Assessing Multi-Hazard Vulnerability and Dynamic Coastal Flood Risk in the Mississippi Delta: The Global Delta Risk Index as a Social-Ecological Systems Approach
Abstract
:1. Introduction
2. SES Risk Assessment: Concepts and Approaches
3. Methods
3.1. Study Area
3.2. GDRI Assessment of Multi-Hazard Vulnerability and Coastal Flood Risk
Current and Future Coastal Flood Risk Calculation
4. Results
4.1. Hazard-Specific Vulnerability
4.2. Coastal Flood Risk
4.2.1. Coastal Flood Hazard and Exposure
4.2.2. The 2017 Louisiana Coastal Master Plan and Risk Reduction in Year 2025
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brondizio, E.S.; Vogt, N.D.; Mansur, A.V.; Anthony, E.J.; Costa, S.; Hetrick, S. A conceptual framework for analyzing deltas as coupled social–ecological systems: An example from the Amazon River Delta. Sustain. Sci. 2016, 11, 591–609. [Google Scholar] [CrossRef]
- Day, J.W.; Agboola, J.; Chen, Z.; D’Elia, C.; Forbes, D.L.; Giosan, L.; Kemp, P.; Kuenzer, C.; Lane, R.R.; Ramachandran, R.; et al. Approaches to defining deltaic sustainability in the 21st century. Estuar. Coast. Shelf Sci. 2016, 183, 275–291. [Google Scholar] [CrossRef]
- Day, J.W.; Colten, C.; Kemp, G.P. Mississippi Delta Restoration and Protection: Shifting Baselines, Diminishing Resilience, and Growing Nonsustainability. In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 167–186. ISBN 9780128140031. [Google Scholar]
- Edmonds, D.A.; Caldwell, R.L.; Brondizio, E.S.; Siani, S.M.O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 2020, 11, 4741. [Google Scholar] [CrossRef]
- Chopra, K.; Leemans, R.; Kumar, P.; Simons, H. Ecosystems and Human Well-Being. Policy Responses: Findings of the Responses Working Group of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA; London, UK, 2005; ISBN 1559632690. [Google Scholar]
- Day, J.W.; Erdman, J.A. Mississippi Delta Restoration. Pathways to a Sustainable Future; John, W.D., Jori, A.E., Eds.; Springer: Cham, Switzerland, 2017; ISBN 9783319656632. [Google Scholar]
- Kemp, G.P.; Day, J.W.; Freeman, A.M. Restoring the sustainability of the Mississippi River Delta. Ecol. Eng. 2014, 65, 131–146. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521880107. [Google Scholar]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B.R. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Change 2011, 106, 7–29. [Google Scholar] [CrossRef]
- Bailey, C.; Gramling, R.; Laska, S.B. Complexities of Resilience: Adaptation and Change within Human Communities of Coastal Louisiana. In Perspectives on the Restoration of the Mississippi Delta; Day, J.W., Kemp, G.P., Freeman, A., Muth, D.P., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 125–140. ISBN 978-94-017-8733-8. [Google Scholar]
- Estrella, M.; Saalismaa, N. Ecosystem-based disaster risk reduction (Eco-DRR): An overview. In The Role of Ecosystems in Disaster Risk Reduction; Renaud, F.G., Sudmeier-Rieux, K., Estrella, M., Eds.; United Nations University Press: Shibuya-ku, Tokyo, 2013; pp. 26–54. ISBN 9789280812213. [Google Scholar]
- Sebesvari, Z.; Renaud, F.G.; Haas, S.; Tessler, Z.; Hagenlocher, M.; Kloos, J.; Szabo, S.; Tejedor, A.; Kuenzer, C. A review of vulnerability indicators for deltaic social–ecological systems. Sustain. Sci. 2016, 11, 575–590. [Google Scholar] [CrossRef]
- Climate Change 2014-Impacts, Adaptation and Vulnerability; Regional Aspects; Field, C.B.; Barros, V.R. (Eds.) Cambridge University Press: New York, NY, USA, 2014; ISBN 9781107058163. [Google Scholar]
- Qu, K.; Yao, W.; Tang, H.S.; Agrawal, A.; Shields, G.; Chien, S.I.; Gurung, S.; Imam, Y.; Chiodi, I. Extreme storm surges and waves and vulnerability of coastal bridges in New York City metropolitan region: An assessment based on Hurricane Sandy. Nat. Hazards 2021, 105, 2697–2734. [Google Scholar] [CrossRef]
- Ji, T.; Li, G. Contemporary monitoring of storm surge activity. Prog. Phys. Geogr. Earth Environ. 2020, 44, 299–314. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. (Eds.) IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/report/srocc/ (accessed on 22 February 2021).
- Binita, K.C.; Shepherd, J.M.; King, A.W.; Gaither, C.J. Multi-hazard climate risk projections for the United States. Nat. Hazards 2020. [Google Scholar] [CrossRef]
- Louisiana’s Response to Extreme Weather: A Coastal State’s Adaptation Challenges and Successes; Laska, S. (Ed.) Springer Open: Cham, Switzerland, 2020; ISBN 978-3-030-27204-3. [Google Scholar]
- Day, J.W.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xu, Y.J. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale. Environ. Monit. Assess. 2009, 156, 491–507. [Google Scholar] [CrossRef]
- Boesch, D.F. Managing Risks in Louisiana’s Rapidly Changing Coastal Zone. In Louisiana’s Response to Extreme Weather: A Coastal State’s Adaptation Challenges and Successes; Laska, S., Ed.; Springer Open: Cham, Switzerland, 2020; pp. 35–62. ISBN 978-3-030-27204-3. [Google Scholar]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas: The Case Study of Ippocampo (Southern Italy). Water 2020, 12, 1466. [Google Scholar] [CrossRef]
- Batker, D.; de La Torre, I.; Costanza, R.; Day, J.W.; Swedeen, P.; Boumans, R.; Bagstad, K. The Threats to the Value of Ecosystem Goods and Services of the Mississippi Delta. In Perspectives on the Restoration of the Mississippi Delta: The Once and Future Delta; Day, J.W., Kemp, G.P., Freeman, A.M., Muth, D.P., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 155–173. ISBN 978-94-017-8733-8. [Google Scholar]
- Emrich, C.T.; Cutter, S.L. Social Vulnerability to Climate-Sensitive Hazards in the Southern United States. Weather Clim. Soc. 2011, 3, 193–208. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards *. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Oxfam America. Exposed: Social Vulnerability and Climate Change in the US Southeast; Oxfam America: Boston, MA, USA, 2009. [Google Scholar]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Rutherford, J.S.; Wiegman, A.R.; Day, J.W.; Lane, R.R. Energy and Climate—Global Trends and Their Implications for Delta Restoration. In Mississippi Delta Restoration; Springer: Cham, Switzerland, 2018; pp. 77–92. [Google Scholar]
- Wiegman, A.R.H.; Day, J.W.; D’Elia, C.F.; Rutherford, J.S.; Morris, J.T.; Roy, E.D.; Lane, R.R.; Dismukes, D.E.; Snyder, B.F. Modeling impacts of sea-level rise, oil price, and management strategy on the costs of sustaining Mississippi delta marshes with hydraulic dredging. Sci. Total Environ. 2018, 618, 1547–1559. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- CPRA. Louisiana’s Comprehensive Master Plan for a Sustainable Coast; CPRA: Baton Rouge, LA, USA, 2017.
- Wiegman, A.R.; Rutherford, J.S.; Day, J.W. The Costs and Sustainability of Ongoing Efforts to Restore and Protect Louisiana’s Coast. In Mississippi Delta Restoration; Springer: Cham, Switzerland, 2018; pp. 93–111. [Google Scholar]
- Meselhe, E.; White, E.D.; Reed, D.J. 2017 Coastal Master Plan: Appendix C: Modeling Chapter 2—Future Scenarios: Version Final. In Louisiana’s Comprehensive Master Plan for a Sustainable Coast; The Water Institute of the Gulf: Baton Rouge, LA, USA, 2017. [Google Scholar]
- Freudenburg, W.R.; Gramling, R.B.; Laska, S.; Erikson, K. Catastrophe in the Making. The Engineering of Katrina and the Disasters of Tomorrow; Island Press/Center for Resource Economics: Washington, DC, USA, 2012; ISBN 9781610911566. [Google Scholar]
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. In Proceedings of the UN World Conference on Disaster Risk Reduction, Sendai, Japan, 14–18 March 2015; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environ. Res. Lett. 2019, 14, 83002. [Google Scholar] [CrossRef]
- Beccari, B. A comparative analysis of disaster risk, vulnerability and resilience composite indicators. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- de Sherbinin, A.; Bukvic, A.; Rohat, G.; Gall, M.; McCusker, B.; Preston, B.; Apotsos, A.; Fish, C.; Kienberger, S.; Muhonda, P.; et al. Climate vulnerability mapping: A systematic review and future prospects. WIREs Clim. Change 2019, 10. [Google Scholar] [CrossRef]
- Baptista, S.R. Design and Use of Composite Indices in Assessments of Climate Change Vulnerability and Resilience; The Earth Institute, Columbia University: New York, NY, USA, 2014. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Eakin, H.; Luers, A.L. Assessing the Vulnerability of Social-Environmental Systems. Annu. Rev. Environ. Resour. 2006, 31, 365–394. [Google Scholar] [CrossRef] [Green Version]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- UNISDR. Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters: Extract from the final report of the World Conference on Disaster Reduction (A/CONF.206/6). In Proceedings of the World Conference on Disaster Reduction, Building the Resilience of Nations and Communities to Disasters, World Conference on Disaster Reduction, Hyogo, Japan, 18–22 January 2005; UNISDR, Ed.; United Nations: Geneva, Switzerland, 2005. [Google Scholar]
- Munang, R.; Thiaw, I.; Alverson, K.; Mumba, M.; Liu, J.; Rivington, M. Climate change and Ecosystem-based Adaptation: A new pragmatic approach to buffering climate change impacts. Curr. Opin. Environ. Sustain. 2013, 5, 67–71. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Renaud, F.G.; Haas, S.; Sebesvari, Z. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Sci. Total Environ. 2018, 631-632, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.R.; Renaud, F.G.; Anderson, C.C.; Wild, A.; Domeneghetti, A.; Polderman, A.; Votsis, A.; Pulvirenti, B.; Basu, B.; Thomson, C.; et al. A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions. Int. J. Disaster Risk Reduct. 2020, 50, 101728. [Google Scholar] [CrossRef]
- Reyers, B.; Nel, J.L.; O’Farrell, P.J.; Sitas, N.; Nel, D.C. Navigating complexity through knowledge coproduction: Mainstreaming ecosystem services into disaster risk reduction. Proc. Natl. Acad. Sci. USA 2015, 112, 7362–7368. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Brenkert, A.L.; Malone, E.L. Vulnerability to Climate Change: A Quantitative Approach; Prepared for the U.S. Department of Energy Under Contract DE-AC06-76RLO 1830; Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2001. [Google Scholar]
- Birkmann, J.; Cardona, O.D.; Carreño, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P.; et al. Framing vulnerability, risk and societal responses: The MOVE framework. Nat. Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Depietri, Y.; Welle, T.; Renaud, F.G. Social vulnerability assessment of the Cologne urban area (Germany) to heat waves: Links to ecosystem services. Int. J. Disaster Risk Reduct. 2013, 6, 98–117. [Google Scholar] [CrossRef]
- Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Méndez, F.J. Comparative Coastal Risk Index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; et al. Mapping vulnerability to multiple stressors: Climate change and globalization in India. Glob. Environ. Chang. 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Rani, S.N.; Satyanarayana, A.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Luers, A.L.; Lobell, D.B.; Sklar, L.S.; Addams, C.; Matson, P.A. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar] [CrossRef]
- Westerhoff, L.; Smit, B. The rains are disappointing us: Dynamic vulnerability and adaptation to multiple stressors in the Afram Plains, Ghana. Mitig. Adapt. Strateg. Glob. Change 2009, 14, 317–337. [Google Scholar] [CrossRef]
- Damm, M. Mapping Social-Ecological Vulnerability to Flooding: A Sub-national Approach for Germany; UNU-EHS: Bonn, Germany, 2010. [Google Scholar]
- Asare-Kyei, D.; Renaud, F.G.; Kloos, J.; Walz, Y.; Rhyner, J. Development and validation of risk profiles of West African rural communities facing multiple natural hazards. PLoS ONE 2017, 12, e0171921. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.C.; Hagenlocher, M.; Renaud, F.G.; Sebesvari, Z.; Cutter, S.L.; Emrich, C.T. Comparing index-based vulnerability assessments in the Mississippi Delta: Implications of contrasting theories, indicators, and aggregation methodologies. Int. J. Disaster Risk Reduct. 2019, 39, 101128. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.A.; Slack, T.; Singelmann, J. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Popul. Environ. 2008, 29, 271–291. [Google Scholar] [CrossRef]
- Day, J.W.; Rybczyk, J.M. Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population. In Coasts and Estuaries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 621–639. ISBN 9780128140031. [Google Scholar]
- U.S. Census Bureau. TIGER/Line® Shapefiles and TIGER/Line® Files, 2016 ([cb_2014_22_tract_500k]). Available online: https://www.census.gov/cgi-bin/geo/shapefiles/index.php (accessed on 20 August 2020).
- Couvillion, B.R.; Barras, J.A.; Steyer, G.D.; Sleavin, W.; Fischer, M.; Beck, H.; Trahan, N.; Griffin, B.; Heckman, D. Land Area Change in Coastal Louisiana from 1932 to 2010; US Geological Survey Lafayette Publishing Service Center: Lafayette, LA, USA, 2011. Available online: https://pubs.usgs.gov/sim/3164/downloads/ (accessed on 4 June 2017).
- Dickson, B.; Blaney, R.; Miles, L.; Regan, E.; van Soesbergen, A.; Väänänen, E.; Blyth, S.; Harfoot, M.; Martin, C.S.; McOwen, C.; et al. Towards a Global Map of Natural Capital: Key Ecosystem Assets; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2014; Available online: https://www.unep-wcmc.org/news/towards-a-global-map-of-natural-capital (accessed on 14 July 2018).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, C.N.; Pimm, S.L.; Joppa, L.N. Global patterns of terrestrial vertebrate diversity and conservation. PNAS 2013, 110, E2602–E2610. [Google Scholar] [CrossRef] [Green Version]
- Freudenberger, L.; Hobson, P.R.; Schluck, M.; Ibisch, P.L. A global map of the functionality of terrestrial ecosystems. Ecol. Complex. 2012, 12, 13–22. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Handbook on Constructing Composite Indicators: Methodology and User Guide. 2008. Available online: https://www.oecd.org/sdd/42495745.pdf (accessed on 25 January 2021).
- U.S. Census Bureau. 2014-2018 American Community Survey 5-Year Estimates; 2018. Available online: https://data.census.gov/cedsci/ (accessed on 5 November 2020).
- Visser, J.; Duke-Sylvester, S. LaVegMod v2: Modeling Coastal Vegetation Dynamics in Response to Proposed Coastal Restoration and Protection Projects in Louisiana, USA. Sustainability 2017, 9, 1625. [Google Scholar] [CrossRef] [Green Version]
- CPRA. Coastal Master Plan GIS Data: 2017 Master Plan. Available online: http://cims.coastal.louisiana.gov/masterplan/GISDownload/ (accessed on 8 September 2020).
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef] [Green Version]
- The Role of Ecosystems in Disaster Risk Reduction; Renaud, F.G.; Sudmeier-Rieux, K.; Estrella, M. (Eds.) United Nations University Press: Shibuya-ku, Tokyo, 2013; ISBN 9789280812213. [Google Scholar]
- Race, Place, and Environmental Justice after Hurricane Katrina: Struggles to Reclaim, Rebuild, and Revitalize New Orleans and the Gulf Coast; Bullard, R.D.; Wright, B. (Eds.) Perseus Books: New York, NY, USA, 2009. [Google Scholar]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 2013, 3, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, G.P.; Day, J.W.; Mack, S.; Kemp, G.P.; van Heerden, I.; Poirrier, M.A.; Westphal, K.A.; FitzGerald, D.; Milanes, A.; Morris, C.A.; et al. The MRGO Navigation Project: A Massive Human-Induced Environmental, Economic, and Storm Disaster. J. Coast. Res. 2009, 10054, 206–224. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Mel, R.A.; Viero, D.P.; Carniello, L.; D’Alpaos, L. Optimal floodgate operation for river flood management: The case study of Padova (Italy). J. Hydrol. Reg. Stud. 2020, 30, 100702. [Google Scholar] [CrossRef]
- Sinay, L.; Carter, R.W. Climate Change Adaptation Options for Coastal Communities and Local Governments. Climate 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, J.R.; Johnson, D.R.; Groves, D.G. Flood damage reduction benefits and costs in Louisiana’s 2017 Coastal Master Plan. Environ. Res. Commun. 2019, 1, 111001. [Google Scholar] [CrossRef]
- Birkmann, J.; Cutter, S.L.; Rothman, D.S.; Welle, T.; Garschagen, M.; van Ruijven, B.; O’Neill, B.; Preston, B.L.; Kienberger, S.; Cardona, O.D.; et al. Scenarios for vulnerability: Opportunities and constraints in the context of climate change and disaster risk. Clim. Chang. 2015, 133, 53–68. [Google Scholar] [CrossRef]
- Birkmann, J.; Sauter, H.; Jamshed, A.; Sorg, L.; Fleischhauer, M.; Sandholz, S.; Wannewitz, M.; Greiving, S.; Bueter, B.; Schneider, M.; et al. Strengthening risk-informed decision-making: Scenarios for human vulnerability and exposure to extreme events. DPM 2020, 29, 663–679. [Google Scholar] [CrossRef]
- UNDRR. Hazard Definition and Classification Review: Technical Report; UNDRR: Baltimore, MD, USA, 2020. [Google Scholar]
- Breakwell, G.M. The Psychology of Risk; Cambridge University Press: New York, NY, USA, 2007; ISBN 978-0-521-00445-9. [Google Scholar]
- Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 2009, 24, 467–471. [Google Scholar] [CrossRef]
- Dosemagen, S.; Eustis, S. Documenting the Changing Louisiana Wetlands through Community-Driven Citizen Science. In Handbook of Citizen Science in Ecology and Conservation; Lepczyk, C.A., Boyle, O.D., Vargo, T.L.V., Eds.; University of California Press: Oakland, CA, USA, 2020; ISBN 9780520284777. [Google Scholar]
- Knox, C.C. A Football Field Lost Every 45 Minutes: Evaluating Local Capacity to Implement Louisiana’s Coastal Master Plan. Coast. Manag. 2017, 45, 233–252. [Google Scholar] [CrossRef]
- Birkmann, J.; Wisner, B. Measuring the Unmeasurable: The Challenge of Vulnerability; UNU-EHS press: Bonn, Germany, 2006. [Google Scholar]
- Barnett, J.; Lambert, S.; Fry, I. The Hazards of Indicators: Insights from the Environmental Vulnerability Index. Ann. Assoc. Am. Geogr. 2008, 98, 102–119. [Google Scholar] [CrossRef]
- Renaud, F.G.; Birkmann, J.; Damm, M.; Gallopín, G.C. Understanding multiple thresholds of coupled social–ecological systems exposed to natural hazards as external shocks. Nat. Hazards 2010, 55, 749–763. [Google Scholar] [CrossRef]
- Hemmerling, S.A.; Hijuelos, A.C. 2017 Master Plan: Attachment C4-11.2: Social Vulnerability Index. Version Final; Coastal Protection and Restoration Authority: Baton Rouge, LA, USA, 2017.
- Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.; Kasperson, J.X.; Kasperson, R.E.; Luers, A.; et al. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicator | Hazard 1 | Proxy Taken | Time Period | Data Provider | |||
---|---|---|---|---|---|---|---|
Social Susceptibility | H | D | CF | ||||
1 | % of the population with disabilities | + | + | + | N/A | 2014–2018 | American Community Survey (ACS) |
2 | % of illiterate population | + | + | + | % population over 25 without high school diploma | 2014–2018 | ACS |
3 | % of population below national poverty line | + | + | + | N/A | 2014–2018 | ACS |
4 | Dependency ratio | + | + | + | Age dependency ratio | 2014–2018 | ACS |
5 | GINI index (0–100) | + | + | + | N/A | 2014–2018 | ACS |
6 | Dependency on agriculture/forestry/fisheries for livelihood | + | + | + | % employed in farming, fishing, forestry and hunting, mining | 2014–2018 | ACS |
7 | % of population living in poorly-constructed houses | + | + | % housing units mobile homes | 2014–2018 | ACS | |
8 | % of households without an official land title / secure residential status | + | + | + | Occupied housing units—% renter-occupied | 2014–2018 | ACS |
Social Coping Capacity | H | D | CF | ||||
9 | % of households without access to information | + | + | + | Occupied housing units—no phone in household (cell or landline) | 2014–2018 | ACS |
10 | Access to shelter places | - | - | N/A | 2016 | Federal Emergency Management Agency (FEMA) | |
11 | Density of emergency services: hospitals, fire brigades, police stations2 | - | - | - | N/A | 2017 | United States Geological Survey (USGS) |
12 | Density of transportation network2 | - | - | - | N/A | 2014 | Environmental Protection Agency (EPA) |
13 | % of households without individual means of transportation: car or motorcycle | + | + | + | Occupied housing units no vehicles available | 2014–2018 | ACS |
14 | % of population without health insurance | + | + | + | N/A | 2014–2018 | ACS |
Ecosystem Susceptibility | H | D | CF | ||||
15 | % of wetlands drained (wetland loss) | + | + | N/A | 1932–2010 | Couvillion et al. (2011) [65] | |
16 | Freshwater scarcity | + | Global fresh water resources | 2014 | Dickson et al. (2014) [66] | ||
17 | % of deforested area | + | + | + | N/A | 2000–2018 | Hansen et al. (2013) [67] |
18 | % of shoreline eroded | + | Average shoreline loss in meters | 1973–2001 | USGS | ||
19 | Wetland connectivity | - | - | N/A | 2013 | U.S. Fish and Wildlife Service | |
20 | River connectivity | - | - | N/A | (1) 2011(2) 2016(3) 2016 | (1) EPA (2) U.S. Census Bureau (3) United States Army Corps of Engineers | |
21 | Forest connectivity (RS) | - | - | N/A | 2014 | Hansen et al. (2013) [67] | |
22 | Water quality of freshwater bodies | - | - | N/A | 2015 | EPA | |
23 | Return flow ratio | + | + | N/A | 2014 | WRI Aquaduct | |
24 | Soil organic matter | - | - | N/A | 2013 | SoilGrids | |
25 | % of area covered by “problem soils” | + | N/A | 2012 | United States Department of Agriculture (USDA) | ||
26 | % of area covered by critical sites for conservation (danger of extinction) | + | + | + | Priority for conservation index | 2015 | Jenkins et al. (2015) [68] |
27 | Species richness adjusted by intactness | - | - | - | N/A | 2015 | Jenkins et al. (2013) [68] |
Ecosystem Robustness | H | D | CF | ||||
28 | % of forest area protected and designated for the conservation of biodiversity | - | - | - | % of protected area | 2014 | Jenkins et al. (2015) [68] |
29 | % of wetlands restored | - | - | - | N/A | 1985–2009 | Couvillion et al. (2011) [65] |
30 | % of forest area restored | - | - | - | N/A | 2000–2014 | Hansen et al. (2013) [67] |
31 | Ecosystem Functionality Index (EFI) | - | - | - | N/A | 2010 | Freudenberger et al. (2012) [69] |
32 | Mean Species Abundance (MSA) | - | - | - | N/A | 2010 | Global biodiversity model for policy support—GLOBIO |
Indicator | Time Period | Data Provider | |
---|---|---|---|
Social Exposure and Hazard | |||
1 | % of the population exposed to coastal flooding | 2018 | American Community Survey (ACS) |
2 | 500-year event storm surge extent and depth | 2015; 2025 | The Coastal Protection and Restoration Authority of Louisiana (CPRA); Meselhe et al., 2017 |
Ecosystem Exposure and Hazard | |||
3 | % of the ecosystem area exposed to coastal flooding | 2015; 2025 | The Coastal Protection and Restoration Authority of Louisiana (CPRA); Meselhe et al., 2017 |
4 | 500-year event storm surge extent and depth | 2015; 2025 | The Coastal Protection and Restoration Authority of Louisiana (CPRA); Meselhe et al., 2017 |
Risk Component | Average Abs. Change | Greatest Abs. Decrease | Greatest Abs. Increase | Average % Change 1 | |
---|---|---|---|---|---|
Area exposed to flooding (km2) | N/A; input | −1.30 | −55.67 | 56.02 | −12.09 |
Population exposed to flooding2 (count) | Social exposure | −153.72 | −7809.00 | 531.30 | −11.84 |
Average flood depth (m) | Social hazard | −0.04 | −5.52 | 8.11 | −10.76 |
Ecosystem area (km2) | N/A; input | −1.03 | −28.17 | 7.36 | −8.11 |
Ecosystem area exposed (km2) | Ecosystem exposure | −1.03 | −32.06 | 9.35 | −8.30 |
Ecosystem area flood depth (m) | Ecosystem hazard | −0.07 | −4.28 | 7.04 | −5.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, C.C.; Renaud, F.G.; Hagenlocher, M.; Day, J.W. Assessing Multi-Hazard Vulnerability and Dynamic Coastal Flood Risk in the Mississippi Delta: The Global Delta Risk Index as a Social-Ecological Systems Approach. Water 2021, 13, 577. https://doi.org/10.3390/w13040577
Anderson CC, Renaud FG, Hagenlocher M, Day JW. Assessing Multi-Hazard Vulnerability and Dynamic Coastal Flood Risk in the Mississippi Delta: The Global Delta Risk Index as a Social-Ecological Systems Approach. Water. 2021; 13(4):577. https://doi.org/10.3390/w13040577
Chicago/Turabian StyleAnderson, Carl C., Fabrice G. Renaud, Michael Hagenlocher, and John W. Day. 2021. "Assessing Multi-Hazard Vulnerability and Dynamic Coastal Flood Risk in the Mississippi Delta: The Global Delta Risk Index as a Social-Ecological Systems Approach" Water 13, no. 4: 577. https://doi.org/10.3390/w13040577
APA StyleAnderson, C. C., Renaud, F. G., Hagenlocher, M., & Day, J. W. (2021). Assessing Multi-Hazard Vulnerability and Dynamic Coastal Flood Risk in the Mississippi Delta: The Global Delta Risk Index as a Social-Ecological Systems Approach. Water, 13(4), 577. https://doi.org/10.3390/w13040577