Gross Solids Content Prediction in Urban WWTPs Using SVM
Abstract
:1. Introduction
- Gross solids on days without rain are deposited in the bottom of the collectors, and when there is heavy rain, they are suddenly drawn into the treatment plant [8]. Numerous researchers have studied the consequences of these solids in sewage systems [9,10,11,12,13,14]. The arrival of all these gross solids at the WWTP can cause blockages in the equipment and, consequently, lead to discharge of untreated wastewater into rivers. Knowing of the arrival of solids as soon as possible would allow for anticipating and putting more pretreatment lines into service, avoiding those blockages.
- Another operational problem to be faced is the need to have enough containers for the gross solids and to avoid having to pile them on the ground in a precarious way. By predicting the arrival of gross solids earlier, it is possible to ensure the availability of empty containers.
2. Materials and Methods
2.1. Case Study
2.2. Data
- Data related to wastewater were obtained through the SCADA software (Supervisory Control and Data Acquisition) of the WWTP. This system registers 226 parameters every 9 minutes from measuring equipment and sensors distributed all over the treatment plant. From this set of data, the data set associated to the measurement of input parameters in the raw water during the pretreatment stage was used. The parameters measured in the raw water are the input flow rate, pH, raw water temperature, conductivity, and ammonia. Data associated with these variables were identified by date and time of the data measurement.
- Gross solids data were collected from the container removal delivery notes (provided by the waste management entity), which contain the actual information of the waste total weight inside each container. The number of containers in the study period was 165. Their filling times were used as time intervals to group the data from the SCADA system.
- Climate data were obtained from the Spanish State Agency for Meteorology website (Agencia Estatal de Meteorología, Aemet) and pluviometry data (instantaneous and accumulated rainfall) were obtained from the plant’s own weather station. All of them were also grouped according to the intervals in which the containers were filled. From these data, a new variable calculated from the instantaneous precipitation was also created, corresponding to the number of previous days without rain.
2.3. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collin, T.D.; Cunningham, R.; Asghar, M.Q.; Villa, R.; MacAdam, J.; Jefferson, B. Assessing the Potential of Enhanced Primary Clarification to Manage Fats, Oils and Grease (FOG) at Wastewater Treatment Works. Sci. Total Environ. 2020, 728, 138415. [Google Scholar] [CrossRef]
- Roychand, R.; Li, J.; De Silva, S.; Saberian, M.; Law, D.; Pramanik, B.K. Development of Zero Cement Composite for the Protection of Concrete Sewage Pipes from Corrosion and Fatbergs. Resour. Conserv. Recycl. 2021, 164, 105166. [Google Scholar] [CrossRef]
- Prado, G.S.D.; Campos, J.R. O emprego da análise de imagem na determinação da distribuição de tamanho de partículas da areia presente no esgoto sanitário. Eng. Sanit. Ambient. 2009, 14, 401–409. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Tan, T.; Gao, Z.; Fan, L. The Shock Effect of Inorganic Suspended Solids in Surface Runoff on Wastewater Treatment Plant Performance. Int. J. Environ. Res. Public Health 2019, 16, 453. [Google Scholar] [CrossRef] [Green Version]
- Sidwick, J.M. The Preliminary Treatment of Wastewater. J. Chem. Technol. Biotechnol. 1991, 52, 291–300. [Google Scholar] [CrossRef]
- Metcalf & Eddy, Inc.; Tchobanoglous, G.; Burton, F.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse; McGraw-Hill Education: New York, NY, USA, 2002; ISBN 978-0-07-041878-3. [Google Scholar]
- Office of Wastewater Management; United States Environmental Protection Agency (EPA). Primer for Municipal Wastewater Treatment Systems; Office of Wastewater Management: Washington, DC, USA, 2004.
- Ashley, R.M.; Bertrand-Krajewski, J.-L.; Hvitved-Jacobsen, T.; Verbanck, M. Solids in Sewers; IWA Publishing: London, UK, 2004; ISBN 978-1-900222-91-4. [Google Scholar]
- Brown, D.M.; Butler, D.; Orman, N.R.; Davies, J.W. Gross Solids Transport in Small Diameter Sewers. Water Sci. Technol. 1996, 33, 25–30. [Google Scholar] [CrossRef]
- Eren, B.; Karadagli, F. Physical Disintegration of Toilet Papers in Wastewater Systems: Experimental Analysis and Mathematical Modeling. Environ. Sci. Technol. 2012, 46, 2870–2876. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.; Littlewood, K.; Orman, N. A Model for the Movement of Large Solids in Small Sewers. Water Sci. Technol. 2005, 52, 69–76. [Google Scholar] [CrossRef]
- Digman, C.J.; Littlewood, K.; Butler, D.; Spence, K.; Balmforth, D.J.; Davies, J.; Schütze, M. A Model to Predict the Temporal Distribution of Gross Solids Loading in Combined Sewerage Systems. Glob. Solut. Urban Drain. 2012, 1–13. [Google Scholar] [CrossRef]
- Walski, T.; Edwards, B.; Heifer, E.; Whitman, B.E. Transport of Large Solids in Sewer Pipes. Water Environ. Res. 2009, 81, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Walski, T.; Falco, J.; McAloon, M.; Whitman, B. Transport of Large Solids in Unsteady Flow in Sewers. Urban Water J. 2011, 8, 179–187. [Google Scholar] [CrossRef]
- Hamed, M.M.; Khalafallah, M.G.; Hassanien, E.A. Prediction of Wastewater Treatment Plant Performance Using Artificial Neural Networks. Environ. Model. Softw. 2004, 19, 919–928. [Google Scholar] [CrossRef]
- Hernández-Chover, V.; Castellet-Viciano, L.; Hernández-Sancho, F. Preventive Maintenance versus Cost of Repairs in Asset Management: An Efficiency Analysis in Wastewater Treatment Plants. Process Saf. Environ. Prot. 2020, 141, 215–221. [Google Scholar] [CrossRef]
- Hernández-Chover, V.; Bellver-Domingo, Á.; Hernández-Sancho, F. The Influence of Oversizing on Maintenance Cost in Wastewater Treatment Plants. Process Saf. Environ. Prot. 2021, 147, 734–741. [Google Scholar] [CrossRef]
- Heo, S.; Nam, K.; Tariq, S.; Lim, J.Y.; Park, J.; Yoo, C. A Hybrid Machine Learning–Based Multi-Objective Supervisory Control Strategy of a Full-Scale Wastewater Treatment for Cost-Effective and Sustainable Operation under Varying Influent Conditions. J. Clean. Prod. 2021, 291, 125853. [Google Scholar] [CrossRef]
- Ortiz-Martínez, V.M.; Martínez-Frutos, J.; Hontoria, E.; Hernández-Fernández, F.J.; Egea, J.A. Multiplicity of Solutions in Model-Based Multiobjective Optimization of Wastewater Treatment Plants. Optim. Eng. 2020, 1–16. [Google Scholar] [CrossRef]
- Pang, J.; Yang, S.; He, L.; Chen, Y.; Ren, N. Intelligent Control/Operational Strategies in WWTPs through an Integrated Q-Learning Algorithm with ASM2d-Guided Reward. Water 2019, 11, 927. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, L.; Langeveld, J.; Comeau, A.; Corominas, L.; Daigger, G.; Martin, C.; Mikkelsen, P.S.; Vezzaro, L.; Weijers, S.; Vanrolleghem, P.A. Modelling and Monitoring of Integrated Urban Wastewater Systems: Review on Status and Perspectives. Water Sci. Technol. 2013, 68, 1203–1215. [Google Scholar] [CrossRef]
- Hreiz, R.; Latifi, M.A.; Roche, N. Optimal Design and Operation of Activated Sludge Processes: State-of-the-Art. Chem. Eng. J. 2015, 281, 900–920. [Google Scholar] [CrossRef] [Green Version]
- Newhart, K.B.; Holloway, R.W.; Hering, A.S.; Cath, T.Y. Data-Driven Performance Analyses of Wastewater Treatment Plants: A Review. Water Res. 2019, 157, 498–513. [Google Scholar] [CrossRef]
- The Council of The European Communities. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment; The Council of the European Communities: Brussels, Belgium, 2014. [Google Scholar]
- Vapnik, V. The Support Vector Method of Function Estimation. In Nonlinear Modeling: Advanced Black-Box Techniques; Suykens, J.A.K., Vandewalle, J., Eds.; Springer: Boston, MA, USA, 1998; pp. 55–85. ISBN 978-1-4615-5703-6. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses. J. Mech. Des. 2004, 127, 1077–1087. [Google Scholar] [CrossRef]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem Formulations and Solvers in Linear SVM: A Review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, H. Kernel Parameter Selection for Support Vector Machine Classification. J. Algorithms Comput. Technol. 2014, 8, 163–177. [Google Scholar] [CrossRef]
- Cheng, T.; Dairi, A.; Harrou, F.; Sun, Y.; Leiknes, T. Monitoring Influent Conditions of Wastewater Treatment Plants by Nonlinear Data-Based Techniques. IEEE Access 2019, 7, 108827–108837. [Google Scholar] [CrossRef]
- Yang, Y.H.; Guergachi, A.; Khan, G. Support Vector Machines for Environmental Informatics: Application to Modelling the Nitrogen Removal Processes in Wastewater Treatment Systems. J. Environ. Inform. 2015, 7, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, N.M.; Abdi, J.; Taghizadeh, M.; Taghizadeh, A.; Hayati, B.; Shekarchi, A.A.; Vossoughi, M. Activated Carbon/Metal-Organic Framework Nanocomposite: Preparation and Photocatalytic Dye Degradation Mathematical Modeling from Wastewater by Least Squares Support Vector Machine. J. Environ. Manag. 2019, 233, 660–672. [Google Scholar] [CrossRef]
- Abobakr Yahya, A.S.; Ahmed, A.N.; Binti Othman, F.; Ibrahim, R.K.; Afan, H.A.; El-Shafie, A.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios. Water 2019, 11, 1231. [Google Scholar] [CrossRef] [Green Version]
- Najafzadeh, M.; Zeinolabedini, M. Prognostication of Waste Water Treatment Plant Performance Using Efficient Soft Computing Models: An Environmental Evaluation. Measurement 2019, 138, 690–701. [Google Scholar] [CrossRef]
- Negara, M.P.; Cornelissen, E.; Geurkink, A.K.; Euverink, G.J.W.; Jayawardhana, B. Next Generation Sequencing Analysis of Wastewater Treatment Plant Process via Support Vector Regression. IFAC-PapersOnLine 2019, 52, 37–42. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Y.; Huang, D.; Liu, B. Optimized Forecast Components-SVM-Based Fault Diagnosis With Applications for Wastewater Treatment. IEEE Access 2019, 7, 128534–128543. [Google Scholar] [CrossRef]
- Harrou, F.; Dairi, A.; Sun, Y.; Senouci, M. Statistical Monitoring of a Wastewater Treatment Plant: A Case Study. J. Environ. Manag. 2018, 223, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Jover-Smet, M.; Martín-Pascual, J.; Trapote, A. Model of Suspended Solids Removal in the Primary Sedimentation Tanks for the Treatment of Urban Wastewater. Water 2017, 9, 448. [Google Scholar] [CrossRef]
- Hsu, C.; Chang, C.; Lin, C. A Practical Guide to Support Vector Classification. 2010. Available online: www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf (accessed on 5 February 2021).
- Campbell, C.; Ying, Y. Learning with Support Vector Machines. Synth. Lect. Artif. Intell. Mach. Learn. 2011, 5, 1–95. [Google Scholar] [CrossRef]
- Kranjčić, N.; Medak, D.; Župan, R.; Rezo, M. Support Vector Machine Accuracy Assessment for Extracting Green Urban Areas in Towns. Remote Sens. 2019, 11, 655. [Google Scholar] [CrossRef] [Green Version]
- Duan, K.; Keerthi, S.S.; Poo, A.N. Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters. Neurocomputing 2003, 51, 41–59. [Google Scholar] [CrossRef]
- Budiman, F. SVM-RBF Parameters Testing Optimization Using Cross Validation and Grid Search to Improve Multiclass Classification. Sci. Vis. 2019, 11, 11. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- El-Din, A.G.; Smith, D.W. A Neural Network Model to Predict the Wastewater Inflow Incorporating Rainfall Events. Water Res. 2002, 36, 1115–1126. [Google Scholar] [CrossRef]
- Saunders, L.J.; Russell, R.A.; Crabb, D.P. The Coefficient of Determination: What Determines a Useful R2 Statistic? Investig. Ophthalmol. Vis. Sci. 2012, 53, 6830–6832. [Google Scholar] [CrossRef] [Green Version]
Parameter | Input | Output |
---|---|---|
Maximum inflow (rainy weather) | 8.50 m3/s | |
Maximum inflow (dry weather) | 2.89 m3/s | |
Five-day biological oxygen demand (BOD5) | 418.00 mg/L | 5 mg/L |
Chemical oxygen demand (COD) | 652.00 mg/L | 30 mg/L |
Total suspended solids (TSS) | 329.00 mg/L | 10 mg/L |
Total Kjeldahl nitrogen (N-NTK) | 47.40 mg/L | 4 mg/L |
Total phosphorus (Pt) | 6.50 mg/L | 0.5 mg/L |
Sample | Total Wet Weight | Wipes | Plastics | Hygiene Products | Organic Material | ||||
---|---|---|---|---|---|---|---|---|---|
kg | kg | % | kg | % | kg | % | kg | % | |
1 | 42.21 | 13.82 | 30.57 | 0.54 | 1.19 | 1.32 | 2.92 | 29.53 | 65.32 |
2 | 43.61 | 12.07 | 27.68 | 0.49 | 1.12 | 1.62 | 3.71 | 29.43 | 67.48 |
3 | 9.25 | 2.28 | 24.56 | 0.01 | 0.11 | 0.60 | 6.49 | 6.36 | 68.76 |
Variable | Description | Unit | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|
GrossSolids | Gross solids | ton | 2.96 | 0.79 | 1.42 | 5.44 |
Interval | Time interval | h | 123.40 | 468.56 | 1.28 | 6023.36 |
PDwR | Previous days without rain | day | 1.15 | 2.69 | 0.00 | 20.41 |
MxDwR | Maximum previous days without rain in the time interval | day | 2.86 | 3.48 | 0.01 | 20.68 |
Vol | Water volume | m3 | 398,312.01 | 407,147.11 | 4254.39 | 2,600,377.05 |
PrecipTotal | Total precipitation | m3 | 7.57 | 12.37 | 0.00 | 86.50 |
MaxpH | Maximum pH | 7.99 | 0.66 | 6.44 | 11.65 | |
MedConductivity | Medium conductivity | µS/cm | 926.74 | 240.99 | 256.57 | 1578.82 |
MedFlow | Medium flow | m3/h | 4853.96 | 2404.04 | 2382.21 | 14,195.72 |
Month | Month | 5.51 | 3.19 | 1.00 | 12.00 | |
Week | Week | 22.21 | 14.04 | 1.00 | 52.00 | |
TempExtMed | Medium ambient temperature | °C | 11.80 | 4.53 | 3.10 | 24.60 |
TempExtMax | Maximum ambient temperature | °C | 16.05 | 5.42 | 4.20 | 31.50 |
TempExtMin | Minimum ambient temperature | °C | 8.49 | 4.39 | 0.70 | 19.20 |
DayYear | Day of the year | 151.98 | 98.53 | 2.00 | 363.00 | |
DayWeek | Day of the week | 3.18 | 1.71 | 1.00 | 6.00 | |
MedRH | Medium relative humidity | % | 78.91 | 9.07 | 46.17 | 96.81 |
MaxSolarRadiation | Maximum solar radiation | W/m2 | 44.89 | 79.48 | 0.77 | 532.98 |
AtmosphericPressureMax | Maximum atmospheric pressure | millibars | 1004.52 | 7.85 | 972.41 | 1021.96 |
MaxMedRH | Maximum relative humidity | % | 94.86 | 9.03 | 49.99 | 99.92 |
MinMedRH | Minimum relative humidity | % | 46.84 | 18.41 | 0.00 | 92.14 |
Overall | % |
---|---|
Week | 100 |
DayYear | 98.87 |
PrecipTotal | 93.84 |
MaxpH | 79.2 |
MinMedRH | 76.58 |
MedRH | 63.56 |
TempExtMed | 60.08 |
PDwR | 59.79 |
MedFlow | 54.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateo Pérez, V.; Mesa Fernández, J.M.; Ortega Fernández, F.; Villanueva Balsera, J. Gross Solids Content Prediction in Urban WWTPs Using SVM. Water 2021, 13, 442. https://doi.org/10.3390/w13040442
Mateo Pérez V, Mesa Fernández JM, Ortega Fernández F, Villanueva Balsera J. Gross Solids Content Prediction in Urban WWTPs Using SVM. Water. 2021; 13(4):442. https://doi.org/10.3390/w13040442
Chicago/Turabian StyleMateo Pérez, Vanesa, José Manuel Mesa Fernández, Francisco Ortega Fernández, and Joaquín Villanueva Balsera. 2021. "Gross Solids Content Prediction in Urban WWTPs Using SVM" Water 13, no. 4: 442. https://doi.org/10.3390/w13040442
APA StyleMateo Pérez, V., Mesa Fernández, J. M., Ortega Fernández, F., & Villanueva Balsera, J. (2021). Gross Solids Content Prediction in Urban WWTPs Using SVM. Water, 13(4), 442. https://doi.org/10.3390/w13040442