Stable Carbon and Sulfur Isotope Characteristics of Stream Water in a Typical Karst Small Catchment, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling
- School (25°14′05″ N, 108°01′51″ E, H 542 m.a.s.l), well.
- Liming (25°13′28″ N, 108°01′25″ E, H 554 m.a.s.l), spring.
- Village (25°13′53″ N, 108°01′02″ E, H 602 m.a.s.l), spring.
- Upstream (25°13′07″ N, 108°00′24″ E, H 560 m.a.s.l), river water.
- Midstream (25°13′21″ N, 108°00′52″ E, H 539 m.a.s.l), river water.
- Downstream (25°13′48″ N, 108°01′34″ E, H 529 m.a.s.l), river water.
2.3. Analytical Procedure
3. Results
3.1. Variations in Physico-Chemical Data of Water Samples
3.2. Temporal and Spatial Variation of C and S Isotope Compositions
4. Discussion
4.1. Seasonal and Spatial Variations of the Solutes
4.2. Carbon Evolution and Controlling Factor
4.3. Sulfur Isotope and Controlling Factor
4.4. Interaction between Sulfuric Acid and Carbon Isotope of DIC in Water
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaillardet, J.; Dupre, B.; Louvat, P.; Allegre, C.J. Global silicate weathering and co2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Berner, R.A.; Kothavala, Z. GEOCARB III: A revised model of atmospheric co2 over phanerozoic time. Am. J. Sci. 2001, 301, 182–204. [Google Scholar] [CrossRef]
- Meybeck, M. Global chemical-weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Berner, R.A.; Lasaga, A.C.; Garrels, R.M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am. J. Sci. 1983, 283, 641–683. [Google Scholar] [CrossRef]
- Amiotte, A.P.; Aubert, D.; Probst, J.L.; Gauthier-Lafaye, F.; Probst, A.; Andreux, F.; Viville, D. Δ13c pattern of dissolved in-organic carbon in a small granitic catchment: The strengbach case study (Vosges mountains, France). Chem. Geol. 1999, 159, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Aucour, A.M.; Sheppard, S.M.F.; Guyomar, O.; Wattelet, J. Use of δ13c to trace origin and cycling of inorganic carbon in the Rhône river system. Chem. Geol. 1999, 159, 87–105. [Google Scholar] [CrossRef]
- Telmer, K.; Veizer, J. Carbon fluxes, pco2 and substrate weathering in a large northern river basin, Canada: Carbon isotope perspectives. Chem. Geol. 1999, 159, 61–86. [Google Scholar] [CrossRef]
- Helie, J.F.; Hillaire-Marcel, C.; Rondeau, B. Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the st. Lawrence river—Isotopic and chemical constraint. Chem. Geol. 2002, 186, 117–138. [Google Scholar] [CrossRef]
- Hitchon, B.; Krouse, H.R. Hydrogeochemistry of the surface waters of the Mackenzie river drainage basin, Canada—III. Stable isotopes of oxygen, carbon and sulphur. Geochim. Cosmochim. Acta 1972, 36, 1337–1357. [Google Scholar] [CrossRef]
- Regnier, P.; Friedlingstein, P.; Ciais, P.; Mackenzie, F.T.; Gruber, N.; Janssens, I.A.; Laruelle, G.G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 2013, 6, 597–607. [Google Scholar] [CrossRef]
- Ghezzi, L.; Iaccarino, S.; Carosi, R.; Montomoli, C.; Simonetti, M.; Paudyal, K.R.; Cidu, R.; Petrini, R. Water quality and solute sources in the Marsyangdi river system of higher Himalayan range (West-central Nepal). Sci. Total Environ. 2019, 677, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.A.; Aherne, J.; Gay, D.A.; Lehmann, C.M.B. Acid rain and its environmental effects: Recent scientific advances preface. Atmos. Environ. 2016, 146, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Calmels, D.; Gaillardet, J.; Brenot, A.; France-Lanord, C. Sustained sulfide oxidation by physical ersion processes in the Mackenzie river basion: Climatic perpectives. Geology 2007, 35, 1003–1006. [Google Scholar] [CrossRef]
- Spence, J.; Telmer, K. The role of sulfur in chemical weathering and atmospheric co2 fluxes: Evidence from major ions, d13cdic, and d34sso4 in rivers of the Canadian cordillera. Geochim. Cosmochim. Acta 2005, 69, 5441–5458. [Google Scholar] [CrossRef]
- Liu, J.; Han, G. Major ions and delta(34)sso4 in Jiulongjiang river water: Investigating the relationships between natural chemical weathering and human perturbations. Sci. Total Environ. 2020, 724, 138208. [Google Scholar] [CrossRef] [PubMed]
- Li, S.L.; Calmels, D.; Han, G.; Gaillardet, J.; Liu, C.Q. Sulfuric acid as an agent of carbonate weathering constrained by delta c-13(dic): Examples from Southwest China. Earth Planet. Sci. Lett. 2008, 270, 189–199. [Google Scholar] [CrossRef]
- Karim, A.; Veizer, J. Weathering processes in the indus river basin: Implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem. Geol. 2000, 170, 153–177. [Google Scholar] [CrossRef]
- Han, G.L.; Tang, Y.; Wu, Q.X.; Liu, M.; Wang, Z.R. Assessing contamination sources by using sulfur and oxygen isotopes of sulfate ions in Xijiang river basin, Southwest China. J. Environ. Qual. 2019, 48, 1507–1516. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, C.H.; Chen, H.S.; Yue, Y.M.; Zhang, W.; Zhang, M.Y.; Qi, X.K.; Fu, Z.Y. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Han, G.L.; Tang, Y.; Wu, Q.X.; Tan, Q. Chemical and strontium isotope characterization of rainwater in karst virgin forest, Southwest China. Atmos. Environ. 2010, 44, 174–181. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.L.; Wu, Q.X.; Tang, Y. Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agric. Ecosyst. Environ. 2020, 290, 106782. [Google Scholar] [CrossRef]
- Han, G.L.; Li, F.S.; Tang, Y. Variations in soil organic carbon contents and isotopic compositions under different land uses in a typical karst area in Southwest China. Geochem. J. 2015, 49, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Han, G. Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J. Geochem. Explor. 2017, 176, 114–119. [Google Scholar] [CrossRef]
- Atekwana, E.A.; Krishnamurthy, R.V. Seasonal variations of dissolved inorganic carbon and δ13c of surfacewaters: Application of a modified gas evolution technique. J. Hydrol. 1998, 205, 265–278. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Allegre, C.J.; Negrel, P. Chemical and physical denudation in the Amazon river basin. Chem. Geol. 1997, 142, 141–173. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Han, G.L.; Liu, C.Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Jiang, H.; Li, W.J.; Zhao, T.; Sun, H.G.; Xu, Z.F. Water geochemistry of rivers draining karst-dominated regions, Guangxi province, South China: Implications for chemical weathering and role of sulfuric acid. J. Asian Earth Sci. 2018, 163, 152–162. [Google Scholar] [CrossRef]
- Han, G.L.; Li, F.S.; Tan, Q. Effects of land use on water chemistry in a river draining karst terrain, Southwest China. Hydrol. Sci. J. 2014, 59, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.B.; Qin, X.Q.; Liu, P.Y.; Zhang, L.K.; Su, C.T. Influence of sulfuric acid to karst hydrochemical and δ13cdic in the upper and middle reaches of the Wujiang river. Huanjing Kexue 2015, 36, 3220–3229. [Google Scholar]
- Han, G.L.; Song, Z.L.; Tang, Y.; Wu, Q.X.; Wang, Z.R. Ca and sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations. Atmos. Environ. 2019, 214, 116854. [Google Scholar] [CrossRef]
- Wu, Q.; Han, G.; Li, F.; Tang, Y. Characteristic and source analysis of major ions in Nanpanjiang and Beipanjiang at the upper Pearl river during the wet season. Environ. Chem. 2015, 34, 1289–1296. [Google Scholar]
- Millot, R.; Gaillardet, J.; Dupre, B.; Allegre, C.J. The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian shield. Earth Planet. Sci. Lett. 2002, 196, 83–98. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, C.Q.; Tao, F.X.; Lang, Y.C.; Han, G.L. Chemical and stable carbon isotopic compositions of the ground waters of Guiyang city, China: Implications for biogeochemical cycle of carbon and contamination. Geochimica 2004, 87, 375–381. [Google Scholar]
- Cerling, T.E.; Harris, J.M.; MacFadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V.; Ehleringer, J.R. Global vegetation change through the miocene/pliocene boundary. Nature 1997, 389, 153–158. [Google Scholar] [CrossRef]
- Han, G.L.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.M.; Yu, C.X.; Wang, H.L.; Song, Z.L. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Liu, T.Z.; Liu, C.Q.; Lang, Y.C.; Ding, H. Dissolved organic carbon and its carbon isotope compositions in hill slope soils of the karst area of Southwest China: Implications for carbon dynamics in limestone soil. Geochem. J. 2014, 48, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Liu, Z.H.; Li, H.C.; Zeng, C.; Yang, R.; Chen, B.; Yan, H. Response of dissolved inorganic carbon (dic) and delta c-13(dic) to changes in climate and land cover in Southwest China karst catchments. Geochim. Cosmochim. Acta 2015, 165, 123–136. [Google Scholar] [CrossRef]
- Jiao, S.L.; Tao, Z.; Gao, Q.Z.; Liu, K.; She, J.W.; Ding, J.; Liu, Z.F. Stable isotopic composition of riverine dissolved inorganic carbon of the Xijiang river inner estuary. J. Geogr. Sci. 2008, 18, 363–372. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, C.Q.; Li, J.; Lang, Y.C.; Ding, H.; Li, L.B. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints. Chem. Geol. 2010, 277, 301–309. [Google Scholar] [CrossRef]
- Li, X.D.; Liu, C.Q.; Liu, X.L.; Bao, L.R. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weahtering using dual-isotopic data from the Jialing river, Southwest China. J. Asian Earth Sci. 2011, 42, 370–380. [Google Scholar] [CrossRef]
- Tang, Y.; Han, G.L.; Wu, Q.X.; Xu, Z.F. Use of rare earth element patterns to trace the provenance of the atmospheric dust near Beijing, China. Environ. Earth Sci. 2013, 68, 871–879. [Google Scholar] [CrossRef]
- Strauss, H. Geological evolution from isotope proxy signals—Sulfur. Chem. Geol. 1999, 161, 89–101. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Liu, C.Q. Sources of nitrogen and sulfur in wet deposition at Guiyang, Southwest China. Atmos. Environ. 2002, 36, 5121–5130. [Google Scholar] [CrossRef]
- Ding, H.; Lang, Y.C.; Liu, C.Q.; Liu, T.Z. Chemical characteristics and delta s-34-so42- of acid rain: Anthropogenic sulfate deposition and its impacts on co2 consumption in the rural karst area of Southwest China. Geochem. J. 2013, 47, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Q.; Lang, Y.C.; Satake, H.; Wu, J.H.; Li, S.L. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, Southwest China: Combined delta cl-37 and delta s-34 approach. Environ. Sci. Technol. 2008, 42, 5421–5427. [Google Scholar] [CrossRef]
- Han, G.L.; Wu, Q.X.; Tang, Y. Acid rain and alkalization in Southwestern China: Chemical and strontium isotope evidence in rainwater from Guiyang. J. Atmos. Chem. 2011, 68, 139–155. [Google Scholar] [CrossRef]
- Larssen, T.; Lydersen, E.; Tang, D.G.; He, Y.; Gao, J.X.; Liu, H.Y.; Duan, L.; Seip, H.M.; Vogt, R.D.; Mulder, J.; et al. Acid rain in China. Environ. Sci. Technol. 2006, 40, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Lerman, A.; Wu, L.L.; Mackenzie, F.T. Co2 and h2so4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar. Chem. 2007, 106, 326–350. [Google Scholar] [CrossRef]
- Huang, Q.B.; Qin, X.Q.; Yang, Q.Y.; Liu, P.Y.; Zhang, J.S. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using delta c-13(dic) and delta s-34 in karst area, Northern China. Environ. Earth Sci. 2016, 75, 51. [Google Scholar]
- Han, G.L.; Tang, Y.; Xu, Z.F. Fluvial geochemistry of rivers draining karst terrain in Southwest China. J. Asian Earth Sci. 2010, 38, 65–75. [Google Scholar] [CrossRef]
Temp | pH | EC | TDS | HCO3− | Cl− | NO3− | SO42− | Na+ | k+ | Mg2+ | Ca2+ | δ13C | δ34S | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | Season | °C | μS.cm−2 | mg.L−1 | meq.L−1 | meq.L−1 | meq.L−1 | meq.L−1 | meq.L−1 | meq.L−1 | meq.L−1 | meq.L−1 | ‰ | ‰ | |
Up | Spr. | 15.8 | 8.13 | 501 | 235 | 3.28 | 0.04 | 0.10 | 0.24 | 0.02 | 0.01 | 1.17 | 2.66 | −14.83 | −1.50 |
Up | Sum. | 21.9 | 7.52 | 496 | 233 | 3.82 | 0.02 | 0.07 | 0.18 | 0.02 | 0.01 | 1.19 | 2.77 | −14.99 | 1.20 |
Up | Fal. | 20.9 | 7.78 | 456 | 214 | 3.40 | 0.04 | 0.09 | 0.20 | 0.02 | 0.02 | 1.35 | 2.15 | −16.87 | −0.78 |
Up | Win. | 17.3 | 7.69 | 487 | 229 | 3.79 | 0.04 | 0.10 | 0.21 | 0.03 | 0.02 | 1.38 | 2.89 | −15.42 | −1.01 |
Mid | Spr. | 13.7 | 7.71 | 466 | 219 | 3.39 | 0.04 | 0.10 | 0.26 | 0.02 | 0.01 | 1.13 | 2.43 | −13.13 | −2.17 |
Mid | Sum. | 22.1 | 7.46 | 451 | 212 | 3.58 | 0.02 | 0.07 | 0.17 | 0.02 | 0.01 | 1.14 | 2.78 | −15.00 | −0.56 |
Mid | Fal. | 22.6 | 8.02 | 409 | 192 | 3.36 | 0.04 | 0.06 | 0.21 | 0.02 | 0.02 | 1.33 | 2.45 | −13.68 | −1.01 |
Mid | Win. | 13.2 | 7.95 | 423 | 199 | 3.97 | 0.04 | 0.07 | 0.23 | 0.03 | 0.02 | 1.33 | 2.72 | −13.13 | −2.13 |
Down | Spr. | 15.3 | 7.36 | 486 | 228 | 3.44 | 0.06 | 0.06 | 0.36 | 0.05 | 0.02 | 0.98 | 2.78 | −12.30 | −3.63 |
Down | Sum. | 22.8 | 6.98 | 479 | 225 | 3.77 | 0.02 | 0.06 | 0.20 | 0.02 | 0.01 | 0.99 | 2.94 | −14.91 | −1.72 |
Down | Fal. | 22.6 | 7.74 | 417 | 196 | 3.58 | 0.05 | 0.03 | 0.23 | 0.03 | 0.02 | 1.28 | 2.68 | −14.01 | −1.78 |
Down | Win. | 12.8 | 7.25 | 438 | 206 | 3.51 | 0.05 | 0.02 | 0.30 | 0.05 | 0.02 | 1.21 | 2.70 | −12.04 | −2.29 |
school | Spr. | 12.7 | 6.65 | 740 | 348 | 3.88 | 0.40 | 0.33 | 2.04 | 0.46 | 0.24 | 0.59 | 5.18 | −10.80 | −11.83 |
school | Sum. | 22.3 | 7.11 | 695 | 327 | 3.70 | 0.13 | 0.13 | 1.65 | 0.16 | 0.10 | 0.40 | 5.16 | −14.51 | −15.21 |
school | Fal. | 22.1 | 6.87 | 638 | 300 | 3.31 | 0.31 | 0.17 | 1.52 | 0.45 | 0.18 | 0.55 | 4.00 | −12.84 | −6.22 |
school | Win. | 12.6 | 7.03 | 723 | 340 | 4.62 | 0.31 | 0.17 | 1.52 | 0.56 | 0.20 | 0.62 | 5.36 | −11.07 | −11.23 |
liming | Spr. | 14.8 | 7.34 | 509 | 239 | 3.39 | 0.04 | 0.08 | 0.43 | 0.10 | 0.02 | 0.32 | 3.40 | −13.73 | −9.92 |
liming | Sum. | 21.9 | 7.19 | 542 | 255 | 3.96 | 0.03 | 0.04 | 0.28 | 0.03 | 0.02 | 0.33 | 4.06 | −16.11 | −6.97 |
liming | Fal. | 20.4 | 7.41 | 451 | 212 | 4.03 | 0.02 | 0.03 | 0.38 | 0.04 | 0.01 | 0.42 | 3.87 | −14.87 | −8.98 |
liming | Win. | 16.9 | 7.25 | 521 | 245 | 3.76 | 0.03 | 0.05 | 0.46 | 0.06 | 0.02 | 0.42 | 3.65 | −13.42 | −10.61 |
village | Spr. | 16.1 | 7.35 | 563 | 265 | 2.85 | 0.05 | 0.05 | 0.37 | 0.02 | 0.01 | 0.37 | 2.83 | −12.32 | −3.88 |
village | Sum. | 22.4 | 7.17 | 525 | 247 | 4.40 | 0.03 | 0.03 | 0.23 | 0.03 | 0.00 | 0.51 | 4.03 | −16.16 | 1.70 |
village | Fal. | 21.5 | 7.12 | 511 | 240 | 3.78 | 0.03 | 0.12 | 0.24 | 0.04 | 0.00 | 0.59 | 3.68 | −13.96 | −1.35 |
village | Win. | 15.9 | 7.08 | 485 | 228 | 3.99 | 0.03 | 0.12 | 0.32 | 0.02 | 0.00 | 0.60 | 3.74 | −14.05 | −2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Han, R. Stable Carbon and Sulfur Isotope Characteristics of Stream Water in a Typical Karst Small Catchment, Southwest China. Water 2021, 13, 523. https://doi.org/10.3390/w13040523
Tang Y, Han R. Stable Carbon and Sulfur Isotope Characteristics of Stream Water in a Typical Karst Small Catchment, Southwest China. Water. 2021; 13(4):523. https://doi.org/10.3390/w13040523
Chicago/Turabian StyleTang, Yang, and Ruiyin Han. 2021. "Stable Carbon and Sulfur Isotope Characteristics of Stream Water in a Typical Karst Small Catchment, Southwest China" Water 13, no. 4: 523. https://doi.org/10.3390/w13040523
APA StyleTang, Y., & Han, R. (2021). Stable Carbon and Sulfur Isotope Characteristics of Stream Water in a Typical Karst Small Catchment, Southwest China. Water, 13(4), 523. https://doi.org/10.3390/w13040523