by using the machine and deep learning models. Since the updated R-factor in this study reflected the recent rainfall data, which have high variability, it can improve the accuracy of the usage of the previous R-factor proposed by the Korean Ministry of Environment [64] for future study. The results from this study can help the policymakers to update their guideline (Korean Ministry of Environment) [64] regarding the updated version of R-factors values for S. Korea.



It is expected that it will be used not only to calculate soil erosion risk but also to establish soil conservation plans and identify areas at risk of soil disasters by calculating rainfall erosivity factors at the desired temporal-spatial areas more easily and quickly.



However, this study evaluated the R-factor using machine learning models in S. Korean territory, under the monsoon region. Although deep learning models such as Deep Neural Network’s applicability in S. Korea has been confirmed in this study, few studies have investigated and benchmarked the performances of a Deep Neural Network model-based USLE R-factor prediction trained. Therefore, future studies should be carried out for the diverse conditions of the other countries such as European countries, the United States, and African countries to broaden the applicability of machine learning technology in USLE R-factor (erosivity factor) analysis.
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Figure 1. Study procedures. 
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Figure 2. Weather stations in the study area. 
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Figure 3. Illustration of the proposed Deep Neural Network (DNN) for rainfall erosivity (R-factor) prediction. 
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Figure 4. Spatial distribution of monthly R-factor calculated by USLE, using rainfall data from 50 weather stations for the period 2013–2019. 
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Figure 5. Comparison of (a) Decision Tree, (b) Multilayer Perceptron, (c) K-Nearest Neighbor, (d) Random Forest, (e) Gradient Boosting, (f) eXtreme Gradient Boost, and (g) Deep Neural Network calculated R-factor with validation data, and (h) comparison of machine learning accuracy. 
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Figure 6. The comparisons of forecasting results of R-factor using machine learning in (a) Chuncheon, (b) Gangneung, (c) Suwon, (d) Jeonju, (e) Busan, and (f) Namhae. 
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Figure 7. Comparison of prediction accuracy results by machine learning models in test sites. 
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Table 1. Description of machine learning models.
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	Machine Learning Models
	Module
	Function
	Notation





	Decision Tree
	Sklearn.tree
	DecisionTreeRegressor
	DT



	Random Forest
	Sklearn.ensemble
	RandomForestRegressor
	RF



	K-Nearest Neighbors
	Sklearn.neighbors
	KNeighborsRegressor
	KN



	Gradient Boosting
	Sklearn.ensemble
	GradientBoostingRegressor
	GB



	eXtreme Gradient Boost
	xgboost.xgb
	XGBRegressor
	XGB



	Multilayer Perceptron
	Sklearn, neural_network
	MLPRegressor
	MLP



	Deep Neural Network
	Keras.models.Sequential
	Dense, Dropout
	DNN
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Table 2. Critical hyperparameters in machine learning models.
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	Machine Learning Models
	Hyperparameter





	Decision Tree
	criterion = “entropy”, min_samples_split = 2



	Random Forest
	n_estimators = 52, min_samples_leaf = 1



	K-Nearest Neighbors
	n_neighbors = 3, weights = ‘uniform’, metric = ‘minkowski’



	Gradient Boosting
	learning_rate = 0.01, min_samples_split = 4



	eXtreme Gradient Boost
	Booster = ‘gbtree’, max_depth = 10



	Multilayer Perceptron
	hidden_layer_sizes = (50,50,50), activation = “relu”, solver = ‘adam’



	Deep Neural Network
	kernel_initializer = ‘normal’, activation = “relu”
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Table 3. The input data for machine learning models.
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Description

	
Count

	
Mean

	
std

	
Min

	
25%

	
50%

	
75%

	
Max






	
Input variable

	
month

	
month (1~12)

	
4087

	
6.49

	
3.45

	
1

	
3

	
6

	
9

	
12




	
m_sum_r

	
the total amount of monthly precipitation

	
4087

	
96.45

	
97.01

	
0

	
30.90

	
66.20

	
126.15

	
1009.20




	
d_max_r

	
maximum daily precipitation

	
4087

	
39.39

	
38.10

	
0

	
14.50

	
27.10

	
51.35

	
384.30




	
h_max_r

	
maximum hourly precipitation

	
4087

	
11.84

	
12.69

	
0

	
4.00

	
7.50

	
15.50

	
197.50




	
Output variable

	
R-factor

	
R-factor

	
4087

	
419.10

	
1216.79

	
0

	
15.99

	
77.84

	
326.24

	
43,586.61
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Table 4. Monthly R-factor calculated by the Universal Soil Loss Equation (USLE).
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Station Number

	
Station

Name

	
R-Factor

(MJ mm ha−1 h−1 month−1)

	
R-Factor

(MJ mm ha−1 h−1 year−1)




	
January

	
February

	
March

	
April

	
May

	
June

	
July

	
August

	
September

	
October

	
November

	
December

	
Annual






	
90

	
Sokcho

	
21

	
29

	
32

	
95

	
47

	
159

	
1039

	
2860

	
368

	
494

	
507

	
44

	
5694




	
95

	
Cheolwon

	
2

	
37

	
30

	
119

	
257

	
235

	
5867

	
2769

	
403

	
239

	
65

	
24

	
10,046




	
98

	
Dongducheon

	
2

	
69

	
31

	
91

	
287

	
455

	
3031

	
1364

	
424

	
228

	
47

	
24

	
6053




	
100

	
Daegwallyeong

	
4

	
19

	
20

	
79

	
577

	
194

	
1472

	
1669

	
453

	
237

	
40

	
8

	
4772




	
106

	
Donghae

	
17

	
29

	
34

	
207

	
27

	
157

	
592

	
1317

	
469

	
1461

	
128

	
8

	
4447




	
108

	
Seoul

	
0

	
31

	
37

	
95

	
284

	
266

	
2813

	
988

	
191

	
90

	
50

	
16

	
4861




	
112

	
Incheon

	
3

	
50

	
69

	
83

	
224

	
192

	
2193

	
897

	
406

	
480

	
88

	
27

	
4712




	
114

	
Wonju

	
2

	
22

	
31

	
83

	
284

	
699

	
2654

	
999

	
303

	
65

	
40

	
8

	
5189




	
127

	
Chungju

	
4

	
36

	
22

	
79

	
171

	
270

	
2075

	
1240

	
909

	
117

	
38

	
17

	
4978




	
129

	
Seosan

	
7

	
72

	
50

	
135

	
147

	
562

	
747

	
635

	
330

	
146

	
127

	
42

	
3000




	
130

	
Uljin

	
86

	
16

	
47

	
292

	
24

	
227

	
590

	
470

	
360

	
2816

	
143

	
30

	
5100




	
133

	
Daejeon

	
8

	
47

	
50

	
182

	
72

	
602

	
1658

	
1293

	
494

	
181

	
96

	
24

	
4707




	
136

	
Andong

	
1

	
32

	
53

	
101

	
48

	
325

	
1142

	
808

	
368

	
176

	
33

	
14

	
3100




	
137

	
Sangju

	
6

	
18

	
67

	
105

	
45

	
361

	
1098

	
1143

	
420

	
273

	
51

	
19

	
3605




	
138

	
Pohang

	
7

	
46

	
106

	
139

	
40

	
233

	
417

	
1051

	
910

	
1478

	
51

	
23

	
4500




	
143

	
Daegu

	
1

	
8

	
57

	
80

	
67

	
313

	
548

	
1322

	
238

	
340

	
26

	
12

	
3013




	
152

	
Ulsan

	
15

	
36

	
122

	
141

	
154

	
287

	
751

	
1499

	
727

	
1709

	
77

	
74

	
5591




	
156

	
Gwangju

	
8

	
59

	
92

	
156

	
74

	
927

	
1249

	
2458

	
703

	
361

	
99

	
49

	
6236




	
165

	
Mokpo

	
15

	
112

	
117

	
227

	
177

	
630

	
1023

	
944

	
2094

	
493

	
85

	
127

	
6044




	
172

	
Gochang

	
12

	
24

	
137

	
151

	
77

	
399

	
1768

	
2235

	
614

	
273

	
77

	
21

	
5788




	
175

	
Jindo

	
18

	
43

	
231

	
559

	
511

	
598

	
738

	
1323

	
799

	
636

	
113

	
36

	
5606




	
201

	
Ganghwa

	
1

	
26

	
35

	
60

	
193

	
59

	
1922

	
1255

	
648

	
654

	
48

	
20

	
4921




	
203

	
Icheon

	
2

	
34

	
103

	
83

	
211

	
207

	
2284

	
1068

	
450

	
162

	
45

	
24

	
4673




	
212

	
Hongcheon

	
1

	
11

	
23

	
81

	
461

	
162

	
2220

	
934

	
223

	
51

	
29

	
8

	
4204




	
217

	
Jeongseon

	
1

	
20

	
18

	
75

	
117

	
126

	
2165

	
654

	
355

	
101

	
36

	
16

	
3686




	
221

	
Jecheon

	
3

	
26

	
21

	
90

	
158

	
265

	
1616

	
1162

	
405

	
80

	
43

	
12

	
3881




	
226

	
Boeun

	
8

	
19

	
42

	
106

	
62

	
482

	
2016

	
1102

	
583

	
163

	
77

	
15

	
4675




	
232

	
Cheonan

	
2

	
17

	
21

	
86

	
106

	
248

	
3408

	
1002

	
249

	
110

	
68

	
15

	
5333




	
235

	
Boryeong

	
5

	
73

	
47

	
142

	
127

	
322

	
878

	
849

	
1014

	
184

	
149

	
29

	
3820




	
238

	
Guemsan

	
5

	
17

	
52

	
154

	
48

	
483

	
1126

	
1059

	
447

	
148

	
37

	
17

	
3591




	
244

	
Imsil

	
3

	
9

	
83

	
106

	
67

	
369

	
2329

	
1416

	
632

	
224

	
44

	
16

	
5297




	
245

	
Jeongeup

	
11

	
18

	
106

	
160

	
265

	
318

	
1679

	
1930

	
521

	
207

	
46

	
27

	
5287




	
247

	
Namwon

	
8

	
19

	
78

	
159

	
52

	
704

	
2988

	
2304

	
479

	
586

	
88

	
49

	
7512




	
248

	
Jangsu

	
5

	
34

	
85

	
151

	
80

	
246

	
1997

	
1812

	
715

	
308

	
53

	
30

	
5516




	
251

	
Gochanggoon

	
7

	
14

	
127

	
191

	
69

	
352

	
1448

	
2066

	
521

	
175

	
37

	
23

	
5029




	
252

	
Younggwang

	
7

	
15

	
130

	
178

	
114

	
292

	
994

	
2008

	
596

	
491

	
63

	
39

	
4928




	
253

	
Ginhae

	
7

	
43

	
220

	
200

	
339

	
385

	
1036

	
1600

	
1216

	
734

	
44

	
48

	
5872




	
254

	
Soonchang

	
4

	
14

	
93

	
194

	
89

	
456

	
1724

	
1304

	
629

	
363

	
58

	
16

	
4945




	
259

	
Gangjin

	
10

	
34

	
204

	
344

	
425

	
666

	
1156

	
9781

	
903

	
444

	
187

	
18

	
14,170




	
261

	
Haenam

	
10

	
15

	
223

	
206

	
177

	
595

	
965

	
1142

	
650

	
1250

	
83

	
91

	
5406




	
263

	
Uiryoong

	
4

	
24

	
121

	
184

	
156

	
334

	
629

	
1961

	
805

	
643

	
39

	
36

	
4936




	
266

	
Gwangyang

	
8

	
76

	
120

	
218

	
591

	
686

	
827

	
2488

	
2195

	
555

	
86

	
73

	
7924




	
271

	
Bonghwa

	
0

	
9

	
36

	
86

	
95

	
415

	
1154

	
706

	
327

	
98

	
28

	
13

	
2968




	
273

	
Mungyeong

	
7

	
18

	
54

	
139

	
102

	
331

	
1724

	
742

	
529

	
180

	
61

	
21

	
3908




	
278

	
Uiseong

	
1

	
6

	
69

	
101

	
74

	
220

	
632

	
647

	
326

	
106

	
31

	
7

	
2220




	
279

	
Gumi

	
3

	
12

	
68

	
103

	
95

	
380

	
1296

	
1442

	
554

	
364

	
32

	
14

	
4363




	
281

	
Yeongcheon

	
2

	
11

	
81

	
162

	
52

	
316

	
1259

	
1082

	
409

	
230

	
28

	
12

	
3643




	
283

	
Gyeongju

	
3

	
11

	
53

	
101

	
55

	
125

	
573

	
759

	
681

	
686

	
21

	
13

	
3081




	
284

	
Geochang

	
3

	
17

	
54

	
105

	
60

	
434

	
1184

	
1491

	
619

	
2246

	
33

	
55

	
6299




	
285

	
Hapcheon

	
2

	
22

	
57

	
173

	
105

	
700

	
1114

	
1646

	
810

	
676

	
47

	
24

	
5378
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Table 5. Prediction accuracy results of seven machine learning models.
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	Machine Learning Models
	NSE
	RMSE

(MJ mm ha-−1 h−1 month−1)
	MAE

(MJ mm ha-−1 h−1 month−1)
	R2





	Decision Tree
	0.518
	657.672
	217.408
	0.626



	Multilayer Perceptron
	0.732
	490.055
	158.847
	0.783



	K-Nearest Neighbors
	0.817
	405.327
	149.923
	0.794



	Random Forest
	0.800
	423.345
	148.147
	0.799



	Gradient Boosting
	0.702
	516.956
	161.259
	0.722



	eXtreme Gradient Boost
	0.791
	433.230
	159.275
	0.788



	Deep Neural Network
	0.823
	398.623
	144.442
	0.840
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Table 6. K-fold cross validation results of seven machine learning models.






Table 6. K-fold cross validation results of seven machine learning models.





	
Fold

	
Coefficient of Determination (R2)




	
Decision Tree

	
Multi-Layer Perceptron

	
K-Nearest Neighbors

	
Random

Forest

	
Gradient Boosting

	
eXtreme

Gradient Boost

	
Deep Neural Network






	
1

	
0.631

	
0.781

	
0.818

	
0.817

	
0.730

	
0.801

	
0.821




	
2

	
0.598

	
0.806

	
0.705

	
0.686

	
0.648

	
0.737

	
0.733




	
3

	
0.544

	
0.759

	
0.705

	
0.682

	
0.635

	
0.717

	
0.759




	
4

	
0.592

	
0.714

	
0.780

	
0.774

	
0.653

	
0.644

	
0.762




	
5

	
0.626

	
0.783

	
0.794

	
0.799

	
0.722

	
0.788

	
0.840




	
Average

	
0.598

	
0.769

	
0.760

	
0.752

	
0.678

	
0.737

	
0.783
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Table 7. Monthly R-factor calculated (C) by the previous method and predicted (M) by Deep Neural Network.






Table 7. Monthly R-factor calculated (C) by the previous method and predicted (M) by Deep Neural Network.





	
Station Number

	
Station

Name

	
Method

	
R-Factor

(MJ mm ha−1 h−1 month−1)

	
R-Factor

(MJ mm ha−1 h−1 year−1)

	
NSE




	
January

	
February

	
March

	
April

	
May

	
June

	
July

	
August

	
September

	
October

	
November

	
December

	
Annual

	






	
101

	
Chuncheon

	
C

	
2

	
99

	
27

	
110

	
195

	
320

	
3466

	
1844

	
355

	
182

	
45

	
24

	
6670

	
0.814




	
M

	
5

	
59

	
26

	
84

	
166

	
356

	
3543

	
1608

	
323

	
154

	
31

	
16

	
6372




	
105

	
Gangneung

	
C

	
25

	
36

	
31

	
138

	
150

	
113

	
742

	
2476

	
390

	
1598

	
325

	
16

	
6040

	
0.874




	
M

	
57

	
24

	
38

	
84

	
154

	
100

	
774

	
2189

	
287

	
1129

	
207

	
14

	
5055




	
119

	
Suwon

	
C

	
3

	
29

	
80

	
115

	
278

	
165

	
2944

	
1463

	
388

	
107

	
84

	
27

	
5683

	
0.981




	
M

	
5

	
36

	
56

	
88

	
210

	
156

	
2708

	
1352

	
312

	
85

	
52

	
19

	
5076




	
146

	
Jeonju

	
C

	
7

	
17

	
104

	
105

	
108

	
526

	
1315

	
1511

	
311

	
240

	
67

	
21

	
4330

	
0.911




	
M

	
7

	
16

	
80

	
103

	
95

	
581

	
1086

	
1261

	
310

	
153

	
50

	
19

	
3760




	
159

	
Busan

	
C

	
32

	
79

	
199

	
408

	
472

	
781

	
1021

	
1729

	
1764

	
616

	
266

	
113

	
7479

	
0.883




	
M

	
22

	
56

	
148

	
243

	
317

	
639

	
860

	
2205

	
2514

	
458

	
184

	
91

	
7736




	
295

	
Namhae

	
C

	
19

	
407

	
366

	
946

	
892

	
1016

	
1608

	
1822

	
2169

	
1634

	
151

	
131

	
11,159

	
0.584




	
M

	
14

	
161

	
198

	
748

	
607

	
867

	
1201

	
1164

	
1633

	
1010

	
85

	
110

	
7798
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