Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches
Abstract
:1. Introduction
2. Study Area
2.1. Geological and Geomorphological Setting
2.2. Agricultural Terraces
3. Materials and Methods
3.1. Landslides Inventory
3.2. Predisposing Factors
3.3. Landslide Detachment Susceptibility (LDS) Assessment
3.4. Landslide Runout Susceptibility (LDR) Assessment
3.5. Landslide Detachment, Transit and Runout Susceptibility (LDTRS) Assessment
4. Results
4.1. Landslide Detachment Susceptibility (LDS) Assessment
4.2. Landslide Runout Susceptibility (LRS) Assessment
4.3. Landslide Detachment, Transit and Runout Susceptibility (LDTRS) Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
AUROC | Area Under the Receiver Operating Curve |
CA | Committee Averaging |
CLC | Corine Land Cover |
CTNP | Cinque Terre National Park |
DTM | Digital Terrain Model |
EM | Ensemble Model |
GBM | Generalized Boosting Model |
GIS | Geographic Information System |
H | Height |
IFFI | Inventario dei Fenomeni Franosi in Italia (in Italian) |
L | Distance |
LDS | Landslide Detachment Susceptibility |
LDTRS | Landslide Detachment, Transit and Runout Susceptibility |
LRS | Landslide Runout Susceptibility |
LS | Landslide Susceptibility |
MaxEnt | Maximum Entropy |
MI | Maximum Invasion |
ML | Machine Learning |
PF | Predisposing Factor |
PIFF | Punto Identificativo del Fenomeno Franoso (in Italian) |
PM | Mean of Probabilities |
PME | Median of Probabilities |
PMW | Weighted mean of Probabilities |
USCS | Unified Soil Classification System |
VIF | Variance Inflation Factor |
Wmean | Weighted Mean |
References
- Dietrich, W.E.; Reiss, R.; Hsu, M.-L.; Montgomery, D.R. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol. Process. 1995, 9, 383–400. [Google Scholar] [CrossRef]
- Calcaterra, D.; Parise, M.; Palma, B.; Pelella, L. The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In Landslides in Research, Theory and Practice; Conference Proceedings; Thomas Telford Publishing: London, UK, 2000; pp. 209–214. ISBN 978-0-7277-3648-2. [Google Scholar]
- De Vita, P.; Agrello, D.; Ambrosino, F. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping. J. Appl. Geophys. 2006, 59, 126–139. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 1, 3–17. [Google Scholar] [CrossRef]
- De Vita, P.; Napolitano, E.; Godt, J.W.; Baum, R.L. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: Case study from the Somma-Vesuvius area of southern Italy. Landslides 2012, 10. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; Brandolini, P. The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull. Eng. Geol. Environ. 2014, 73, 859–875. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Van Westen, C.J. The Modelling of landslide hazards using GIS. Surv. Geophys. 2000, 21, 241–255. [Google Scholar] [CrossRef]
- Corominas, J.; Copons, R.; Vilaplana, J.M.; Altimir, J.; Amigó, J. Integrated landslide susceptibility analysis and hazard assessment in the Principality of Andorra. Nat. Hazards 2003, 30, 421–435. [Google Scholar] [CrossRef]
- Guadagno, F.M.; Forte, R.; Revellino, P.; Fiorillo, F.; Focareta, M. Some aspects of the initiation of debris avalanches in the Campania Region: The role of morphological slope discontinuities and the development of failure. Geomorphology 2005, 66, 237–254. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Cipolla, F.; Sebastiani, C.; Galli, M.; Salvati, P. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng. Geol. 2004, 73, 229–245. [Google Scholar] [CrossRef]
- Cevasco, A.; Brandolini, P.; Scopesi, C.; Rellini, I. Relationships between geo-hydrological processes induced by heavy rainfall and land-use: The case of 25 October 2011 in the Vernazza catchment (Cinque Terre, NW Italy). J. Maps 2013, 9, 289–298. [Google Scholar]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Bordoni, M.; Galanti, Y.; Bartelletti, C.; Persichillo, M.G.; Barsanti, M.; Giannecchini, R.; Avanzi, G.D.; Cevasco, A.; Brandolini, P.; Galve, J.P.; et al. The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. CATENA 2020, 193, 104630. [Google Scholar] [CrossRef]
- Glade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. CATENA 2003, 51, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Persichillo, M.G.; Bordoni, M.; Meisina, C.; Bartelletti, C.; Giannecchini, R.; Avanzi, G.D.; Galanti, Y.; Cevasco, A.; Brandolini, P.; Galve, J.P.; et al. Shallow landslide susceptibility analysis in relation to land use scenarios. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2016; Volume 8. [Google Scholar]
- Persichillo, M.G.; Bordoni, M.; Meisina, C.; Bartelletti, C.; Barsanti, M.; Giannecchini, R.; Avanzi, G.D.; Galanti, Y.; Cevasco, A.; Brandolini, P.; et al. Shallow landslides susceptibility assessment in different environments. Geomat. Nat. Hazards Risk 2017, 8, 748–771. [Google Scholar] [CrossRef] [Green Version]
- Brandolini, P.; Pepe, G.; Capolongo, D.; Cappadonia, C.; Cevasco, A.; Conoscenti, C.; Marsico, A.; Vergari, F.; Monte, M.D. Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad. Dev. 2018, 29, 3050–3068. [Google Scholar] [CrossRef]
- DeGraff, J.V.; Cannon, S.H.; Gartner, J.E. The timing of susceptibility to post-fire debris flows in the Western United States Post-Fire debris flow timing. Environ. Eng. Geosci. 2015, 21, 277–292. [Google Scholar] [CrossRef]
- Di Napoli, M.; Marsiglia, P.; Di Martire, D.; Ramondini, M.; Ullo, S.L.; Calcaterra, D. Landslide susceptibility assessment of wildfire burnt areas through earth-observation techniques and a machine learning-based approach. Remote Sens. 2020, 12, 2505. [Google Scholar] [CrossRef]
- Fan, L.; Lehmann, P.; McArdell, B.; Or, D. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology 2017, 280, 1–15. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Sepe, C.; Confuorto, P.; Angrisani, A.C.; Di Martire, D.; Di Napoli, M.; Calcaterra, D. Application of a statistical approach to landslide susceptibility map generation in urban settings. In Proceedings of the IAEG/AEG Annual Meeting, San Francisco, CA, USA, 17–21 September 2018; Shakoor, A., Cato, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1, pp. 155–162. [Google Scholar]
- Xiao, T.; Yin, K.; Yao, T.; Liu, S. Spatial prediction of landslide susceptibility using GIS-Based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochim. 2019, 38, 654–669. [Google Scholar] [CrossRef]
- Lombardo, L.; Opitz, T.; Ardizzone, F.; Guzzetti, F.; Huser, R. Space-Time landslide predictive modelling. arXiv 2019, arXiv:1912.01233. [Google Scholar]
- Guinau, M.; Vilajosana, I.; Vilaplana, J.M. GIS-Based debris flow source and runout susceptibility assessment from DEM data? A case study in NW Nicaragua. Nat. Hazards Earth Syst. Sci. 2007, 7, 703–716. [Google Scholar] [CrossRef] [Green Version]
- Kritikos, T. Geomorphic Hazard Analyses in Tectonically-Active Mountains: Application to the Western Southern Alps, New Zealand. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2013. [Google Scholar]
- Melo, R.; Zêzere, J.L. Modeling debris flow initiation and run-out in recently burned areas using data-driven methods. Nat. Hazards 2017, 88, 1373–1407. [Google Scholar] [CrossRef]
- Corominas, J. The angle of reach as a mobility index for small and large landslides. Can. Geotech. J. 1996, 33, 260–271. [Google Scholar] [CrossRef]
- Fannin, R.J.; Wise, M.P. An empirical-statistical model for debris flow travel distance. Can. Geotech. J. 2001, 38, 982–994. [Google Scholar] [CrossRef]
- Scheidl, C.; Rickenmann, D.; McArdell, B.W. Runout prediction of debris flows and similar mass movements. In Landslide Science and Practice: Spatial Analysis and Modelling; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 3, pp. 221–229. ISBN 978-3-642-31310-3. [Google Scholar]
- Hurlimann, M.; Medina, V.; Bateman, A.; Copons, R.; Altimir, J. Comparison of different techniques to analyse the mobility of debris flows during hazard Assessment—Case study in La Comella catchment, Andorra. In Debris-Flow Hazard Mitigation: Mechanics, Prediction and Assessment; Chen, C.L., Major, J.J., Eds.; Millpress: Rotterdam, The Netherlands, 2007; pp. 411–422. [Google Scholar]
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- van Asch, T.W.J.; Tang, C.; Alkema, D.; Zhu, J.; Zhou, W. An integrated model to assess critical rainfall thresholds for run-out distances of debris flows. Nat. Hazards 2014, 70, 299–311. [Google Scholar] [CrossRef]
- Quan Luna, B.; Blahut, J.; van Asch, T.; van Westen, C.; Kappes, M. ASCHFLOW—A dynamic landslide run-out model for medium scale hazard analysis. Geoenviron. Disasters 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Melo, R.; van Asch, T.; Zêzere, J.L. Debris flow run-out simulation and analysis using a dynamic model. Nat. Hazards Earth Syst. Sci. 2018, 18, 555–570. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 1995, 32, 610–623. [Google Scholar] [CrossRef]
- Calcaterra, D.; de Riso, R.; Santo, A. Landslide hazard risk mapping: Experiences from Campania, Italy. In Proceedings of the Conference Fast Slope Movements: Prediction and Prevention for Risk Mitigation, Naples, Italy, 11–13 May 2003; Patron Editore: Bologna, Italy, 2003; Volume 1, pp. 63–70. [Google Scholar]
- Calcaterra, D.; Parise, M.; Strumia, S.; Mazzella, E. Relations between fire, vegetation and landslides in the heavily populated metropolitan area of Naples, Italy. In Proceedings of the 1st North American Landslide Conference, Vail, CO, USA, 3–8 June 2007; Schaefer, V.R., Schuster, R.L., Turner, A.K., Eds.; AEG sp., 23. Association of Environmental & Engineering Geologists: Denver, CO, USA, 2007; pp. 1448–1461. [Google Scholar]
- Calcaterra, D.; Santo, A. The January 10, 1997 Pozzano landslide, Sorrento Peninsula, Italy. Eng. Geol. 2004, 75, 181–200. [Google Scholar] [CrossRef]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk Zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Kritikos, T.; Davies, T. Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western Southern Alps of New Zealand. Landslides 2015, 6, 1051–1075. [Google Scholar] [CrossRef]
- Melo, R.; Zêzere, J.L.; Rocha, J.; Oliveira, S.C. Combining data-driven models to assess susceptibility of shallow slides failure and run-out. Landslides 2019, 16, 2259–2276. [Google Scholar] [CrossRef]
- Mergili, M.; Schwarz, L.; Kociu, A. Combining release and runout in statistical landslide susceptibility modeling. Landslides 2019, 16, 2151–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, A.M.S.; Kang, H.-S.; Lee, S.; Kim, Y.-T. Spatial model integration for shallow landslide susceptibility and its runout using a GIS-Based approach in Yongin, Korea. Geocart. Int. 2017, 32, 420–441. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; Brandolini, P. Geotechnical and stratigraphic aspects of shallow landslides at Cinque Terre (Liguria, Italy). Rend. Online Soc. Geol. Ital. 2013, 24, 52–54. [Google Scholar]
- Cevasco, A.; Diodato, N.; Revellino, P.; Fiorillo, F.; Grelle, G.; Guadagno, F.M. Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment. Sci. Total Environ. 2015, 532, 208–219. [Google Scholar] [CrossRef]
- Raso, E.; Mandarino, A.; Pepe, G.; Di Martire, D.; Cevasco, A.; Calcaterra, D.; Firpo, M. Landslide inventory of the Cinque Terre National Park, Italy. In Proceedings of the IAEG/AEG Annual Meeting, San Francisco, CA, USA, 17–21 September 2018; Shakoor, A., Cato, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1, pp. 201–205. [Google Scholar]
- Abbate, E.; Fanucci, F.; Benvenuti, M.; Bruni, P.; Cipriani, N.; Falorni, P.; Fazzuoli, M.; Morelli, D.; Pandeli, E.; Papini, M.; et al. Carta Geologica D’Italia Alla Scala 1:50.000-Foglio 248-La Spezia Con Note Illustrative; APAT—Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici: Rome, Italy, 2005.
- Terranova, R.; Zanzucchi, G.; Bernini, M.; Brandolini, P.; Campobasso, S.; Faccini, F.; Zanzucchi, F. Geologia, geomorfologia e vini del Parco Nazionale delle Cinque Terre (Liguria, Italia). Boll. Soc. Geol. Ital. 2006, 6, 115–128. [Google Scholar]
- Fannucci, F.; Nosengo, S. Rapporti tra neotettonica e fenomeni morfogenetici del versante marittimo dell’ apennino ligure e del margine continentale. Boll. Soc. Geol. Ital. 1977, 96, 41–51. [Google Scholar]
- Carmignani, L.; Decandia, F.A.; Fantozzi, P.L.; Lazzarotto, A.; Liotta, D.; Meccheri, M. Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 1994, 238, 295–315. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Monte, M.D. Response of terraced slopes to a very intense rainfall event and relationships with land abandonment: A case study from Cinque Terre (Italy). Land Degrad. Dev. 2018, 29, 630–642. [Google Scholar] [CrossRef]
- Raso, E.; Mandarino, A.; Pepe, G.; Calcaterra, D.; Cevasco, A.; Confuorto, P.; Di Napoli, M.; Firpo, M. Geomorphology of Cinque Terre National Park (Italy). J. Maps 2020, 1–14. [Google Scholar] [CrossRef]
- Galanti, Y.; Barsanti, M.; Cevasco, A.; D’Amato Avanzi, G.; Giannecchini, R. Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds. Landslides 2018, 15, 937–952. [Google Scholar] [CrossRef]
- Agenzia Regionale per la Protezione dell’Ambiente Ligure—Centro Funzionale Meteoidrologico di Protezione Civile della Regione Liguria. Uno Tsunami Venuto dai Monti—Provincia della Spezia 25 Ottobre 2011; Rapporto di Evento Meteo-Idrologico; Agenzia Regionale per la Protezione dell’Ambiente Ligure—Centro Funzionale Meteoidrologico di Protezione Civile della Regione Liguria: Genova, Italy, 2012.
- Brandolini, P. The outstanding terraced landscape of the Cinque Terre coastal slopes (Eastern Liguria). In Landscapes and Landforms of Italy; World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 235–244. ISBN 978-3-319-26194-2. [Google Scholar]
- Terranova, R. Aspetti Geomorfologici e Geologico-Ambientali Delle Cinque Terre: Rapporti Con Le Opere Umane (Liguria Orientale); Studi e Ricerche di Geografia: Genova, Italy, 1984; Volume 7, pp. 39–89. [Google Scholar]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Moreno-de-las-Heras, M.; Lindenberger, F.; Latron, J.; Lana-Renault, N.; Llorens, P.; Arnáez, J.; Romero-Díaz, A.; Gallart, F. Hydro-Geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology 2019, 333, 73–91. [Google Scholar] [CrossRef]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. CATENA 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Brandolini, P.; Cevasco, A.; Firpo, M.; Robbiano, A.; Sacchini, A. Geo-Hydrological risk management for civil protection purposes in the urban area of Genoa (Liguria, NW Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 943–959. [Google Scholar] [CrossRef] [Green Version]
- Zingaro, M.; Refice, A.; Giachetta, E.; D’Addabbo, A.; Lovergine, F.; De Pasquale, V.; Pepe, G.; Brandolini, P.; Cevasco, A.; Capolongo, D. Sediment mobility and connectivity in a catchment: A new mapping approach. Sci. Total Environ. 2019, 672, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Cevasco, A.; Brandolini, P. Rapid debris volume estimation by LiDAR data derived DEMs: Applications to the 25 October 2011 debris flood event at Vernazza (Cinque Terre, Italy). ROL 2015, 35. [Google Scholar] [CrossRef]
- Rinaldi, M.; Amponsah, W.; Benvenuti, M.; Borga, M.; Comiti, F.; Lucía, A.; Marchi, L.; Nardi, L.; Righini, M.; Surian, N. An integrated approach for investigating geomorphic response to extreme events: Methodological framework and application to the October 2011 flood in the Magra River catchment, Italy. Earth Surf. Process. Landf. 2016, 41, 835–846. [Google Scholar] [CrossRef]
- Surian, N.; Righini, M.; Lucía, A.; Nardi, L.; Amponsah, W.; Benvenuti, M.; Borga, M.; Cavalli, M.; Comiti, F.; Marchi, L.; et al. Channel response to extreme floods: Insights on controlling factors from six mountain rivers in northern Apennines, Italy. Geomorphology 2016, 272, 78–91. [Google Scholar] [CrossRef]
- Giordan, D.; Cignetti, M.; Godone, D.; Peruccacci, S.; Raso, E.; Pepe, G.; Calcaterra, D.; Cevasco, A.; Firpo, M.; Scarpellini, P.; et al. A new procedure for an effective management of geo-hydrological risks across the “Sentiero Verde-Azzurro” trail, Cinque Terre National Park, Liguria (North-Western Italy). Sustainability 2020, 12, 561. [Google Scholar] [CrossRef] [Green Version]
- Zurada, J.M. Introduction to Artificial Neural Network Systems; West Publishing Company: Eagan, MN, USA, 1992; p. 58. [Google Scholar]
- Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Raso, E.; Cevasco, A.; Martire, D.D.; Pepe, G.; Scarpellini, P.; Calcaterra, D.; Firpo, M. Landslide-Inventory of the Cinque Terre National Park (Italy) and quantitative interaction with the trail network. J. Maps 2019, 15, 818–830. [Google Scholar] [CrossRef] [Green Version]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and Mitigation. Chapter 3—Landslide Types and Processes; Transportation Research Board Special Report; National Academies of Sciences, Engineering and Medicine: Washington, DC, USA, 1996. [Google Scholar]
- Hungr, O.; Leroucil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Rischia, I. Metodologia di Lavoro e Struttura Della Banca Dati; ISPRA—Italian National Institute for Environmental Protection and Research: Rome, Italy, 2007; p. 28. (In Italian)
- Revellino, P.; Guadagno, F.; Hungr, O. Morphological methods and dynamic modelling in landslide hazard assessment of the Campania Apennine carbonate slope. Landslides 2008, 5, 59–70. [Google Scholar] [CrossRef]
- Sadr, M.P.; Maghsoudi, A.; Saljoughi, B.S. Landslide susceptibility mapping of komroud sub-basin using Fuzzy logic approach. Geodyn. Res. Int. Bull. 2014, 2, XVI–XXVIII. [Google Scholar]
- Chen, W.; Shirzadi, A.; Shahabi, H.; Ahmad, B.B.; Zhang, S.; Hong, H.; Zhang, N. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomat. Nat. Hazards Risk 2017, 8, 1955–1977. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Soldati, M. Assessment of Shallow landslide risk mitigation measures based on land use planning through probabilistic modelling. Landslides 2015, 12, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Piacentini, D.; Azañón, J.M.; Notti, D.; Soldati, M. Cost-Based analysis of mitigation measures for shallow-landslide risk reduction strategies. Eng. Geol. 2016, 213, 142–157. [Google Scholar] [CrossRef]
- Schilirò, L.; Cevasco, A.; Esposito, C.; Mugnozza, G.S. Shallow landslide initiation on terraced slopes: Inferences from a physically based approach. Geomat. Nat. Hazards Risk 2018, 9, 295–324. [Google Scholar] [CrossRef] [Green Version]
- Pepe, G.; Mandarino, A.; Raso, E.; Scarpellini, P.; Brandolini, P.; Cevasco, A. Investigation on farmland abandonment of terraced slopes using multitemporal data sources comparison and its implication on hydro-geomorphological processes. Water 2019, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Promper, C.; Puissant, A.; Malet, J.-P.; Glade, T. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Gariano, S.L.; Rianna, G.; Petrucci, O.; Santini, M.; Guzzetti, F. Regional-Scale evaluation of past and future impacts of climate and environmental changes in rainfall-induced landslide occurrence. In Proceedings of the European Geosciences Union General Assembly 2018, Vienna, Austria, 8–13 April 2018; Volume 20, p. 12272. [Google Scholar]
- Wang, S.-C. Artificial neural network. In Interdisciplinary Computing in Java Programming; The Springer International Series in Engineering and Computer Science; Wang, S.-C., Ed.; Springer: Boston, MA, USA, 2003; pp. 81–100. ISBN 978-1-4615-0377-4. [Google Scholar]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Park, S.; Kim, J. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl. Sci. 2019, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, F.; Angrisani, A.C.; Bakthiari, A.; Carratù, M.T.; Di Martire, D.; Finicelli, G.F.; Raia, P.; Calcaterra, D. A new statistical approach for landslide susceptibility assessment in the urban area of Napoli (Italy). In Advancing Culture of Living with Landslides; Mikos, M., Tiwari, B., Yin, Y., Sassa, K., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 881–889. [Google Scholar]
- Raso, E.; Di Martire, D.; Cevasco, A.; Calcaterra, D.; Scarpellini, P.; Firpo, M. Evaluation of prediction capability of the MaxEnt and frequency ratio methods for landslide susceptibility in the Vernazza catchment (Cinque Terre, Italy). In Applied Geology: Approaches to Future Resource Management; De Maio, M., Tiwari, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 299–316. ISBN 978-3-030-43953-8. [Google Scholar]
- Di Napoli, M.; Bausilio, G.; Cevasco, A.; Confuorto, P.; Mandarino, A.; Calcaterra, D. Landslide susceptibility assessment by ensemble-based machine learning models. In Understanding and Reducing Landslide Disaster Risk; From Mapping to Hazard and Risk Zonation;ICL Contribution to Landslide Disaster Risk Reduction; Guzzetti, F., Arbanas, S.M., Reichenbach, P., Sassa, K., Bobrowsky, P.T., Takara, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 2, pp. 225–231. ISBN 978-3-030-60227-7. [Google Scholar]
- Naimi, B.; Araújo, M.B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Education Inc.: New Jersey, NJ, USA, 2010. [Google Scholar]
- Beguería, S. Validation and evaluation of predictive models in hazard assessment and risk management. Nat. Hazards 2006, 3, 315–329. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F. Biomod2: Ensemble Platform for Species Distribution Modeling. 2016. Available online: https://cran.r-project.org/web/packages/biomod2/biomod2.pdf (accessed on 11 February 2021).
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fressard, M.; Thiery, Y.; Maquaire, O. Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat. Hazards Earth Syst. Sci. 2014, 569–588. [Google Scholar] [CrossRef] [Green Version]
- Jenks, G.F. The data model concept in statistical mapping. In International Yearbook of Cartography 7; Israel National Center Registry: Jerusalem, Israel; International Cartographic Association: Bern, Switzerland; University of Ulm: Ulm, Germany, 1967; pp. 186–190. [Google Scholar]
- Heim, A. Bergsturz und Menschenleben; Fretz&Wasmuth: Zurich, Switzerland, 1932. [Google Scholar]
- Terzaghi, K. Mechanisms of Landslides; Geological Society of America: Berkley, CA, USA, 1950; Volume 83, pp. 83–123. [Google Scholar]
- Hungr, O.; Fell, R.; Couture, R.; Eberhardt, E. Landslide Risk Management; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-1-4398-3371-1. [Google Scholar]
- Hsu, K.J. Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 1975, 86, 129–140. [Google Scholar] [CrossRef]
- Sarno Basin Authority Hydrogeological Setting Plan (Update). General Technical Report with Reference to the Geological and Geomorphological Aspects of the Territories in the Province of Naples. 2011. Available online: https://www.distrettoappenninomeridionale.it/ (accessed on 11 February 2021).
- Jurgiel, B.; Verchere, P.; Tourigny, E. Becerra Profile Tool, QGIS Python Plugins Repository. 2020. Available online: https://plugins.qgis.org/plugins/stable/?sort=created_on&per_page=186&page=1 (accessed on 11 February 2021).
- Di Martire, D.; De Rosa, M.; Pesce, V.; Santangelo, M.A.; Calcaterra, D. Landslide hazard and land management in high-density urban areas of Campania region, Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 905–926. [Google Scholar] [CrossRef] [Green Version]
- Calcaterra, D.; Parise, M.; Palma, B.; Pelella, L. Multiple debris-flows in volcaniclastic materials mantling carbonate slopes. In Proceedings of the 2nd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Taipei, Taiwan, 16–18 August 2000; pp. 99–107. [Google Scholar]
- Aronica, G.T.; Brigandı, G.; Morey, N. Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: The case of the Giampilieri catchment. Nat. Hazards Earth Syst. Sci. 2012, 12, 15. [Google Scholar] [CrossRef]
- Lombardo, L.; Bachofer, F.; Cama, M.; Märker, M.; Rotigliano, E. Exploiting maximum entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy). Earth Surf. Process. Landf. 2016, 41, 1776–1789. [Google Scholar] [CrossRef] [Green Version]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G.; Giannecchini, R. A study on the 10 November 2014 intense rainfall and the related landslides in the lower Lavagna valley (eastern Liguria). ROL 2015, 35, 66–69. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G. Preliminary analysis of the November 10, 2014 rainstorm and related landslides in the lower Lavagna valley (Eastern Liguria). Ital. J. Eng. Geol. Environ. 2017, 5–15. [Google Scholar] [CrossRef]
- Roccati, A.; Faccini, F.; Luino, F.; Turconi, L.; Guzzetti, F. Rainfall events with shallow landslides in the Entella catchment, Liguria, Northern Italy. Nat. Hazards Earth Syst. Sci. 2018, 18, 2367–2386. [Google Scholar] [CrossRef] [Green Version]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Morshed Varzandeh, M.H. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. CATENA 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Turan, I.D.; Özkan, B.; Türkeş, M.; Dengiz, O. Landslide susceptibility mapping for the Black Sea Region with spatial fuzzy multi-criteria decision analysis under semi-humid and humid terrestrial ecosystems. Theor. Appl. Climatol. 2020, 140, 1233–1246. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; Water Resources Monograph; American Geophysical Union: Washington, DC, USA, 2006; ISBN 978-0-87590-322-4. [Google Scholar]
- Calcaterra, D.; Parise, M.; Palma, B. Combining historical and geological data for the assessment of the landslide hazard: A case study from Campania, Italy. Nat. Hazards Earth Syst. Sci. 2003, 3, 3–16. [Google Scholar] [CrossRef] [Green Version]
Predisposing Factors | Variance Inflation Factor | Variable Importance (Wmean) | Values between 0 and 100 (%) |
---|---|---|---|
Slope angle | 1.94 | 0.22 | 58 |
Slope aspect | 1.02 | 0.24 | 63 |
Profile curvature | 1.35 | 0.04 | 10 |
Planform curvature | 1.54 | 0.12 | 32 |
Degree of abandonment of agricultural terraces | 1.39 | 0.38 | 100 |
Distance to road | 1.18 | 0.02 | 5 |
Distance to river | 1.28 | 0.01 | 3 |
Geology | 1.36 | 0.04 | 10 |
Land Use | 1.14 | 0.06 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Napoli, M.; Di Martire, D.; Bausilio, G.; Calcaterra, D.; Confuorto, P.; Firpo, M.; Pepe, G.; Cevasco, A. Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches. Water 2021, 13, 488. https://doi.org/10.3390/w13040488
Di Napoli M, Di Martire D, Bausilio G, Calcaterra D, Confuorto P, Firpo M, Pepe G, Cevasco A. Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches. Water. 2021; 13(4):488. https://doi.org/10.3390/w13040488
Chicago/Turabian StyleDi Napoli, Mariano, Diego Di Martire, Giuseppe Bausilio, Domenico Calcaterra, Pierluigi Confuorto, Marco Firpo, Giacomo Pepe, and Andrea Cevasco. 2021. "Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches" Water 13, no. 4: 488. https://doi.org/10.3390/w13040488
APA StyleDi Napoli, M., Di Martire, D., Bausilio, G., Calcaterra, D., Confuorto, P., Firpo, M., Pepe, G., & Cevasco, A. (2021). Rainfall-Induced Shallow Landslide Detachment, Transit and Runout Susceptibility Mapping by Integrating Machine Learning Techniques and GIS-Based Approaches. Water, 13(4), 488. https://doi.org/10.3390/w13040488