Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Details
2.2. Floating Treatment Wetlands: 2016–2018
2.3. Floating Treatment Wetlands: 2018–2019
2.3.1. Experimental Setup
2.3.2. Interim Clipping and Full Harvest of Floating Treatment Wetlands
2.4. Floating Treatment Wetlands: 2019–2020
2.5. Aquatic Vegetation Harvest 2020
2.6. Data Analysis
3. Results
3.1. Nitrogen Uptake within Plant Tissues
3.2. Nitrogen Removed at Harvest
3.3. Phosphorus Uptake within Plant Tissues
3.4. Phosphorus Removed at Harvest
3.5. Total Nitrogen and Phosphorus Removed 2017–2020
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donn, M.; Reed, D.; Vanderzalm, J.; Page, D. Assessment of E. coli Attenuation during Infiltration of Treated Wastewater: A Pathway to Future Managed Aquifer Recharge. Water 2020, 12, 173. [Google Scholar] [CrossRef] [Green Version]
- Shortle, J.; Horan, R.D. Nutrient Pollution: A Wicked Challenge for Economic Instruments. WEP 2017, 03, 1650033. [Google Scholar] [CrossRef]
- White, S.A. Regulating Water Quality: Current Legislation, Future Impacts: Introduction to the Colloquium. HortScience 2013, 48, 1095–1096. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.L.; Garcia, L.M.; White, S.A. Clean WateR3: Evaluation of three treatment technologies to remove contaminants from recycled production runoff. Acta Hortic. 2018, 1191, 199–206. [Google Scholar] [CrossRef]
- Lewitus, A.J.; Brock, L.M.; Burke, M.K.; DeMattio, K.A.; Wilde, S.B. Lagoonal stormwater detention ponds as promoters of harmful algal blooms and eutrophication along the South Carolina coast. Harmful Algae 2008, 8, 60–65. [Google Scholar] [CrossRef]
- Bavithra, G.; Azevedo, J.; Oliveira, F.; Morais, J.; Pinto, E.; Ferreira, I.M.P.L.V.O.; Vasconcelos, V.; Campos, A.; Almeida, C.M.R. Assessment of Constructed Wetlands’ Potential for the Removal of Cyanobacteria and Microcystins (MC-LR). Water 2020, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, L.N.; Mitsch, W.J. Removal of nutrients from urban stormwater runoff by storm-pulsed and seasonally pulsed created wetlands in the subtropics. Ecol. Eng. 2017, 108, 414–424. [Google Scholar] [CrossRef]
- Florida Department of Environmental Protection: Water Management Districts. Available online: https://floridadep.gov/water-policy/water-policy/content/water-management-districts (accessed on 19 November 2020).
- St. Johns Water Management District: Our Core Missions. Available online: https://www.sjrwmd.com/about/core/ (accessed on 19 November 2020).
- White, S. Design and Season Influence Nitrogen Dynamics in Two Surface Flow Constructed Wetlands Treating Nursery Irrigation Runoff. Water 2018, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Vymazal, J. Horizontal sub-surface flow constructed wetlands Ondrejov and Sp·lenÈ PorÌcÌ in the Czech Republic—15 years of operation. Desalination 2009, 246, 226–237. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Vohla, C.; Alas, R.; Nurk, K.; Baatz, S.; Mander, Ü. Dynamics of phosphorus, nitrogen, and carbon removal in a horizontal subsurface flow constructed wetland. Sci. Total Environ. 2007, 380, 66–74. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Serrano, L.; DeLorenzo, M.E. Water quality and restoration in a coastal subdivision stormwater pond. J. Environ. Manag. 2008, 88, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, L.; Wang, Q.; Mei, R.; Yang, Y. Study on new artificial floating island removing pollutants. Environ. Sci. Pollut. Res. Int. 2019, 26, 17751–17761. [Google Scholar] [CrossRef] [PubMed]
- Spangler, J.T.; Sample, D.J.; Fox, L.J.; Owen, J.S.; White, S.A. Floating treatment wetland aided nutrient removal from agricultural runoff using two wetland species. Ecol. Eng. 2019, 127, 468–479. [Google Scholar] [CrossRef]
- Headley, T.R.; Tanner, C.C. Application of Floating Wetlands for Enhanced Stormwater Treatment: A Review; Auckland Regional Council, Ed.; National Institute of Water and Atmospheric Research: Auckland, New Zealand, 2006; Volume ARC06231. [Google Scholar]
- Garcia Chance, L.M.; White, S.A. Aeration and plant coverage influence floating treatment wetland remediation efficacy. Ecol. Eng. 2018, 122, 62–68. [Google Scholar] [CrossRef]
- Garcia Chance, L.M.; Van Brunt, S.C.; Majsztrik, J.C.; White, S.A. Short- and long-term dynamics of nutrient removal in floating treatment wetlands. Water Res. 2019, 159, 153–163. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, W.; Zeng, Z.; Li, H.; Yang, X.; He, Z.; Gu, B.; Rafiq, M.T.; Peng, H. Nutrient removal efficiency and biomass production of different bioenergy plants in hypereutrophic water. Biomass Bioenergy 2012, 42, 212–218. [Google Scholar] [CrossRef]
- Keizer-Vlek, H.E.; Verdonschot, P.F.M.; Verdonschot, R.C.M.; Dekkers, D. The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecol. Eng. 2014, 73, 684–690. [Google Scholar] [CrossRef]
- Borne, K.E.; Tanner, C.C.; Fassman-Beck, E.A. Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci. Technol. 2013, 68, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.J.; Hunt, W.F.; Kennedy, S.G.; Merriman, L.S.; Chandler, J.; Brown, D. Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol. Eng. 2013, 54, 254–265. [Google Scholar] [CrossRef]
- Borne, K.E. Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol. Eng. 2014, 69, 76–82. [Google Scholar] [CrossRef]
- Strosnider, W.H.; Schultz, S.E.; Strosnider, K.A.; Nairn, R.W. Effects on the Underlying Water Column by Extensive Floating Treatment Wetlands. J. Environ. Qual. 2017, 46, 201–209. [Google Scholar] [CrossRef]
- Jurczak, T.; Wagner, I.; Wojtal-Frankiewicz, A.; Frankiewicz, P.; Bednarek, A.; Łapińska, M.; Kaczkowski, Z.; Zalewski, M. Comprehensive approach to restoring urban recreational reservoirs. Part 1—Reduction of nutrient loading through low-cost and highly effective ecohydrological measures. Ecol. Eng. 2019, 131, 81–98. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Sample, D.J.; Day, S.D.; Grizzard, T.J. Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol. Eng. 2015, 78, 15–26. [Google Scholar] [CrossRef]
- White, S.A.; Cousins, M.M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol. Eng. 2013, 61 Pt A, 207–215. [Google Scholar] [CrossRef]
- Garcia Chance, L.M.; Majsztrik, J.C.; Bridges, W.C.; Willis, S.A.; Albano, J.P.; White, S.A. Comparative Nutrient Remediation by Monoculture and Mixed Species Plantings within Floating Treatment Wetlands. Environ. Sci. Technol. 2020, 54, 8710–8718. [Google Scholar] [CrossRef]
- Sanicola, O.; Lucke, T.; Stewart, M.; Tondera, K.; Walker, C. Root and Shoot Biomass Growth of Constructed Floating Wetlands Plants in Saline Environments. Int. J. Environ. Res. Public Health 2019, 16, 275. [Google Scholar] [CrossRef] [Green Version]
- Spangler, J.T.; Sample, D.J.; Fox, L.J.; Albano, J.P.; White, S.A. Assessing nitrogen and phosphorus removal potential of five plant species in floating treatment wetlands receiving simulated nursery runoff. Environ. Sci. Pollut. Res. Int. 2019, 26, 5751–5768. [Google Scholar] [CrossRef] [Green Version]
- Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef] [Green Version]
- Tanner, C.C.; Headley, T.R. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol. Eng. 2011, 37, 474–486. [Google Scholar] [CrossRef]
Plant Species (Family) | Plant (#) | Fresh Mass Plants (g) | Dry Mass Plants (g) | Total Solids (%) | All Plant Fresh Mass 1 (kg) | Nitrogen Per Plant (g/kg) | Phosphorus Per Plant (g/kg) |
---|---|---|---|---|---|---|---|
Agrostis alba (Poaceae) | 16,000 | 19.4 | 17.5 | 90 | 104 | 8.8 | 1.7 |
Canna spp. (Cannaceae) | 2000 | 11.7 | 10.1 | 86 | 7.82 | 8.5 | 3.2 |
Iris hexagona (Iridaceae) | 2000 | 19.1 | 16.5 | 87 | 12.7 | 9.4 | 1.3 |
Juncus effusus (Juncaceae) | 2000 | 15.1 | 13.6 | 90 | 10.0 | 5.1 | 1.6 |
Pontederia cordata (Pontederiaceae) | 1000 | 22.5 | 21.7 | 97 | 7.51 | 5.2 | 0.65 |
Sagittaria lancifolia (Alismataceae) | 1000 | 7.78 | 6.81 | 88 | 2.59 | 3.8 | 1.4 |
All plants 2 | 24,000 | 21.5 | 18.5 | 86 | 1443 | 6.1 | 2.4 |
Treatment | N Removed 1 (kg) | Overall N Removal (g/m2/Year) | Daily N Removal (mg/m2/Day) | N:P Ratio | Total Solids (%) |
---|---|---|---|---|---|
Mixed | |||||
Agrostis alba | 113 ± 7.68 | 13.2 ± 2.65 | 35.0 ± 7.04 | 3.61 ± 0.31 | 72 ± 7.0 |
Canna spp. | 1.15 ± 0.25 | 10.6 ± 1.31 | 28.3 ± 3.49 | 2.78 ± 0.22 | 62 ± 8.0 |
Iris hexagona | 1.06 ± 0.11 | 7.42 ± 1.20 | 19.7 ± 3.19 | 2.00 ± 0.13 | 70 ± 6.0 |
Juncus effusus | 1.62 ± 0.12 | 13.5 ± 3.48 | 35.8 ± 9.26 | 3.98 ± 0.33 | 67 ± 9.0 |
Pontederia cordata | 0.39 ± 0.04 | 8.93 ± 2.45 | 23.7 ± 6.52 | 3.27 ± 0.45 | 76 ± 7.0 |
Sagittaria lancifolia | 0.34 ± 0.03 | 12.1 ± 3.30 | 32.1 ± 8.79 | 3.17 ± 0.15 | 66 ± 10 |
Volunteer species | 7.06 ± 0.29 | 4.65 ± 0.42 | 12.4 ± 1.13 | 3.29 ± 0.05 | 80 ± 2.0 |
Non-mixed | |||||
Agrostis alba | 87.4 ± 7.45 | 4.51 ± 0.62 | 12.0 ± 1.64 | 4.72 ± 0.40 | 86 ± 1.0 |
Canna spp. | 1.18 ± 0.17 | 4.36 ± 0.29 | 11.6 ± 0.76 | 2.47 ± 0.30 | 76 ± 6.0 |
Iris hexagona | 1.15 ± 0.17 | 4.79 ± 0.65 | 12.7 ± 1.74 | 2.49 ± 0.22 | 81 ± 4.0 |
Juncus effusus | 1.17 ± 0.13 | 3.68 ± 0.35 | 9.8 ± 0.93 | 3.59 ± 0.36 | 87 ± 1.0 |
Pontederia cordata | 0.36 ± 0.02 | 3.58 ± 0.85 | 9.5 ± 2.25 | 3.18 ± 0.28 | 86 ± 1.0 |
Sagittaria lancifolia | 0.45 ± 0.04 | 6.44 ± 0.67 | 17.1 ± 1.77 | 4.37 ± 0.16 | 76 ± 3.0 |
Volunteer species | 8.03 ± 2.10 | 6.17 ± 2.01 | 16.4 ± 5.35 | 3.37 ± 0.13 | 62 ± 26 |
Treatment | P Removed 1 (kg) | Overall P Removal (g/m2/year) | Daily P Removal (mg/m2/day) | % of Island | Root:Shoot Ratio |
---|---|---|---|---|---|
Mixed | |||||
Agrostis alba | 27.4 ± 3.17 | 3.84 ± 0.83 | 10.2 ± 2.20 | 50.1 ± 0.03 | 0.61 |
Canna spp. | 0.44 ± 0.01 | 3.91 ± 0.58 | 10.4 ± 1.54 | 6.3 ± 0.00 | 0.66 |
Iris hexagona | 0.55 ± 0.02 | 3.87 ± 0.84 | 10.3 ± 2.22 | 6.3 ± 0.00 | 0.66 |
Juncus effusus | 0.53 ± 0.06 | 3.58 ± 1.02 | 9.53 ± 2.71 | 6.3 ± 0.00 | 0.66 |
Pontederia cordata | 0.10 ± 0.00 | 2.52 ± 0.41 | 6.71 ± 1.10 | 3.1 ± 0.00 | 1.63 |
Sagittaria lancifolia | 0.13 ± 0.01 | 3.63 ± 0.84 | 9.65 ± 2.22 | 3.1 ± 0.00 | 0.82 |
Volunteer species | 2.15 ± 0.10 | 1.41 ± 0.11 | 3.76 ± 0.29 | 24.8 ± 0.07 | – 2 |
Non-mixed | |||||
Agrostis alba | 18.7 ± 2.31 | 0.98 ± 0.16 | 2.61 ± 0.42 | 49.7 ± 0.03 | 1.15 |
Canna spp. | 0.32 ± 0.03 | 1.92 ± 0.32 | 5.09 ± 0.85 | 6.3 ± 0.00 | 0.68 |
Iris hexagona | 0.47 ± 0.06 | 2.03 ± 0.40 | 5.40 ± 1.07 | 6.3 ± 0.00 | 0.72 |
Juncus effusus | 0.37 ± 0.05 | 1.09 ± 0.14 | 2.89 ± 0.38 | 6.3 ± 0.00 | 0.74 |
Pontederia cordata | 0.10 ± 0.00 | 1.09 ± 0.22 | 2.90 ± 0.58 | 3.1 ± 0.00 | 2.34 |
Sagittaria lancifolia | 0.11 ± 0.01 | 1.49 ± 0.17 | 3.96 ± 0.44 | 3.1 ± 0.00 | 0.91 |
Volunteer species | 2.40 ± 0.67 | 1.86 ± 0.67 | 4.93 ± 1.78 | 25.5 ± 0.07 | – |
Harvest 2017–2020 | Fresh Mass (kg) | N Removal Rate (mg/m2/Day) | P Removal Rate (mg/m2/Day) | N Removed 1 (kg) | P Removed (kg) | N:P Removed 2 |
---|---|---|---|---|---|---|
Mixed (450 m2 FTW) | ||||||
April 2019 | 12,923 | 426 ± 18.3 | 167 ± 7.39 | 144 ± 6.2 | 56.6 ± 2.5 | 2.5:1 |
October 2019 | 9294 | 440 ± 14.0 | 183 ± 21.3 | 72.5 ± 2.3 | 30.2 ± 3.5 | 2.4:1 |
May 2020 | 4973 | 290 ± 1.21 | 61.3 ± 1.82 | 47.7 ± 0.2 | 10.1 ± 0.3 | 4.7:1 |
Non-mixed (450 m2 FTW) | ||||||
April 2019 | 13,077 | 437 ± 20.7 | 162 ± 10.9 | 148 ± 7.0 | 54.8 ± 3.7 | 2.7:1 |
October 2019 | 9549 | 520 ± 78.3 | 243 ± 29.1 | 85.7 ± 12.9 | 40.1 ± 4.8 | 2.1:1 |
May 2020 | 4129 | 373 ± 82.6 | 86.2 ± 18.8 | 61.5 ± 13.6 | 14.2 ± 3.1 | 4.3:1 |
FTWs (900 m2) | ||||||
Harvest: July 2017 | 12,828 | 1,384 | 122 | 334 | 29.5 | 11:1 |
Clippings 3 2018–2019 | 6958 | – | – | 132 ± 7.0 | 26.7 ± 1.5 | 4.9:1 |
Harvest: April 2019 | 26,000 | 870 ± 19.5 | 330 ± 9.2 | 293 ± 6.6 | 111 ± 3.1 | 2.6:1 |
Harvest: October 2019 + May 2020 | 27,945 | 818 ± 13.2 | 290 ± 7.8 | 267 ± 4.4 | 94.6 ± 2.6 | 2.8:1 |
Total: FTW 2017–2020 | 73,731 | – | – | 1026 | 262 | |
Aquatic Plant Harvest: 2020 | ||||||
Forebay pond (January–February) | 51,836 | – | – | 726 | 98.5 | 7.4:1 |
Wickham Park pond (May) | 12,476 | – | – | 175 | 23.7 | 7.4:1 |
Total: Aquatic plant harvest 2020 | 64,312 | 901 | 122 | |||
Total: FTW + aquatic plant harvest | 138,043 | – | – | 1927 | 384 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, S.A. Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016–2020. Water 2021, 13, 569. https://doi.org/10.3390/w13040569
White SA. Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016–2020. Water. 2021; 13(4):569. https://doi.org/10.3390/w13040569
Chicago/Turabian StyleWhite, Sarah A. 2021. "Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016–2020" Water 13, no. 4: 569. https://doi.org/10.3390/w13040569
APA StyleWhite, S. A. (2021). Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016–2020. Water, 13(4), 569. https://doi.org/10.3390/w13040569