Identifying the mechanisms behind the positive feedback loop between nitrogen cycling and algal blooms in a shallow eutrophic lake

Figure S1. In-situ deployment device of DGT and HR-Peeper.

Figure S2. Schematic of the annular flume. (a) shows the plan form; (b) shows profiles of annular flume; (c) is a schematic of sediment cores. The present study examined 6 sediment cores. To avoid the excessive crosswise disturbance of the wind, the sediment cores were deployed in the annular flume which on the opposite side of the blower equipment.

Figure S3. The structure of the HR-Peeper. a. the HR-Peeper was assembled by base plate (1), plastic window (2), outer frame (3) and inter frame (4), in the assembly of the HR-Peeper, the chambers were filled with deionized water and covered with a cellulose nitrate membrane (i.e., dialysis membrane; Whatman, 0.45µm pore size), all the components were bound together using plastic fastener. b. the lateral view and elevation view of HR-Peeper).

Figure S4. pH (A) and oxidation-reduction potential (ORP) (B) microprofiles of Lake Taihu sediment, from Jun 2019 to July 2019. Dashed lines indicated approximate positions of the sediment-water interface (SWI)

Figure S5. Vertical NO (A) and N₂O (B) microprofiles measured in Lake Taihu sediment using NO and N₂O microsensors, respectively. The N₂O concentration of XKW and YL were not measured because of damage to the N₂O microsensor during the measurement. Dashed lines represented approximate positions of the sediment-water interface (SWI). Note the different x-axis scaling in each of microprofiles.

Figure S6. Venn diagram showing unique and shared operational taxonomic units (OTUs) among the sampling sites.

Figure S7. Non-metric multidimensional scaling (NMDS) analysis of microbial communities in Lake Taihu.

Figure S8. Relative abundances of sequences at the phylum level. Groups with <5% abundance were summarized as "Other". XXX-1 mean the sediment at the surface layer of the sample sites

from 0 to 3cm, XXX-2 mean the sediment at the middle layer of the sample sites from 3 to 6cm, and XXX-3 mean the sediment at the profundal layer of the sample sites from 6 to 9cm.

Figure S9. The comparison of the main fluorescent. The excitation (Ex) and emission (Em) wavelengths are A. Ex/Em=250/(380~480), B. Ex/Em=340/(420~480), C. Ex/Em=370/(450~500), D. Ex/Em=380/(310~435), E. Ex/Em=270/(320~350), F. Ex/Em=270/(300~320), respectively. In the group A, group C, group D and group F, the X-axis represents the wavelength range of emission, the Y-axis represents the sediments depth and the Z-axis represents the fluorescence intensity. In the group B and group E, the X-axis represents the sediments depth, the Y-axis represents the wavelength range of emission and the Z-axis represents the fluorescence intensity.

Figure S10. Concentration of NO₃⁻N with OTU values of Sphingobium genus in profundal sediment (6-9cm).

Table S1. Geographic information of the sampling sites.

Table S2. NosZ primer base sequences and reaction compounds.

Table S3. qPCR conditions for nosZ gene regions.

Table S4. Vertical distribution characteristics of the DIN profiles as shown in Fig 3.

Table S5. Number of valid sequences, richness, and diversity of 6 sapling sites in Lake Taihu. XXX-1 mean the sediment at the surface layer of the sample sites from 0 to 3cm, XXX-2 mean the sediment at the middle layer of the sample sites from 3 to 6cm, and XXX-3 mean the sediment at the profundal layer of the sample sites from 6 to 9cm.

Table S6. Fluorescence components of DOM in sediments as shown in Fig S9.

Table S7. Environmental parameters of sediments of different depths in sample sites, and the value of the environment parameters is the average of the average of the measured value in the corresponding depth range. XXX-1 mean the sediment at the surface layer of the sample sites from 0 to 3cm, XXX-2 mean the sediment at the middle layer of the sample sites from 3 to 6cm, and XXX-3 mean the sediment at the profundal layer of the sample sites from 6 to 9cm.

Figure S1. In-situ deployment device of DGT and HR-Peeper.

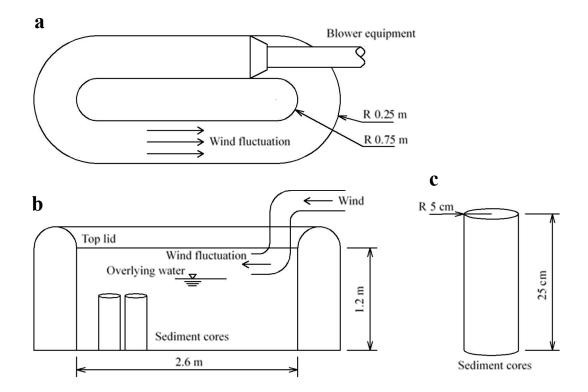


Figure S2. Schematic of the annular flume. (a) shows the plan form; (b) shows profiles of annular flume; (c) is a schematic of sediment cores. The present study examined 6 sediment cores. To avoid the excessive crosswise disturbance of the wind, the sediment cores were deployed in the annular flume which on the opposite side of the blower equipment.

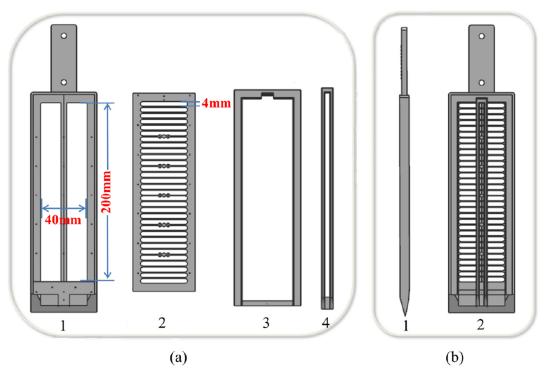
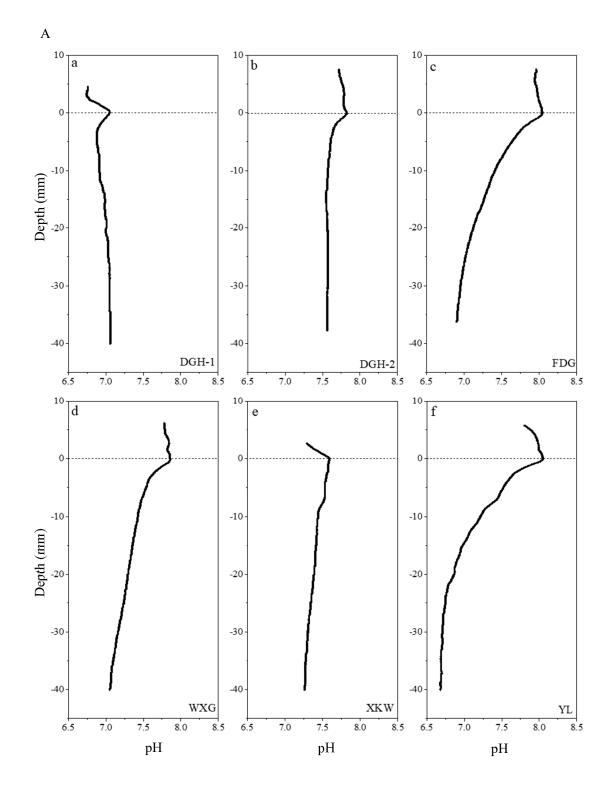



Figure S3. The structure of the HR-Peeper. a. the HR-Peeper was assembled by base plate (1), plastic window (2), outer frame (3) and inter frame (4), in the assembly of the HR-Peeper, the chambers were filled with deionized water and covered with a cellulose nitrate membrane (i.e., dialysis membrane; Whatman, 0.45µm pore size), all the components were bound together using plastic fastener. b. the lateral view and elevation view of HR-Peeper)

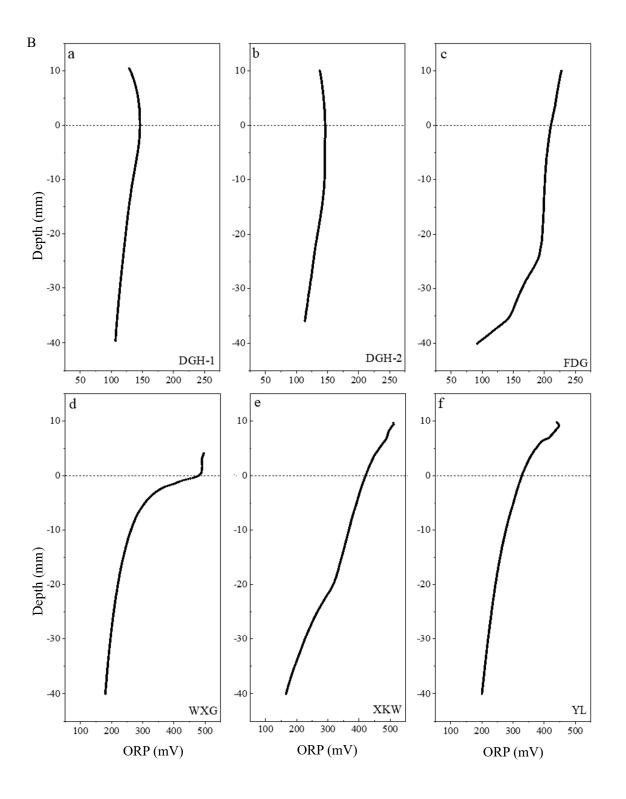
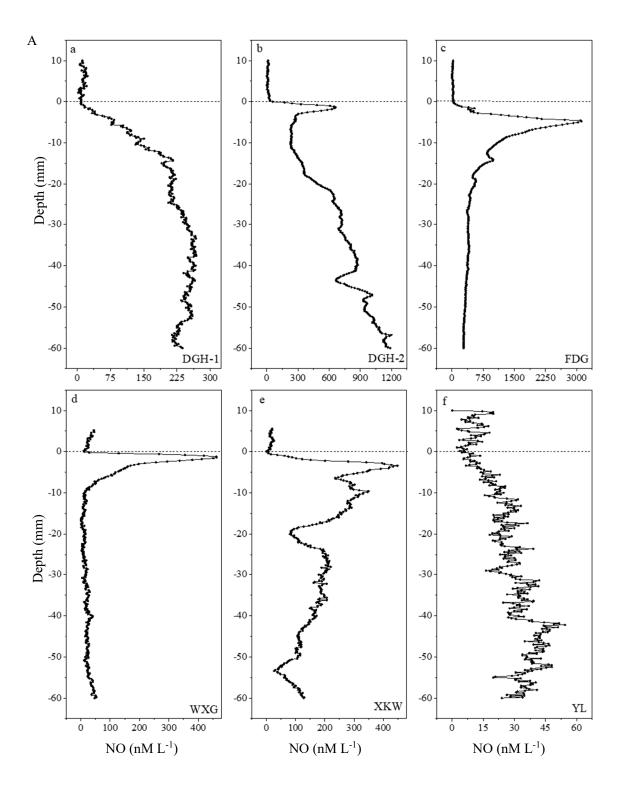



Figure S4. pH (A) and oxidation-reduction potential (ORP) (B) microprofiles of Lake Taihu sediment, from Jun 2019 to July 2019. Dashed lines indicated approximate positions of the sediment-water interface (SWI)

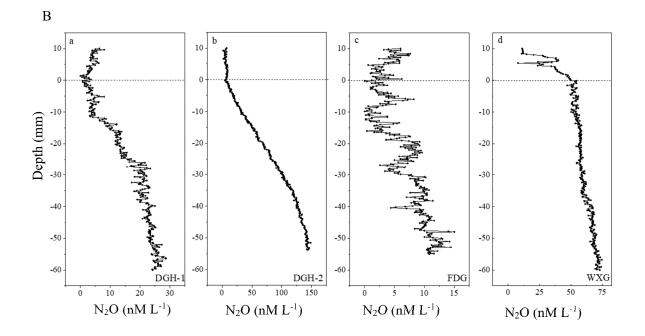


Figure S5. Vertical NO (A) and N_2O (B) microprofiles measured in Lake Taihu sediment using NO and N_2O microsensors, respectively. The N2O concentration of XKW and YL were not measured because of damage to the N2O microsensor during the measurement. Dashed lines represented approximate positions of the sediment-water interface (SWI). Note the different x-axis scaling in each of microprofiles.

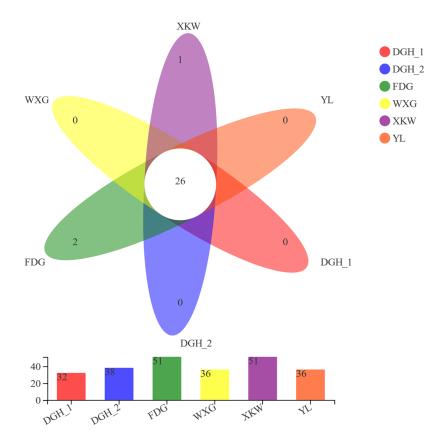


Figure S6. Venn diagram showing unique and shared operational taxonomic units (OTUs) among the sampling sites.

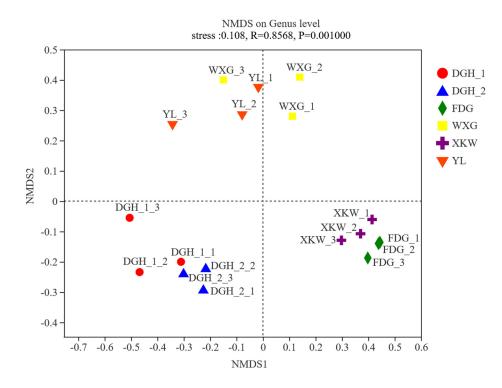


Figure S7. Non-metric multidimensional scaling (NMDS) analysis of microbial communities in Lake Taihu.

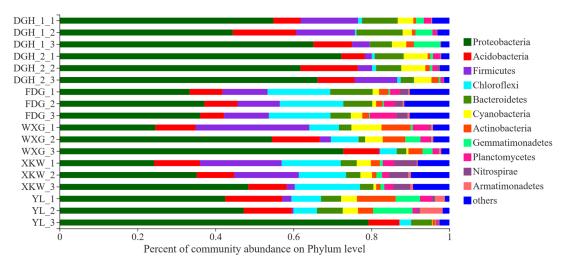
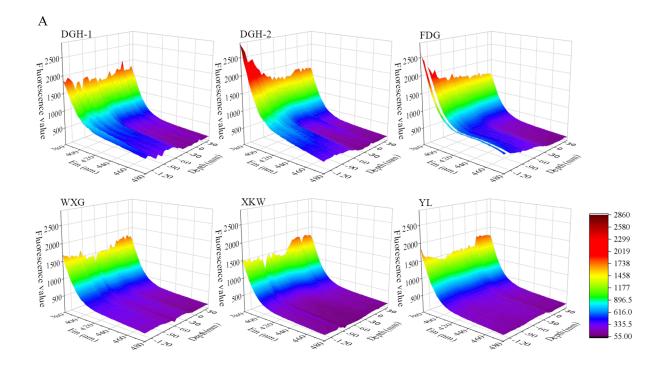
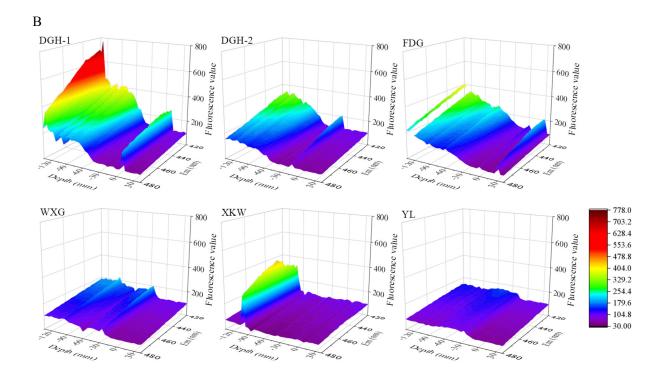
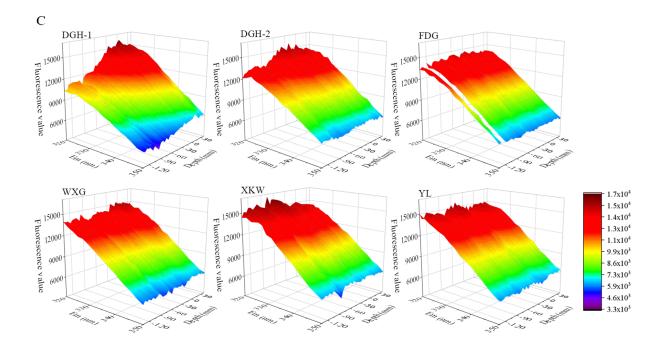
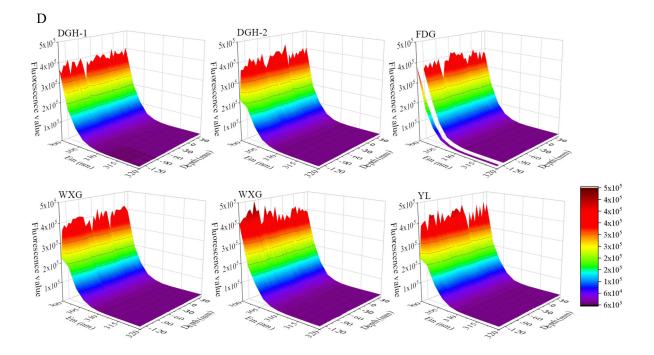






Figure S8. Relative abundances of sequences at the phylum level. Groups with <5% abundance were summarized as "Other". XXX-1 mean the sediment at the surface layer of the sample sites from 0 to 3cm, XXX-2 mean the sediment at the middle layer of the sample sites from 3 to 6cm, and XXX-3 mean the sediment at the profundal layer of the sample sites from 6 to 9cm.

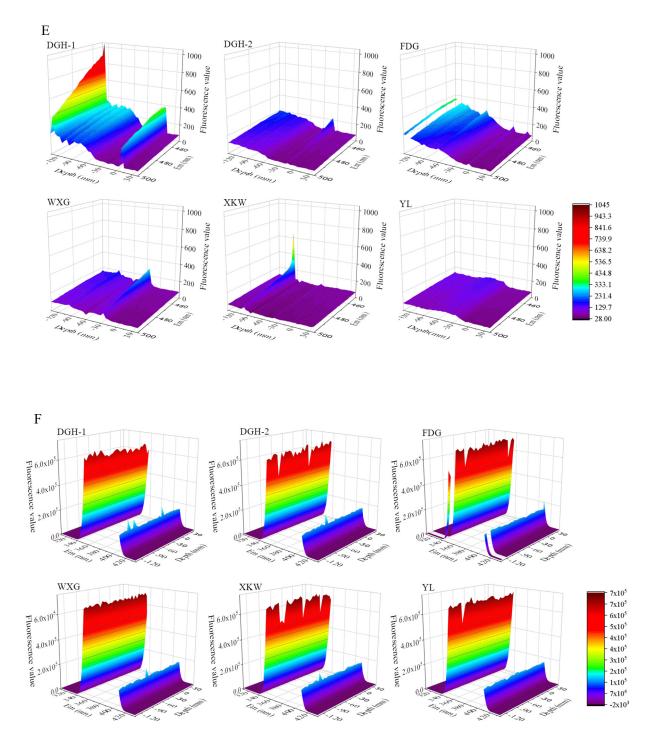
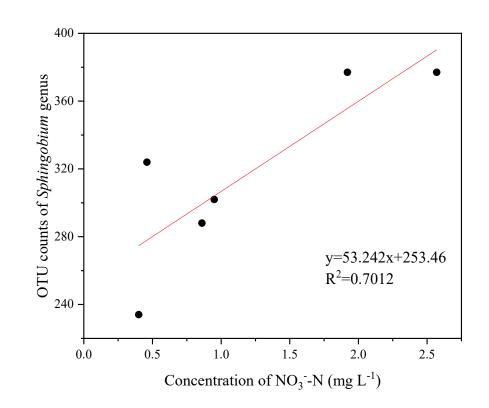



Figure S9. The comparison of the main fluorescent. The excitation (Ex) and emission (Em) wavelengths are A. $Ex/Em=250/(380\sim480)$, B. $Ex/Em=340/(420\sim480)$, C. $Ex/Em=370/(450\sim500)$, D. $Ex/Em=380/(310\sim435)$, E. $Ex/Em=270/(320\sim350)$, F. $Ex/Em=270/(300\sim320)$, respectively. In the group A, group C, group D and group F, the X-axis represents the wavelength range of emission, the Y-axis represents the sediments depth and the Z-axis represents the fluorescence intensity. In the group B and group E, the X-axis represents the sediments depth, the Y-axis represents the

wavelength range of emission and the Z-axis represents the fluorescence intensity.

Figure S10. Concentration of NO₃⁻-N with OTU values of *Sphingobium* genus in profundal sediment (6-9cm).

Core	the north of Taihu Lake		the e	the west of		
						Taihu Lake
	YL	FDG	WXG	DGH-1	DGH-2	XKW
Latitude	N 31°23′12″	N 31°24′44″	N 31°15′10″	N 31°11′13″	N 31°9′41″	N 31°12′59″
Longitude	E 120°7′45″	E 120°0'59″	E 119°58'40"	E 119°57'15"	E 120°4′4″	E 120°27′39″
Sampling	1 2010	1 1 2010	1 2010	1 2010	1 2010	1 1 2010
time	Jun 2019	Jul 2019	Jun 2019	Jun 2019	Jun 2019	Jul 2019

		Primer 5'→3'				
nosZ2F		CGCRACGGCAASAAGGTSMSSGT				
nosZ2R		CAKRTGCAKSGCRTGGCAGAA				
Reaction compou	inds	Concentration	Volume (µl)			
ChamQ SYBR	Color	2X	16.4			
qPCR Master Mix						
nosZ2F		5 μΜ	0.8			
nosZ2R		5 μΜ	0.8			
Template (DNA)			2			
Total			20			

Table S2. NosZ primer base sequences and reaction compounds.

Thermal Cycler		Times and Temperatures						
		Luitial Stand	Each of 40 cycles					
		Initial Steps	Melt	Anneal	Extend			
ABI	7300	HOLD	CYCLE					
qPCR		95°C-5 min	95°C-5 sec	60°C-30 sec	72°C 40 sec			
Instrument		<i>95</i> C-5 IIIII	75 C-5 Sec	00 C-30 Sec	12 C +0 SCC			

Table S3	aPCR	conditions	for	nosZ	σene	regions
Table 55.	qi Cit	conditions	101	nosz	gene	regions.

Sample	NH ₃ -N			NO ₃ ⁻ -N			NO ₂ ⁻ -N		
sites	\bar{C}^a	C_{max}^{b}	D_{max}^{c}	\bar{C}^a	C_{max}^{b}	D_{max}^{c}	\bar{C}^a	C_{max}^{b}	D_{max}^{c}
	mg/L	mg/L	(mm)	mg/L	mg/L	(mm)	mg/L	mg/L	(mm)
DGH-1	0.33	1.06	-36	0.62	4.02	0	0.34	1.23	0
DGH-2	0.21	0.43	-100	1.14	3.97	0	0.31	1.27	0
FDG	0.39	1.37	-108	0.74	3.25	0	0.20	1.23	0
WXG	0.22	0.82	-104	0.97	3.50	0	1.90	4.79	-135
XKW	0.24	0.97	-96	2.28	8.83	-98	0.15	1.34	0
YL	0.19	0.52	-58	1.65	4.30	0	0.34	1.27	0

Table S4. Vertical distribution characteristics of the DIN profiles as shown in Figure 3

^{*a*} The mean concentration in each sediment profile.

^b The maximum concentration in each sediment profile.

^c Depth showing the maximum concentration in each sediment profile.

Sampling	Sobs	Sharrow	Simpson	1 00	Chao1	Courses
sites	5005	Shannon	Simpson	Ace	Chaor	Coverage
DGH-1-1	978	4.521441	0.042706	1298.317	1295.24	0.988898
DGH-1-2	666	4.000748	0.040994	1071.993	914.4434	0.991736
DGH-1-3	302	3.458799	0.069245	405.0537	397.3571	0.996766
DGH-2-1	1128	3.968926	0.114318	1967.954	1652.922	0.984406
DGH-2-2	1318	4.584223	0.043581	1915.711	1871.235	0.982215
DGH-2-3	1028	4.246019	0.042383	1848.36	1485.644	0.98552
FDG-1	2407	6.338434	0.007576	3123.194	2943.281	0.974095
FDG-2	2363	6.347213	0.007395	2972.714	2859.165	0.975999
FDG-3	2096	6.123897	0.006851	2733.078	2591.8	0.977185
WXG-1	1666	5.350756	0.025878	2230.427	2160	0.980849
WXG-2	1344	4.735857	0.075122	1832.024	1816.679	0.984011
WXG-3	866	4.293516	0.048324	1148.44	1149.42	0.990191
XKW-1	2458	6.031448	0.016801	3231.562	3149.715	0.971759
XKW-2	2389	6.004805	0.011679	3131.496	3068.803	0.972478
XKW-3	2185	6.013773	0.010682	2807.489	2692.235	0.976753
YL-1	1127	5.227672	0.01239	1512.844	1523.442	0.987065
YL-2	1006	4.967666	0.018499	1342.084	1342.582	0.988718
YL-3	607	3.189854	0.19412	836.4631	808.0306	0.99285

Table S5. Number of valid sequences, richness, and diversity of 6 sapling sites in Lake Taihu. XXX-1 mean the sediment at the surface layer of the sample sites from 0 to 3cm, XXX-2 mean the sediment at the middle layer of the sample sites from 3 to 6cm, and XXX-3 mean the sediment at the profundal layer of the sample sites from 6 to 9cm.

Region	Fluorescence in	tegral region	 Fluorescence substance 		
	$\lambda_{Ex}(nm)$	$\lambda_{Em}(nm)$			
Ι	250	380~480	Fulvic-like acid		
II	340	420~480			
III	370	450~500	Humic-like acid		
IV	380	310~435			
V	270	320~350	Soluble microbial by-		
VI	270	300~320	products		

Table S6. Fluorescence components of DOM in sediments as shown in Fig S9.

Table S7. Environmental parameters of sediments of different depths in sample sites, and the value of the environment parameters is the average of the average of the measured value in the corresponding depth range. XXX-1 mean the sediment at the surface layer of the sample sites from 0 to 3cm, XXX-2 mean the sediment at the middle layer of the sample sites from 3 to 6cm, and XXX-3 mean the sediment at the profundal layer of the sample sites from 6 to 9cm.

Sampling sites	рН	ORP	DO	H_2S	NO	N ₂ O	S (-II)
		mV	μM/L	μM/L	nM/L	nM/L	mg/L
DGH-1-1	6.98	126.98	12.33	0.39	178.45	11.57	0.13
DGH-1-2	7.06	109.91	0.11	0.55	248.78	23.16	0.14
DGH-1-3	7.06*	109.91*	0.11*	0.55*	248.78*	23.16	0.15
DGH-2-1	7.58	134.92	21.33	0.57	474.75	58.90	0.07
DGH-2-2	7.56	116.00	0.26	0.92	901.67	130.90	0.09
DGH-2-3	7.56*	116.00*	0.26*	0.92*	901.67*	130.90	0.10
FDG-1	7.29	190.27	19.85	10.79	799.11	4.98	0.16
FDG-2	6.92	137.37	0.59	10.60	339.87	10.15	0.19
FDG-3	6.92*	137.37*	0.59*	10.60*	339.87*	10.15	0.23
WXG-1	7.35	248.06	32.09	1.59	51.61	56.13	0.13
WXG-2	7.10	187.48	0.09	0.41	24.82	65.98	0.16
WXG-3	7.10*	187.48*	0.09*	0.41*	24.82*	65.98	0.18
XKW-1	7.41	317.16	23.57	1.72	216.52	0.00**	0.01
XKW-2	7.28	194.40	0.26	1.23	128.57	0.00**	0.01
XKW-3	7.28*	194.40*	0.26*	1.23*	128.57*	0.00**	0.01
YL-1	7.05	256.91	92.61	0.48	23.79	0.00**	0.02
YL-2	6.69	209.87	0.47	0.65	36.69	0.00**	0.01
YL-3	6.69*	209.87*	0.47*	0.65*	36.69*	0.00**	0.02

* If the environment parameters is missing measurements in the corresponding depth range, the measurements closest to the depth range will be used instead.

** The N_2O concentration of XKW and YL were not measured because of damage to the N_2O microelectrode during the measurement.

Sampling sites	Fe (II)	DRP	FI	a(254)	NH3-N	NO3 ⁻ -N	NO ₂ ⁻ -N
	mg/L	mg/L		m ⁻¹	mg/L	mg/L	mg/L
DGH-1-1	0.47	0.86	1.62	28.33	0.36	1.54	0.95
DGH-1-2	0.52	1.16	1.50	34.47	0.45	0.52	0.38
DGH-1-3	0.15	2.48	1.50	56.98	0.31	0.46	0.06
DGH-2-1	0.33	1.88	1.92	25.32	0.17	1.40	0.87
DGH-2-2	0.21	1.77	1.52	23.72	0.21	1.28	0.25
DGH-2-3	0.24	1.56	1.51	36.39	0.24	0.86	0.08
FDG-1	7.19	7.05	1.57	24.06	0.31	1.39	0.71
FDG-2	8.53	7.82	1.59	25.88	0.20	0.46	0.06
FDG-3	7.14	8.84	1.62	31.28	0.40	0.40	0.03
WXG-1	2.71	0.66	1.66	24.20	0.21	0.92	0.48
WXG-2	4.97	0.64	1.54	24.06	0.21	0.71	0.61
WXG-3	6.27	0.96	1.59	26.52	0.22	0.95	1.77
XKW-1	0.12	2.74	1.57	23.97	0.18	0.95	0.40
XKW-2	0.06	2.02	1.65	13.40	0.18	0.40	0.07
XKW-3	0.35	2.16	1.65	15.37	0.28	2.57	0.07
YL-1	0.23	0.72	1.58	25.18	0.35	1.27	1.06
YL-2	0.16	0.53	1.56	24.95	0.26	1.18	0.27
YL-3	0.21	0.67	1.55	22.36	0.08	1.92	0.07

Table S7 (Contd.)

DRP: dissolved reactive phosphorus; FI: fluorescence index.