Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Collection of Soil Data
2.2.2. Satellite Data Processing
2.3. Method
3. Results
3.1. Analysis of Soil Spectral Characteristics
3.2. Feature Band Selection
3.3. Model Establishment and Verification
4. Discussion
5. Conclusions
- (a)
- With the increase in the soil salt content, there was a positive correlation between the satellite hyperspectral data and the soil salt content. When the soil salt content was less than 33.48 g/kg, the hyperspectral data measured by laboratory and satellite had a good correlation, but with an increase in the soil salt content, the correlation between the two gradually decreased. When the soil salt content was higher than 74.5 g/kg, the two had a negative correlation. Therefore, when the soil salt content is high, it is not recommended to use the spectral data measured in the laboratory as the basic data to establish the soil salt content estimation model.
- (b)
- By analyzing the spectral characteristics of saline soil reflected in AHSI data, with the increase in the soil salt content, the soil spectrum formed an obvious reflection peak in the yellow and orange light bands, which was beneficial to the establishment of the soil salt content estimation model based on the spectral characteristics. The first-derivative transformation increased the correlation between the soil composition and spectral data in the visible near infrared to short wave infrared bands and reduced the correlation between characteristic bands.
- (c)
- The best data transformation methods are different for estimating different soil components. When the original spectrum was used as the input data of the estimation model, the effect of estimating the soil salt content and sodium ion content was ideal, R2 was 0.79 and 0.58, respectively, and a small RMSE was obtained. In the aspect of the modeling method, multiple linear regression achieved good results. At the same time, this study showed that AHSI data performed better in estimating the soil salt content.
- (d)
- The improvement of the soil ion content estimation accuracy is still the focus of future research, as it is difficult to establish a reliable soil ion content estimation model. In this study, we used satellite hyperspectral data to establish a soil ion content estimation model. We measured the concentrations of common ions in soil samples, namely, Na+, Ca2+, Mg2+, K+, Cl−, and SO42−, and calculated the correlation between the concentration of each ion and the satellite hyperspectral data. Unfortunately, only Na+, Cl−, and SO42− demonstrated a high correlation with the hyperspectral data. Therefore, to have a certain reference value, in this paper, we only established an estimation model with Na+, Cl−, and SO42− ions. This also shows that the hyperspectral satellite sensor data used in this paper have advantages for regional high-precision soil salinization monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecol. Indic. 2016, 70, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Rasool, S.; Hameed, A.; Azooz, M.M.; Muneeb u, R.; Siddiqi, T.O.; Ahmad, P. Salt Stress: Causes, Types and Responses of Plants. In Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013; pp. 1–24. [Google Scholar]
- Mashimbye, Z.E.; Cho, M.A.; Nell, J.P.; De Clercq, W.P.; Van Niekerk, A.; Turner, D.P. Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils. Pedosphere 2012, 22, 640–649. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
- Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Mojaradi, B.; Bartholomeus, H.M.; Clevers, J.G.P.W.; Behzad, M. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 282–290. [Google Scholar] [CrossRef]
- Periasamy, S.; Shanmugam, R.S. Multispectral and Microwave Remote Sensing Models to Survey Soil Moisture and Salinity. Land Degrad. Dev. 2017, 28, 1412–1425. [Google Scholar] [CrossRef]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Wang, M.; Zhao, Y.; Li, J. SPA-Based Methods for the Quantitative Estimation of the Soil Salt Content in Saline-Alkali Land from Field Spectroscopy Data: A Case Study from the Yellow River Irrigation Regions. Remote Sens. 2019, 11, 967. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J.D. Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Huang, B. Prediction of soil salinity with soil-reflected spectra: A comparison of two regression methods. Sci. Rep. 2019, 9, 5067. [Google Scholar] [CrossRef] [PubMed]
- Bakker, D.M.; Hamilton, G.J.; Hetherington, R.; Spann, C. Salinity dynamics and the potential for improvement of waterlogged and saline land in a Mediterranean climate using permanent raised beds. Soil Tillage Res. 2010, 110, 8–24. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, F.; Ding, J.; Kung, H.-t.; Latif, A.; Johnson, V.C. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Rocha Neto, C.O.; Teixeira, D.A.; Leão, A.R.; Moreira, C.L.; Galvão, S.L. Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation. Remote Sens. 2017, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.J.; Yang, J.S.; Gao, P.; Shao, H.B.; Liu, G.M.; Yu, S.P. Comparison of statistical prediction methods for characterizing the spatial variability of apparent electrical conductivity in coastal salt-affected farmland. Environ. Earth Sci. 2014, 71, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Hively, W.D.; McCarty, G.W.; Reeves, J.B.; Lang, M.W.; Oesterling, R.A.; Delwiche, S.R. Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields. Appl. Environ. Soil Sci. 2011, 2011, 358193. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J.; Wang, F. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River, China. Sci. Total Environ. 2020, 716, 135387. [Google Scholar] [CrossRef] [PubMed]
- Masoud, A.A.; Koike, K.; Atwia, M.G.; El-Horiny, M.M.; Gemail, K.S. Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101944. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—a case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062. [Google Scholar] [CrossRef]
- Jiang, H.; Shu, H.; Lei, L.; Xu, J. Estimating soil salt components and salinity using hyperspectral remote sensing data in an arid area of China. J. Appl. Remote Sens. 2017, 11, 016043. [Google Scholar] [CrossRef] [Green Version]
- Zovko, M.; Romić, D.; Colombo, C.; Di Iorio, E.; Romić, M.; Buttafuoco, G.; Castrignanò, A. A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma 2018, 332, 60–72. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Z.; Zhou, Q. The Both Causes of Formation and Prevention of Secondary Salinization of Soil in Jingtai Irrigation Area. J. Lanzhou Univ. (Nat. Sci.) 1990, 26, 148–153. [Google Scholar]
- Liu, Y. Visible-shortwave Infrared Hyperspectral Imager of GF-5 Satellite. Spacecr. Recovery Remote Sens. 2018, 39, 25–28. [Google Scholar]
- Xiaoping, W.; Fei, Z.; Hsiang-te, K.; Haiyang, Y. Spectral response characteristics and identification of typical plant species in Ebinur lake wetland national nature reserve (ELWNNR) under a water and salinity gradient. Ecol. Indic. 2017, 81, 222–234. [Google Scholar] [CrossRef]
- Unger, D.; Bowes, C.; Farrish, K.; Hung, I.K. Mapping oilfield brine-contaminated sites with mid-spatial resolution remotely sensed data. Gisci. Remote Sens. 2013, 50, 623–632. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; Teixeira, A.d.S.; Galvão, L.S. Potential of multispectral and hyperspectral data to detect saline-exposed soils in Brazil. Gisci. Remote Sens. 2015, 52, 416–436. [Google Scholar] [CrossRef]
- Kumar, S.; Gautam, G.; Saha, S.K. Hyperspectral remote sensing data derived spectral indices in characterizing salt-affected soils: A case study of Indo-Gangetic plains of India. Environ. Earth Sci. 2015, 73, 3299–3308. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Sidike, A.; Zhao, S.; Wen, Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 156–175. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Racetin, I.; Krtalic, A.; Srzic, V.; Zovko, M. Characterization of short-term salinity fluctuations in the Neretva River Delta situated in the southern Adriatic Croatia using Landsat-5 TM. Ecol. Indic. 2020, 110, 105924. [Google Scholar] [CrossRef]
- Lagacherie, P.; Baret, F.; Feret, J.-B.; Madeira Netto, J.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, I.R.; Foley, W.J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 2004, 93, 18–29. [Google Scholar] [CrossRef]
- Qian, T.; Tsunekawa, A.; Peng, F.; Masunaga, T.; Wang, T.; Li, R. Derivation of salt content in salinized soil from hyperspectral reflectance data: A case study at Minqin Oasis, Northwest China. J. Arid Land 2019, 11, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Abliz, A.; Tiyip, T.; Ding, J.; Sawut, M.; Hou, Y.; Nurmemet, I. Estimating Soil Salt Content in the Keriya Oasis Using Hyperspectral Slope Index. Nat. Environ. Pollut. Technol. 2017, 16, 141–146. [Google Scholar]
- Rahmati, M.; Hamzehpour, N. Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. Int. J. Remote Sens. 2017, 38, 123–140. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, Y.; Gong, H.; Li, L.; Wang, L. Salt Content Distribution and Paleoclimatic Significance of the Lop Nur “Ear” Feature: Results from Analysis of EO-1 Hyperion Imagery. Remote Sens. 2014, 6, 7783–7799. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, Y.; Wang, S.; Liu, H.; Fu, G.; Xiong, Y. Spatial distribution of soil salinity and potential implications for soil management in the Manas River watershed, China. Soil Use Manag. 2020, 36, 93–103. [Google Scholar] [CrossRef]
- Kasim, N.; Tiyip, T.; Abliz, A.; Nurmemet, I.; Sawut, R.; Maihemuti, B. Mapping and Modeling of Soil Salinity Using WorldView-2 Data and EM38-KM2 in an Arid Region of the Keriya River, China. Photogramm. Eng. Remote Sens. 2018, 84, 43–52. [Google Scholar] [CrossRef]
pH | SSC | Na+ | Ca2+ | Mg2+ | K+ | Cl− | SO42− | |
---|---|---|---|---|---|---|---|---|
Unit | 1 | g/kg | ppm | ppm | ppm | ppm | ppm | ppm |
Min | 8.14 | 3.17 | 75.00 | 0.00 | 0.00 | 63.40 | 0.69 | 1.97 |
Max | 8.98 | 143.57 | 11,960.00 | 6241.00 | 4142.00 | 693.40 | 3935.70 | 4541.90 |
Mean | 8.38 | 58.02 | 3723.90 | 1361.50 | 960.16 | 286.23 | 1273.64 | 1506.53 |
SD | 0.15 | 37.40 | 2796.85 | 1373.11 | 976.29 | 125.91 | 824.75 | 985.81 |
Spectral Data Type | Index | SSC (g/kg) | Na+ (ppm) | Ca2+ (ppm) | Mg2+ (ppm) | K+ (ppm) | Cl− (ppm) | SO42− (ppm) |
---|---|---|---|---|---|---|---|---|
RS | Wavelength (nm) | 424 | 424 | 591 | 2007 | 428 | 424 | 463 |
Correlation coefficient | 0.86 * | 0.66 * | −0.08 | −0.34 * | 0.30 * | 0.51 * | 0.54 * | |
FDA | Wavelength (nm) | 625 | 736 | 1105 | 1965 | 2167 | 1948 | 1956 |
Correlation coefficient | −0.85 * | −0.68 * | 0.24 * | −0.58 * | 0.37 * | −0.52 * | −0.54 * | |
PCA | Component | 1 | 1 | 6 | 2 | 2 | 2 | 2 |
Correlation coefficient | 0.80 * | 0.60 * | −0.19 * | −0.52 * | −0.34 * | −0.46 * | −0.53 * |
Spectral Data Type | SSC Feature Selection | Na+ Feature Selection | Cl− Feature Selection | SO42− Feature Selection |
---|---|---|---|---|
RS | 424, 441, 471 nm | 424, 441, 471 nm | 424, 441, 475 nm | 463, 475, 420 nm |
FDA | 625, 612, 2091 nm | 736, 625, 1670 nm | 1948, 604, 642 nm | 1956, 2100, 728 nm |
PCA | 1,2,4 | 1,2,4 | 1,2,4 | 2,1,4 |
Spectral Data Type | Method | Models | RMSE (g/kg) | R2 |
---|---|---|---|---|
RS | MLR | SSC = 721.177*b424 + 1273*b441 − 1618*b471 + 16.46 | 16.4 | 0.79 |
RS | MLR | Na+ = 68860*b424 + 172700*b441 − 2127*b471 + 2191.99 | 1773.825 | 0.589 |
FDA | MLR | Cl− = −0.878*b1948 − 3.283*b604 − 1.041*b642 + 406.21 | 563.41 | 0.46 |
PCA | MLR | SO42− = −0.06265*b2 + 0.0123*b1 + 0.256*b4 + 877.77 | 670.01 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, B.; Shen, Q.; Yao, Y.; Zhang, S.; Wei, H.; Yao, R.; Zhang, Y. Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China. Water 2021, 13, 559. https://doi.org/10.3390/w13040559
Wang L, Zhang B, Shen Q, Yao Y, Zhang S, Wei H, Yao R, Zhang Y. Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China. Water. 2021; 13(4):559. https://doi.org/10.3390/w13040559
Chicago/Turabian StyleWang, Libing, Bo Zhang, Qian Shen, Yue Yao, Shengyin Zhang, Huaidong Wei, Rongpeng Yao, and Yaowen Zhang. 2021. "Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China" Water 13, no. 4: 559. https://doi.org/10.3390/w13040559
APA StyleWang, L., Zhang, B., Shen, Q., Yao, Y., Zhang, S., Wei, H., Yao, R., & Zhang, Y. (2021). Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China. Water, 13(4), 559. https://doi.org/10.3390/w13040559