An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping
Abstract
:1. Introduction
- Explore the links between aspects and processes involved in the internal dynamic of the aquifer when affecting by perturbation.
- Analyze the relationship between lag time and aquifer’s resilience.
- Propose a theoretical methodological framework to understand the resilience in terms of definition, problem parametrization, modelling and measurement.
- Apply the procedure to a specific example from the literature
2. Aquifer Systems and Buffering Capacity
2.1. Self-Regulating Capacity of Aquifers Affected by Groundwater Extraction
2.2. Factors Contributing to Aquifer Resilience across Different Scales
2.3. Factors Controlling Internal Changes in Groundwater Flow Systems (GFS)
2.3.1. Water Extraction and Hydraulic Heads
2.3.2. Water Quantity Parameters and Processes Affected by Groundwater Extraction
2.3.3. Water Quality Parameters and Processes Affected by Groundwater Extraction
3. Materials and Methods
3.1. Procedure to Decompose Resilience
3.1.1. Aquifer Resilience: From What Disturbance to What System
- Event: any episode with the capacity to modify aquifer dynamics.
- Reaction/shock: the physical response to a sudden, unexpected event.
- Perturbation: a small change in the regular behavior of an object or system.
- Stress: an important effect produced by a situation that tends to negatively change the condition of a system.
- Impact: a powerful effect incurred by something (especially new) on a system´s behavior.
3.1.2. System Conceptualization
3.1.3. Types of System Responses
3.1.4. Cause/Effect Characterization
3.1.5. Definition of the Descriptive Variable
3.1.6. Aquifer Resilience Measurement
3.2. Case Study
Aquifer Development
4. Results and Discussion
4.1. Identifying the Most Relevant Variables
4.2. Identification of Thresholds and Lag Time
4.3. Aquifer Resilience and Groundwater Sustainability Management
- Even though the aquifer’s development could potentially be in an advanced state (perhaps in the regime 3 Figure 2), there are not changes in the aquifer skeleton which could cause subsidence problems.
- The different degree of exploitation or development of wells in some sectors, compared to others in the same aquifer, can generate a compartmentalization in its hydrodynamic operation, observing, for example, different piezometric trends in different sectors for the same time period. This could be interpreted as different states of equilibrium for the same time period.
4.4. Limitations and Needs of Further Research
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- SKM. Atlas of Groundwater Dependent Ecosystems. Ecosystems (GDE Atlas), Phase 2. Task 5 Report: Identifying and Mapping GDEs; Australian Government, National Water Commission, CSIRO and SKM: Melbourne, Australia, 2012. Available online: http://www.bom.gov.au/water/groundwater/dge/map.shtml (accessed on 2 February 2020).
- Martínez-Santos, P.; Castaño-Castaño, S.; Hernández-Espriú, A. Revisiting groundwater overdraft based on the experience of the Mancha Occidental Aquifer, Spain. Hydrogeol. J. 2018, 26, 1083–1097. [Google Scholar] [CrossRef]
- Custodio, E. Aquifer overexploitation: What does it mean? Hydrogeol. J. 2002, 10, 254–277. [Google Scholar] [CrossRef]
- Llamas, M.R.; Custodio, E. Intensive use of groundwater: A new situation which demands proactive action. In Intensive Use of Groundwater, Challenges and Opportunities; Llamas, R., Custodio, E., Eds.; Instituto Geológico y Minero de España, Generalitat Valenciana, Fundación Marcelino Botín, A.A. Balkema Publishers: Avereest, The Netherlands, 2003; pp. 13–31. [Google Scholar]
- MASE. Aspectos Hidrológicos, Ambientales, Económicos, Sociales y éticos del Consumo de Reservas de Agua Subterránea en España: Minería del Agua Subterránea en España; [Hydrogeological, Environmental, Economic, Social and Ethical Aspects of Groundwater Reserves Consumption in Spain]; MASE, 2015; pp. 1–490. Available online: https://h2ogeo.upc.edu/images/pdf/proyectos/Empresas/Informe_MASE.pdf (accessed on 2 February 2021).
- Loftis, J.C. Trends in groundwater quality. Hydrol. Process. 1996, 10, 335–355. [Google Scholar] [CrossRef]
- Luczaj, J.A.; Maas, J.; Hart, D.J.; Odekirk, J. Aquifer Drawdown and Recovery in the Northeast Groundwater Management Area, Wisconsin, USA: A Century of Groundwater Use. Geoscience 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Gejl, R.; Rygaard, M.; Henriksen, H.; Rasmussen, J.; Bjerg, P. Understanding the impacts of groundwater abstraction through long-term trends in water quality. Water Res. 2019, 156, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef] [Green Version]
- Tóth, J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. J. 1999, 7, 1–14. [Google Scholar] [CrossRef]
- Harvey, T.M.; Arnaud, E.; Meyer, J.R.; Steelman, C.M.; Parker, B.L. Characterizing scales of hydrogeological heterogeneity in ice-marginal sediments in Wisconsin, USA. Hydrogeol. J. 2019, 27, 1949–1968. [Google Scholar] [CrossRef]
- Hinsby, K.; Troldborg, L.; Purtschert, R.; Corcho Alvarado, J.A. Integrated Dynamic Modelling of Tracer Transport and Long Term Groundwater/Surface Water Interaction using four 30 Year 3H Time Series and Multiple Tracers for Groundwater Dating; International Atomic Energy Agency (IAEA): Vienna, Austria, 2006; pp. 73–95. [Google Scholar]
- Henriksen, H.; Troldborg, L.; Højberg, A.L.; Refsgaard, J.C. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater–surface water model. J. Hydrol. 2008, 348, 224–240. [Google Scholar] [CrossRef]
- Custodio, E. Recarga Natural a los Acuíferos, Metodología y Soporte de la Isotopía del Agua. Aplicación a la Planificación Hidrológica y Conocimiento de las Aguas Subterráneas en España [Natural Recharge to Aquifers, Methodology and Support of Water Isotopy. Application to Hydrological Planning and Knowledge of Groundwater in Spain]; Report RAEMIA; CETAQUA, UPC, SUEZ: Cornellà de Llobregat, Spain, 2019. [Google Scholar]
- Sophocleous, M. Environmental implications of intensive use with special regard to streams and wetlands. In Intensive Use of Groundwater, Challenges and Opportunities; Llamas, R., Custodio, E., Eds.; Instituto Geológico y Minero de España, Generalitat Valenciana, Fundación Marcelino Botín; A.A. Balkema Publishers: Avereest, The Netherlands, 2003; pp. 93–112. [Google Scholar]
- Holman, I.P.; Allen, D.M.; Cuthbert, M.O.; Goderniaux, P. Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol. J. 2011, 20, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P. Aquifer Dynamics and Resilience Review; MDC Technical Report No: 12-001; Malborough District Council: Blenheim, New Zealand, 2012. Available online: https://www.marlborough.govt.nz/repository/libraries/id:1w1mps0ir17q9sgxanf9/hierarchy/Documents/Environment/Groundwater/Groundwater%20Reports%202012%20List/AquiferReslienceReport2012.pdf (accessed on 2 February 2020).
- Lapworth, D.J.; Macdonald, A.M.; Tijani, M.N.; Darling, G.; Gooddy, D.C.; Bonsor, H.C.; Araguás-Araguás, L.J. Residence times of shallow groundwater in West Africa: Implications for hydrogeology and resilience to future changes in climate. Hydrogeol. J. 2013, 21, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, H.J.; Refsgaard, J.C. Sustainable Groundwater Abstraction—A Review Report; Danmarks og Groenlands Geolo-giske Undersogelse Rapport 2013/30; GEUS: Copenhagen, Denmark, 2013; Available online: https://www.miljoeogressourcer.dk/filer/lix/4048/Sustainable_groundwater_abstraction__GEUS_.pdf (accessed on 2 February 2021).
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef] [Green Version]
- Gejl, R.; Bjerg, P.; Henriksen, H.; Hauschild, M.; Rasmussen, J.; Rygaard, M. Integrating groundwater stress in life-cycle assessments—An evaluation of water abstraction. J. Environ. Manag. 2018, 222, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. Water balance of global aquifers revealed by groundwater footprint. Nat. Cell Biol. 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Thomas, B.F. Sustainability indices to evaluate groundwater adaptive management: A case study in California (USA) for the Sustainable Groundwater Management Act. Hydrogeol. J. 2018, 27, 239–248. [Google Scholar] [CrossRef]
- MEA. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- SNEA. Ecosystems and Biodiversity for Human Wellbeing. Spanish National Ecosystem Assessment. Synthesis of Key Findings; Fundación Biodiversidad, Ministerio de Agricultura, Alimentación y Medio Ambiente de España: Madrid, Spain, 2014; Available online: www.Ecomilenio.es (accessed on 5 February 2020).
- Grey, D.; Sadoff, C.W. Sink or Swim? Water security for growth and development. Hydrol. Res. 2007, 9, 545–571. [Google Scholar] [CrossRef]
- Falkenmark, M.; Wang-Erlandsson, L.; Rockström, J. Understanding of water resilience in the Anthropocene. J. Hydrol. 2019, 2, 100009. [Google Scholar] [CrossRef]
- Prathapar, S.A. Quantifying resilience of aquifer. In Proceedings of the IAH Canberra, Canberra, Australia, 14 April 2016; Available online: https://www.researchgate.net/publication/301294416_Quantifying_Resilience_of_Aquifers (accessed on 9 February 2020).
- Foster, S.; Macdonald, A.M. The ‘water security’ dialogue: Why it needs to be better informed about groundwater. Hydrogeol. J. 2014, 22, 1489–1492. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Land and Ecosystems (WLE) CGIAR Research Program on Water; Sri Lanka International Water Management Institute Colombo. Building Resilience through Sustainable Groundwater Use; International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE): Colombo, Sri Lanka, 2017. [Google Scholar]
- Galassi, D.M.P.; Lombardo, P.; Fiasca, B.; Di Cioccio, A.; Di Lorenzo, T.; Petitta, M.; Di Carlo, P. Earthquakes trigger the loss of groundwater biodiversity. Sci. Rep. 2015, 4, 6273. [Google Scholar] [CrossRef] [PubMed]
- USGS. Confined and Unconfined Aquifers Respond Differently to Pumping; USGS: Reston, VA, USA, 2001; 14p. Available online: https://pubs.usgs.gov/circ/circ1186/pdf/boxa.pdf (accessed on 8 April 2020).
- Al-Badran, Y.; Schanz, T. Modelling the compaction curve of fine-grained soils. Soils Found. 2014, 54, 426–438. [Google Scholar] [CrossRef]
- Chapman, R.E. Chapter 3. Compaction of Sediment and Sedimentary Rocks and its Consequences. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- López Gutiérrez, J.; García Menéndez, O.; Ballesteros Navarro, B.J.; Díaz Losada, E. Resultados preliminares sobre el origen del la presencia de mercurio en el acuífero de la Plana de Castellón (España). In Proceedings of the International workshop: From Data Gathering and Groundwater Modelling to Integrated Management, Alicante, Spain, 4–8 October 2005. [Google Scholar]
- IGME. Evaluación del Riesgo de Contaminación de las Aguas Subterráneas por Metales Pesados en el Acuífero de la Plana de Castellón (España); Aplicación al Caso del Mercurio; Sistema de Información Documental del IGME. SID Code 63389; Instituto Geológico y Minero de España: Madrid, Spain, 2007; Volume 2, documentos inéditos. [Google Scholar]
- Dakos, V.; Carpenter, S.R.; Van Nes, E.H.; Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130263. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, M. Retracted: On Understanding and Predicting Groundwater Response Time. Ground Water 2011, 50, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Cook, P.G.; Lamontagne, S. Assessing and Protecting Water Requirements for Groundwater Dependent Ecosystems; Hydrological Society of South Australia. The Science of Environmental Water Requirements in South Australia, Seminar Proceedings; Hydrological Society of South Australia: Australian Government: Adelaide, Australia, 2002; pp. 49–54. [Google Scholar]
- Mitchell, T.; Harris, K. Resilience: A Risk Management Approach; Overseas Development Institute (ODI): London, UK, 2012; Available online: https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/7552.pdf (accessed on 5 February 2020).
- Custodio, E.; Cabrera, M.D.C.; Poncela, R.; Puga, L.-O.; Skupien, E.; Del Villar, A. Groundwater intensive exploitation and mining in Gran Canaria and Tenerife, Canary Islands, Spain: Hydrogeological, environmental, economic and social aspects. Sci. Total. Environ. 2016, 557, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, P.R.; Rohde, M.M.; Sheldon, E. Structures and stratigraphy of Danian limestone, eastern Sjælland, Denmark. Geol. Surv. Den. Greenl. Bull. 1969, 38, 21–24. [Google Scholar] [CrossRef]
- Appelo, C.A.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: Boca Raton, FL, USA, 2005; Volume 2. [Google Scholar]
- Llamas, M.R.; Martínez-Santos, P.; de la Hera, A. The manifold dimensions of groundwater sustainability: An overview. In The Global Importance of Groundwater in the 21st Century: Proceedings of the International Symposium on Groundwater Sustainability, Alicante, Spain, 24–27 January 2006; Ragone, S., de la Hera, Á., Hernández-Mora, N., Bergkamp, G., McKay, J., Eds.; National Groundwater Association: Westerville, OH, USA, 2007; Volume 3, pp. 105–116. [Google Scholar]
- Vrba, J.; Renaud, F.G. Overview of groundwater for emergency use and human security. Hydrogeol. J. 2016, 24, 273–276. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Angeler, D.G.; Fried-Petersen, H.B.; Allen, C.R.; Garmestani, A.; Twidwell, D.; Chuang, W.-C.; Donovan, V.M.; Eason, T.; Roberts, C.P.; Sundstrom, S.M.; et al. Adaptive capacity in ecosystems. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 60, pp. 1–24. [Google Scholar]
- Hillebrand, H.; Donohue, I.; Harpole, W.S.; Hodapp, D.; Kucera, M.; Lewandowska, A.M.; Merder, J.; Montoya, J.M.; Freund, J.A. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 2020, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
Scale | Factor |
---|---|
Minerals | Chemical components |
Structure | |
Lithology | Formation texture |
Composition | |
Position | |
Structural features | |
Thickness | |
Aquifer | Hydrodynamic type of aquifer (unconfined, semi/confined) |
Lithological type of aquifer (karstic, detrital, mix) | |
Heterogeneity and anisotropy (related to intrinsic properties of the aquifer) | |
Groundwater level position | |
Aquifer storage volume | |
Recharge |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hera-Portillo, Á.d.l.; López-Gutiérrez, J.; Mayor, B.; López-Gunn, E.; Henriksen, H.J.; Gejl, R.N.; Zorrilla-Miras, P.; Martínez-Santos, P. An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping. Water 2021, 13, 519. https://doi.org/10.3390/w13040519
Hera-Portillo Ádl, López-Gutiérrez J, Mayor B, López-Gunn E, Henriksen HJ, Gejl RN, Zorrilla-Miras P, Martínez-Santos P. An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping. Water. 2021; 13(4):519. https://doi.org/10.3390/w13040519
Chicago/Turabian StyleHera-Portillo, África de la, Julio López-Gutiérrez, Beatriz Mayor, Elena López-Gunn, Hans Jørgen Henriksen, Ryle Nørskov Gejl, Pedro Zorrilla-Miras, and Pedro Martínez-Santos. 2021. "An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping" Water 13, no. 4: 519. https://doi.org/10.3390/w13040519
APA StyleHera-Portillo, Á. d. l., López-Gutiérrez, J., Mayor, B., López-Gunn, E., Henriksen, H. J., Gejl, R. N., Zorrilla-Miras, P., & Martínez-Santos, P. (2021). An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping. Water, 13(4), 519. https://doi.org/10.3390/w13040519