Evaluation of Adsorption Mechanism of Chromium(VI) Ion Using Ni-Al Type and Ni-Al-Zr Type Hydroxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Quantity of Cr(VI) Adsorbed
2.3. Effect of pH, Contact Time, and Temperature on the Removal of Cr(VI)
2.4. Recovery of Cr(VI) From NAZ1 using Desorption Solutions
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Quantity of Cr(VI) Adsorbed
3.3. Effect of pH, Contact Time, and Temperature on the Removal of Cr(VI)
3.4. Adsorption/Desorption Capability of Cr(VI) using NAZ1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1/n | adsorption strength |
a | the Langmuir isotherm constant (binding energy) (L mg−1) |
Ce | the equilibrium concentration (mg L−1) |
IARC | the International Agency for Research on Cancer |
k | adsorption capacity |
k1 | the pseudo-first-order (h−1) rate constant |
k2 | the pseudo-second-order (g mg−1 h−1) rate constants |
NA11 | nickel-aluminum type hydroxide (the Ni2+:Al3+ molar ratios of 1.0:1.0) |
NA12 | nickel-aluminum type hydroxide (the Ni2+:Al3+ molar ratios of 1.0:2.0) |
NAZ1 | nickel-aluminum-zirconium type hydroxide (the Ni2+:Al3+:Zr4+ molar ratios of 0.9:1.0:0.09) |
NAZ2 | nickel-aluminum-zirconium type hydroxide (the Ni2+:Al3+:Zr4+ molar ratios of 0.9:2.0:0.09) |
qe | the quantity of Cr(VI) adsorbed (mg g−1) at equilibrium |
qt | the quantity of Cr(VI) adsorbed (mg g−1) at given time t |
SGDs | Sustainable Development Goals |
USEPA | U.S. Environmental Protection Agency |
WHO | World Health Organization |
Ws | the maximum quantity of adsorbed Cr(VI) (mg g−1) |
References
- Liu, X.J.; Zeng, H.Y.; Xu, S.; Chen, C.R.; Zhang, Z.Q.; Du, Z.J. Metal oxides as dual-functional adsorbents/catalysts for Cu2+/Cr(VI) adsorption and, ethyl orange oxidation catalysis. J. Taiwan Inst. Chem. Eng. 2016, 60, 414–422. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Li, Z.; Liu, Q.; Liu, J.; Liu, L.; Zhang, Z.; Yu, J. Ultrasound assisted synthesis of Ca-Al hydrotalcite for U(VI) and Cr(VI) adsorption. Chem. Eng. J. 2013, 218, 295–302. [Google Scholar] [CrossRef]
- Dlugosz, A.; Rembacz, K.P.; Pruss, A.; Durlak, M.; Lembas-Bogaczyk, J. Influence of chromium on the natural antioxidant barrier. Polym. J. Environ. Stud. 2012, 21, 331–335. [Google Scholar]
- Rao, M.V.; Jhala, D.D.; Patel, A.; Chettiar, S.S. Cytogenetic alteration induced by nickel and chromium in human blood cultures and its amelioration by curcumin. Int. J. Hum. Genet. 2008, 8, 301–306. [Google Scholar] [CrossRef]
- Zhu, Y.; Jin, Y.; Chang, K.; Chen, Z.; Li, X.; Wu, X.; Jin, C.; Ye, F.; Shen, R.; Dong, W.; et al. Use of molybdenum disulfide nanosheets embellished nanoiron for effective capture of chromium(VI) ions from aqueous solution. J. Mol. Liq. 2018, 259, 376–383. [Google Scholar] [CrossRef]
- Cao, E.; Duan, W.; Yi, L.; Wang, A.; Zheng, Y. Poly(m-phenylenediamine) functionalized Calotropis gigantea fiber for coupled adsorption reduction for Cr(VI). J. Mol. Liq. 2017, 240, 225–232. [Google Scholar] [CrossRef]
- Ogata, F.; Nagai, N.; Itami, R.; Nakamura, T.; Kawasaki, N. Potential of virgin and calcined wheat bran biomass for the removal of chromium(VI) ion from a synthetic aqueous solution. J. Environ. Chem. Eng. 2020, 8, 103710. [Google Scholar] [CrossRef]
- Ogata, F.; Ueta, E.; Kawasaki, N. Characteristics of a novel adsorbent Fe-Mg-type hydrotalcite and its adsorption capability of As(III) and Cr(VI) from aqueous solution. J. Ind. Eng. Chem. 2018, 59, 56–63. [Google Scholar] [CrossRef]
- Juang, R.S.; Shiau, R.C. Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Membr. Sci. 2000, 165, 159–167. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, S.N.; Rath, P.; Chaudhury, G.R. Chromium (VI) removal by calcined bauxite. Biochem. Eng. J. 2007, 34, 69–75. [Google Scholar] [CrossRef]
- Harry, I.D.; Saha, B.; Cumming, I.W. Effect of electrochemical reduction and oxidation of a viscose rayon based activated carbon cloth for Cr(VI) sorption from aqueous solution. Ind. Eng. Chem. Res. 2008, 47, 6734–6741. [Google Scholar] [CrossRef]
- Cappelletti, G.; Bianchi, C.L.; Ardizzone, S. Nano-titania assisted photoreduction of Cr(VI): The role of the different TiO2 polymorphs. Appl. Catal. B Environ. 2008, 78, 193–201. [Google Scholar] [CrossRef]
- Ogata, F.; Kawasaki, N. Adsorption of As(III) from aqueous solutions by novel Fe-Mg type hydrotalcite. Chem. Pharm. Bull. 2015, 63, 1040–1046. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ayuso, E.; Nugteren, H.W. Purification of chromium(VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite. Water Res. 2005, 39, 2535–2542. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, N.K.; Asouhidou, D.D. Kinetics of sorptive removal of chromium(VI) drom aqueous solutions by calcined Mg-Al-CO3 hydrotalcite. Water Res. 2003, 37, 2875–2882. [Google Scholar] [CrossRef]
- Rodrigues, E.; Almeida, O.; Brasil, H.; Moraes, D.; dos Reis, M.A.L. Adsorption of chromium(VI) on hydrotalcit-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study. Appl. Clay Sci. 2019, 172, 57–64. [Google Scholar] [CrossRef]
- Deng, L.; Shi, Z.; Li, B.; Yang, L.; Luo, L.; Yang, X. Adsorption of Cr(VI) and phosphate on Mg-Al hydrotalcite supported kaoline clay prepared by ultrasound-assisted coprecipitation method using batch and fixed-bed systems. Ind. Eng. Chem. Res. 2014, 53, 7746–7757. [Google Scholar] [CrossRef]
- Chen, C.R.; Zeng, H.Y.; Xu, S.; Liu, X.J.; Duan, H.Z.; Han, J. Preparation of mesoporous material from hydrotalcite/carbon composite precursor for chromium(VI) removal. J. Taiwan Inst. Chem. Eng. 2017, 70, 302–310. [Google Scholar] [CrossRef]
- Aregay, G.G.; Jawad, A.; Du, Y.; Shahzad, A.; Chen, Z. Efficient and selective removal of chromium(VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes. J. Mol. Liq. 2019, 294, 111532. [Google Scholar] [CrossRef]
- Xiao, L.; Ma, W.; Han, M.; Cheng, Z. The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr(VI) from aqueous solution. J. Hazard. Mater. 2011, 186, 690–698. [Google Scholar] [CrossRef]
- Ogata, F.; Nakamura, T.; Toda, M.; Otani, M.; Kawasaki, N. Evaluation of nickel-aluminum complex hydroxide for adsorption of chromium(VI) ion. Chem. Pharm. Bull. 2020, 68, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ogata, F.; Nagai, N.; Toda, M.; Otani, M.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Removal of arsenic(III) ion from aqueous media using complex nickel-aluminum and nickel-aluminum-zirconium hydroxides. Water 2020, 12, 1697. [Google Scholar] [CrossRef]
- Ogata, F.; Iijima, S.; Toda, M.; Otani, M.; Nakamura, T.; Kawasaki, N. Characterization and phosphate adsorption capability of novel nickel-aluminum-zirconium complex hydroxide. Chem. Pharm. Bull. 2020, 68, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Long, F.; Gong, J.L.; Zeng, G.M.; Chen, L.; Wang, X.Y.; Deng, J.H.; Niu, Q.Y.; Zhang, H.Y.; Zhang, X.R. Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem. Eng. J. 2011, 171, 448–455. [Google Scholar] [CrossRef]
- Faria, P.C.C.; Orfao, J.J.M.; Pereira, M.F.R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 2004, 38, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Synthesis and phosphate uptake behavior of Zr4+ incorporated MgAl-layered double hydroxides. J. Colloid Interf. Sci. 2007, 313, 53–63. [Google Scholar] [CrossRef]
- Miyauchi, H.; Yamamoto, T.; Chitrakar, R.; Makita, Y.; Wang, Z.; Kawai, J.; Hirotsu, T. Phosphate adsorption site on zirconium ion modified MgAl-layered double hydroxides. Top. Catal. 2009, 52, 714–723. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, J.; Achari, G.; Yu, J.; Cai, W. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 33–40. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, B.; Fang, L.; Ling, F.; Gao, J.; Wu, F.; Zhang, X. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere 2016, 152, 415–422. [Google Scholar] [CrossRef]
- Yue, X.; Liu, W.; Chen, Z.; Lin, Z. Simultaneous removal of Cu(II) and Cr(VI) by Mg-Al-Cl layered double hydroxide and mechanism insight. J. Environ. Sci. 2017, 53, 16–26. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Pandi, T.A.; Matis, K.A. Chromium(VI) removal from aqueous solutions by Mg-Al-CO3 hydrotalcite: Sorption-desorption kinetic and equilibrium studies. Ind. Eng. Chem. Res. 2004, 43, 2209–2215. [Google Scholar] [CrossRef]
- Khitous, M.; Salem, Z.; Halliche, D. Effect of interlayer anions on chromium removal using Mg-Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies. Chinese J. Chem. Eng. 2016, 24, 433–445. [Google Scholar] [CrossRef]
- Li, Y.; Gao, B.; Wu, T.; Sun, D.; Li, X.; Wang, B.; Lu, F. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res. 2009, 43, 3067–3075. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.G.; Yang, K.; Shan, R.R.; Yu, H.Q.; Du, B. Calcined ZnAl- and Fe3O4/ZnAl-layered double hydroxides for efficient removal of Cr(VI) from aqueous solution. RSC Adv. 2015, 5, 96495. [Google Scholar] [CrossRef]
- Enshirah, D.; Silva, N.D.; Sayari, A. Adsorption of copper on amine functionalized SBA-15 prepared by co-condensation: Kinetic properties. Chem. Eng. J. 2011, 166, 454–459. [Google Scholar]
- Demirbas, E.; Dizge, N.; Sulak, M.T.; Kobya, M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 2009, 148, 480–487. [Google Scholar] [CrossRef]
- Atkin, P.W. Physical Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Vimonses, V.; Lei, S.; Bo, J.; Chow, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of congo red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Freundlich, H.M.T. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Abe, I.; Hayashi, K.; Kitagawa, M. Studies on the adsorption of surfactants on activated carbons. I. Adsorption of nonionic surfactants. Yukagaku 1976, 25, 145–150. [Google Scholar]
Adsorbents | Adsorption Capability (mg/g) | pH | Temp. (°C) | Initial Concentration (mg/L) | Contact Time (h) | Adsorbent (g/L) | Ref. |
---|---|---|---|---|---|---|---|
Calcined Mg-Al-CO3 hydrotalcite | Approximately 24 | 6.0 | 30 | 10 | 4 | 0.2 | [15] |
Calcined nano-Mg/Al hydrotalcite | 52.4 | 3.0 | 22 | 110 | 2 | 1 | [20] |
MgAl-LDH | 30.28 | 6–7 | 25 | 30–55 | 24 | 0.2 | [28] |
NiAl-LDH | 57.50 | 6–7 | 25 | 30–55 | 24 | 0.2 | [28] |
Ni-Fe-LDH | 26.78 | - | - | 4–20 | 4–5 | 0.2 | [29] |
Mg-Al-Cl LDH | 20.10 | 4.0 | 15 | 40 | 2 | 2 | [30] |
Mg-Al-CO3 hydrotalcite | 17.00 | 6 | 30 | 10 | 24 | 1 | [31] |
NA11 | 25.5 | 7 | 25 | 100 | 24 | 1 | This study |
NAZ1 | 24.1 | 7 | 25 | 100 | 24 | 1 | This study |
Adsorbents | qe (mg g−1) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
k1 (h−1) | qe (mg g−1) | r | k2 (g mg−1 h−1) | qe (mg g−1) | r | ||
NA11 | 28.5 | 0.22 | 8.0 | 0.870 | 0.04 | 28.4 | 0.999 |
NAZ1 | 27.0 | 0.09 | 8.8 | 0.972 | 0.04 | 26.8 | 0.999 |
Adsorbents | Temperature (°C) | Freundlich Constants | Langmuir Constants | ||||
---|---|---|---|---|---|---|---|
logk | 1/n | r | Ws (mg g−1) | a (L mg−1) | r | ||
NA11 | 5 | 0.96 | 0.33 | 0.987 | 27.4 | 0.28 | 0.917 |
25 | 0.99 | 0.34 | 0.993 | 27.9 | 0.38 | 0.979 | |
45 | 0.98 | 0.33 | 0.998 | 28.5 | 0.30 | 0.984 | |
NAZ1 | 5 | 0.96 | 0.31 | 0.997 | 28.0 | 0.22 | 0.979 |
25 | 0.96 | 0.33 | 0.998 | 28.4 | 0.27 | 0.986 | |
45 | 0.97 | 0.34 | 0.998 | 30.0 | 0.26 | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, F.; Nagai, N.; Tabuchi, A.; Toda, M.; Otani, M.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Evaluation of Adsorption Mechanism of Chromium(VI) Ion Using Ni-Al Type and Ni-Al-Zr Type Hydroxides. Water 2021, 13, 551. https://doi.org/10.3390/w13040551
Ogata F, Nagai N, Tabuchi A, Toda M, Otani M, Saenjum C, Nakamura T, Kawasaki N. Evaluation of Adsorption Mechanism of Chromium(VI) Ion Using Ni-Al Type and Ni-Al-Zr Type Hydroxides. Water. 2021; 13(4):551. https://doi.org/10.3390/w13040551
Chicago/Turabian StyleOgata, Fumihiko, Noriaki Nagai, Ayako Tabuchi, Megumu Toda, Masashi Otani, Chalermpong Saenjum, Takehiro Nakamura, and Naohito Kawasaki. 2021. "Evaluation of Adsorption Mechanism of Chromium(VI) Ion Using Ni-Al Type and Ni-Al-Zr Type Hydroxides" Water 13, no. 4: 551. https://doi.org/10.3390/w13040551
APA StyleOgata, F., Nagai, N., Tabuchi, A., Toda, M., Otani, M., Saenjum, C., Nakamura, T., & Kawasaki, N. (2021). Evaluation of Adsorption Mechanism of Chromium(VI) Ion Using Ni-Al Type and Ni-Al-Zr Type Hydroxides. Water, 13(4), 551. https://doi.org/10.3390/w13040551