Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geological Setting
2.1.2. Hydrological Settings
2.2. Sampling Methods
2.2.1. On-Site Measurements
2.2.2. Laboratory Analyses
3. Results and Discussion
3.1. Groundwater Salinity
3.2. Stable Isotopes of Water and Deuterium Excess
3.3. Carbon Isotopes (13C and 14C) and Groundwater Age
3.4. Chloride and Bromide in Groundwater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, C.; Wang, Y.; Pan, Y. Hydrogeochemical and isotopic evidences of the groundwater regime in Datong Basin, Northern China. Environ. Earth Sci. 2013, 70, 877–885. [Google Scholar] [CrossRef]
- Al-Basrawi, N. Hydrogeology and Hydrochemistry of Al-Basrah Governorate; Internal Report; Iraq-GEOSURV: Baghdad, Iraq, 2009. [Google Scholar]
- Alkinani, M.; Merkel, B. Hydrochemical and isotopic investigation of groundwater of Al-Batin alluvial fan aquifer, Southern Iraq. Environ. Earth Sci. 2017, 76, 4. [Google Scholar] [CrossRef]
- Alkinani, M.; Kanoua, W.; Merkel, B. Uranium in groundwater of the Al-Batin Alluvial Fan aquifer, south Iraq. Environ. Earth Sci. 2016, 75, 869. [Google Scholar] [CrossRef]
- Chenoweth, J.; Hadjinicolaou, P.; Bruggeman, A.; Lelieveld, J.; Levin, Z.; Lange, M.A.; Xoplaki, E.; Hadjikakou, M. Impact of climate change on the water resources of the eastern Mediterranean and Middle East region: Modeled 21st century changes and implications. Water Resour. Res. 2011, 47, 47. [Google Scholar] [CrossRef]
- de Pauw, E.; Saba, M.; Ali, S. Mapping Climate Change in Iraq and Jordan; International Agricultural Research Center in the Dry Areas (ICARDA): Beirut, Lebanon, 2015; Volume 27, ISBN 92-91274739. [Google Scholar]
- Azooz, A.A.; Talal, S.K. Evidence of climate change in Iraq. J. Environ. Prot. Sustainable Dev. 2015, 1, 66–73. [Google Scholar]
- Abdulameer, A.; Thabit, J.M.; Al-Menshed, F.H.; Merkel, B. Investigation of seawater intrusion in the Dibdibba Aquifer using 2D resistivity imaging in the area between Al-Zubair and Umm Qasr, southern Iraq. Environ. Earth Sci. 2018, 77, 619. [Google Scholar] [CrossRef]
- Evans, R.; Soppe, R.; Barrett-Lennard, E.; Saliem, K.A. Salinity in Iraq-Potential Solutions. 2013. Available online: https://www.researchgate.net/publication/320857624_Salinity_in_Iraq-Potential_Solutions (accessed on 1 May 2020).
- Abdulameer, M.H. Hydrogeochemical and Environmental Evaluation of Dibdibba Aquifer in Basrah Province, Southern Iraq. Master’s Thesis, University of Basrah, Basrah, Iraq, February 2019. [Google Scholar]
- Jassim, S.Z.; Karim, S.A.; Basi, M.A.; Al-Mubarak, M.; Munir, J. Stratigraphy—Final Report on the Regional Geological Survey of Iraq; Iraq-GEOSURV: Baghdad, Iraq, 1984; Volume 3. [Google Scholar]
- Jassim, S.Z.; Goff, J.C. Geology of Iraq; Dolin: Brno/Prague, Czech Republic, 2006; p. 486. ISBN 8070282878. [Google Scholar]
- Haddad, R.H.; Hawa, A.J. Hydrogeology of the Safwan-Zubair Area, South of Iraq; Bulletin No. 122; Scientific Research Foundations: Baghdad, Iraq, 1979; 232p. [Google Scholar]
- Al-Kubaisi, Q.Y. Quaternary-Tertiary hydrogeologic boundary condition at Safwan-Zubair area. South of Iraq. Iraqi J. Sci. 1999, 40, 21–28. [Google Scholar]
- Al-Kubaisi, Q.Y. Hydrogeology of Dibdiba Aquifer in Safwan–Zubair Area, South Iraq. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 1996. [Google Scholar]
- Al-Kadhimi, J.A.; Sissakian, V.K.; Fattah, A.S.; Deikran, D.B. Tectonic Map of Iraq, Scale 1:1,000,000, 2nd ed.; Iraq-GEOSURV: Baghdad, Iraq, 1996; pp. 1–38. [Google Scholar]
- Buday, T.; Jassim, S. The Regional Geology of Iraq: Tectonism Magmatism, and Metamorphism; Iraq-GEOSURV: Baghdad, Iraq, 1987; p. 445. [Google Scholar]
- Al-Sharbati, F.; Ma’ala, K. Report on the Regional Geological Mapping of West of Zubair Area; Iraq-GEOSURV: Baghdad, Iraq, 1983. [Google Scholar]
- Yacoub, S.; Roufa, S.; Rasool, M.; Al-Ali, N. The Geology of Al-Basrah, Abadan and Bubyian Quadrangle Sheets NH-38-8; Geological Map of Iraq GM 38, 39 and 40; Iraq-GEOSURV: Baghdad, Iraq, 1992. [Google Scholar]
- Owen, R.M.; Nasr, S.N. Stratigraphy of the Kuwait-Basra Area, Middle East. 1958. Available online: www.archives.datapages.com (accessed on 21 June 2020).
- Van Bellen, R.C.; Dunnington, H.V.; Wetzel, R.; Morton, D. Lexique Stratigraphic International; Centre National de la Recherche Scientifique: Paris, France, 1959; 333p. [Google Scholar]
- AL-Najar, N.A.; AL-Shmmary, T.A.; AL-Khafaji, S.J. Mineralogy and geochemistry of Dibdibba Sandstone Formation bearing feldspar in Zubair and Safwan areas, Southern Iraq. Iraqi J. Sci. 2011, 52, 54–63. [Google Scholar]
- Jaffar, H.M.; Abdulnaby, W. Stress Regime of Rumania Oilfield in Southern Iraq from Borehole Breakouts. IOSR J. Appl. Geol. Geophys. 2018, 6, 25–35. [Google Scholar]
- Manhi, H. Groundwater Contamination Study of the Upper Part of the Dibdibba Aquifer in Safwan Area, Southern Iraq. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq, 2012. [Google Scholar]
- Al-Jiburi, H.; Al-Basrawi, N. Hydrogeology of Al-Jazira Area; Iraqi Bulletin of Geology and Mining; Iraq-GEOSURV: Baghdad, Iraq, 2009; Volume 3, pp. 71–84. [Google Scholar]
- Parkhurst, D.L.; Appelo, C. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Denver, CO, USA, 1999; Volume 99, p. 312. [CrossRef] [Green Version]
- Hounslow, A. Water Quality Data: Analysis and Interpretation; Lewis Publishers: Boca Raton, FL, USA, 1995; ISBN 9780873716765. [Google Scholar]
- Vengosh, A.; Rosenthal, E. Saline groundwater in Israel: Its bearing on the water crisis in the country. J. Hydrol. 1994, 156, 389–430. [Google Scholar] [CrossRef]
- Ali, K.K.; Al-Kubaisi, Q.Y.; Al-Paruany, K.B. Isotopic study of water resources in a semi-arid region, western Iraq. Environ. Earth Sci. 2015, 74, 1671–1686. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Al-Jiburi, H.K.; Al-Basrawi, N.H. Hydrogeology of Southern Desert; Iraqi Bulletin of Geology and Mining; Iraq-GEOSURV: Baghdad, Iraq, 2009; Volume 2, pp. 77–91. [Google Scholar]
- Al-Sudani, H.I.Z. Groundwater system of Dibdibba sandstone aquifer in south of Iraq. Appl. Water Sci. 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Hadi, K.; Kumar, U.S.; Al-Senafy, M.; Bhandary, H. Environmental isotope systematics of the groundwater system of southern Kuwait. Environ. Earth Sci. 2016, 75, 1096. [Google Scholar] [CrossRef]
- Vengosh, A.; Hening, S.; Ganor, J.; Mayer, B.; Weyhenmeyer, C.E.; Bullen, T.D.; Paytan, A. New isotopic evidence for the origin of groundwater from the Nubian Sandstone Aquifer in the Negev, Israel. Appl. Geochem. 2007, 22, 1052–1073. [Google Scholar] [CrossRef]
- Zimmermann, U.; Münnich, K.O.; Roether, W. Downward Movement of Soil Moisture Traced by Means of Hydrogen Isotopes. Geophys. Monogr. Ser. 2013, 11, 28–36. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z. The role of deuterium excess in determining the water salinisation mechanism: A case study of the arid Tarim River Basin, NW China. Appl. Geochem. 2012, 27, 2382–2388. [Google Scholar] [CrossRef]
- Vogel, J.C.; Ehhalt, D. The Use of the Carbon Isotopes in Groundwater Studies; International Atomic Energy Agency (IAEA): Vienna, Austria, 1963; ISBN 0074-1884. [Google Scholar]
- McArthur, J.; Sikdar, P.; Hoque, M.; Ghosal, U. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam. Sci. Total Environ. 2012, 437, 390–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khwedim, K.; Schneider, M.; Ameen, N.; Abdulameer, A.; Winkler, A. The Dibdibba aquifer system at Safwan–Zubair area, southern Iraq, hydrogeology and environmental situation. Environ. Earth Sci. 2017, 76, 155. [Google Scholar] [CrossRef]
- Abdulhadi, Y.B. Database of Registered Pesticides and Public Health Pesticides, Registered and Approved; Ministry of Agriculture; National Committee for Pesticide Registration and Approval: Baghdad, Iraq, 2019. Available online: http://zeraa.gov.iq/index.php?name=Pages&op=page&pid=201 (accessed on 2 June 2020).
- Ministry of Agriculture. Banned, Severely Restricted and Restricted Pesticides, 2nd ed.; Ministry of Agriculture: Baghdad, Iraq, 2020. Available online: http://zeraa.gov.iq/index.php?name=Pages&op=page&pid=201 (accessed on 2 June 2020).
- Hudak, P.F. Chloride/bromide ratios in leachate derived from farm-animal waste. Environ. Pollut. 2003, 121, 23–25. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 2008, 359, 189–207. [Google Scholar] [CrossRef]
- Katz, B.G.; Eberts, S.M.; Kauffman, L.J. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. J. Hydrol. 2011, 397, 151–166. [Google Scholar] [CrossRef]
- Tarki, M.; Dassi, L.; Jedoui, Y. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: Implications of return flow. Hydrol. Sci. J. 2012, 57, 790–804. [Google Scholar] [CrossRef] [Green Version]
- Panno, S.V.; Hackley, K.C.; Hwang, H.H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O’Kelly, D.J. Characterization and Identification of Na-Cl Sources in Ground Water. Ground Water 2006, 44, 176–187. [Google Scholar] [CrossRef] [PubMed]
Parameter | Min. | Max. | Mean | Standard Deviation | KhZ |
---|---|---|---|---|---|
Na+ (mg/L) | 940 | 4720 | 1940 | 864 | 16,540 |
Cl− (mg/L) | 670 | 5850 | 2700 | 1310 | 28,360 |
SO42− (mg/L) | 1870 | 4680 | 2655 | 609 | 4420 |
Br− (mg/L) | 1.2 | 16.4 | 5.8 | 3.5 | 145 |
Ca2+ (mg/L) | 587 | 1481 | 928 | 189.5 | 902 |
Mg2+ (mg/L) | 59 | 383 | 169 | 61.7 | 1798 |
K+ (mg/L) | 9 | 269.8 | 45.1 | 41.7 | 622.8 |
NO3– (mg/L) | 18.3 | 499.3 | 119 | 87.2 | − |
HCO3− (mg/L | 20 | 350 | 96 | 86 | 103 |
Na+/Cl− [molar ratio] | 0.8 | 2.16 | 1.2 | 0.30 | 0.89 |
Cl−/HCO3− [molar ratio] | 8.9 | 231.1 | 61.7 | 45.6 | 474.9 |
Cl−/Br− [molar ratio] | 740 | 1851.4 | 1138.5 | 274.7 | 441 |
ID | 14C pMC | δ13C ‰ | C1 (YBP) | C2 (YBP) |
---|---|---|---|---|
W40 | 102.1 | −10.56 | <50 | <50 |
W17 | 81.92 | −9.6 | 1641 | 297 |
W10 | 75.38 | −8.4 | 2378 | 1035 |
W1 | 71.68 | −9.1 | 2716 | 1372 |
W7 | 66.03 | −8.7 | 3435 | 2092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulameer, A.; Thabit, J.M.; Kanoua, W.; Wiche, O.; Merkel, B. Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq. Water 2021, 13, 578. https://doi.org/10.3390/w13040578
Abdulameer A, Thabit JM, Kanoua W, Wiche O, Merkel B. Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq. Water. 2021; 13(4):578. https://doi.org/10.3390/w13040578
Chicago/Turabian StyleAbdulameer, Ahmed, Jassim Mohammed Thabit, Wael Kanoua, Oliver Wiche, and Broder Merkel. 2021. "Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq" Water 13, no. 4: 578. https://doi.org/10.3390/w13040578
APA StyleAbdulameer, A., Thabit, J. M., Kanoua, W., Wiche, O., & Merkel, B. (2021). Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq. Water, 13(4), 578. https://doi.org/10.3390/w13040578