Laboratory Tests of New Groundwater Table Level Regulators in Subsurface Drainage Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Funnel Regulator
2.2. The Hole Regulator
3. Results
3.1. Test Results of a Funnel Regulator
3.2. Test Results of the Hole Regulator
4. Discussion
5. Conclusions
- The funnel regulator, due to the relatively high flow rate of the funnel overflow, ensures a stable ordinate of damming water in a wide range of flow variability. The hole regulator is suitable for only damming water in drains at low flow rates of up to Q = 0.25 l·s−1.
- The tested regulators, due to leaks, can be used in practice only to partially delay the outflow of water from the soil. Leaks that cause Qe flow prevent precise regulation. The value of this flow varies depending on the height of the water level.
- It is recommended to conduct further research on the improvement of the connection of the main elements of the regulators in a way ensuring limitation of the size of effective flows.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø.; Szcześniak, M.; Szwed, M.; Benestad, R.E.; et al. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Szcześniak, M.; Kardel, I. CHASE-PL Future Hydrology Data Set: Projections of Water Balance and Stream-flow for the Vistula and Odra Basins, Poland. Water 2017, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Piniewski, M.; Marcinkowski, P.; Kundzewicz, Z.W. Trend detection in river flow indices in Poland. Acta Geophys. 2018, 66, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Climate Change 2014 Synthesis Report. IPICC: Switzerland. 2015. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf (accessed on 20 October 2020).
- Design of A Counteraction Plan the Effects of Drought. State Water Holding Polish Waters, Poland. 2020. Available online: http://wide-vision.pl/wp-content/uploads/2020/05/Projekt-PPSS_25052020.pdf (accessed on 20 October 2020). (In Polish).
- Przybyła, C.; Szafrański, C. Water management problems in agriculture in Wielkopolska. Water Environ. Rural Areas 2004, 4, 25–38. [Google Scholar]
- Wilderer, P.A. Applying Sustainable Water Management Concepts in Rural and Urban Areas: Some Thoughts about Reasons, Means and Needs. Water Sci. Technol. 2004, 49, 8–16. [Google Scholar] [CrossRef]
- Mioduszewski, W. Management of water resources in rural areas: The Polish approach. J. Water Land Dev. 2006, 10, 3–14. [Google Scholar] [CrossRef]
- Kaca, E.; Drabiński, A.; Ostrowski, K.; Pierzgalski, E.; Szafrański, C. Water management in the agri-food sector and rural areas in conditions of new challenges and limitations. Pol. J. Agron. 2011, 7, 14–21. [Google Scholar]
- Mosiej, J.; Pierzgalski, E.; Jeznach, J. Contemporary conditions of water management in rural areas. Adv. Agric. Sci. 2011, 1, 25–36. [Google Scholar]
- Schuurmans, J.; Hof, A.; Dijkstra, S.; Bosgra, O.H.; Brouwer, R. Simple Water Level Controller for Irrigation and Drainage Canals. J. Irrig. Drain. Eng. 1999, 125, 189–195. [Google Scholar] [CrossRef]
- Ankum, P.; Renault, D. Modernization of Irrigation Systems—Technical Modules; FAO Land & Water Division: Masscote, Rome, Italy, 2008; pp. 1–32. Available online: http://www.fao.org/3/a-ap523e.pdf (accessed on 20 October 2020).
- Smedema, L.K.; Vlotman, W.F.; Rycroft, D.W. Modern Land Drainage: Planning, Design and Management of Agricultural Drainage Systems; CRC Press: Abingdon, VA, USA, 2004; p. 449. [Google Scholar]
- Skaggs, R.W.; Fausey, N.R.; Evans, R.O. Drainage water management. J. Soil Water Conserv. 2012, 67, 167A–172A. [Google Scholar] [CrossRef] [Green Version]
- Szejba, D.; Bajkowski, S. Determination of Tile Drain Discharge under Variable Hydraulic Conditions. Water 2019, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Bos, M.G. Discharge Measurement Structures. In International Institute for Land Reclamation and Improvement, 3rd ed.; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1989; p. 402. [Google Scholar]
- Harada, M. Fluid Control and Measurement; The Society of Instrument and Control Engineers, Pergamon Press: Tokyo, Japan, 1986; Volume 1, p. 587. [Google Scholar]
- Bajkowski, S.; Szmigiel, T. Badania Modelowe Poziomej Komory Wirowej. Zesz. Nauk. Akad. Rol. Wrocławiu Ser. Inżynieria Sr. 1995, 266, 153–162. (In Polish) [Google Scholar]
- Bajkowski, S. Urządzenia wirowe w budownictwie wodnym. In Współczesne Problemy Inżynierii Wodnej; Majewski, W., Ed.; Politechnika Krakowska Wydział Inżynierii Środowiska: Kraków, Poland, 1997; Volume 1, pp. 199–209. (In Polish) [Google Scholar]
- Bajkowski, S. Discharge Coefficients of the Horizontal Vortex Chamber. Scientific Papers of the Agricultural University of Cracow. Zesz. Nauk. Akad. Rol. Krakowie Inżynieria Śr. 2001, 21, 673–681. (In Polish) [Google Scholar]
- Bajkowski, S. Hydraulic properties of horizontal vortex chamber. Adv. Hydro-Sci. Eng. 2002, 150, 47–58. (In Polish) [Google Scholar]
- Subhash, C.; Jain, M. Free-surface swirling flows in vertical dropshaft. J. Hydraul. Eng. 1987, 113, 1277–1289. [Google Scholar]
- Bajkowski, S. Kołowy przelew o ostrej krawędzi. Gospodarka Wodna 1985, 7, 160–163. (In Polish) [Google Scholar]
- Bajkowski, S. Submerged sharp-crested morning-glory-spillway criteria of submergence and the discharge coefficients. Model Investig. Hydro-Eng. 1987, 51, 5–17. [Google Scholar]
- Bajkowski, S. Submerged sharp-crested morning-glory-spillway criteria of submergence and the discharge coefficients. In Actual Problems of Hydro-Engineering. Model Investigations in Hydro-Engineering, Proceedings of the 3rd Conference, Wrocław, Poland, 27–29 April 1987; Majewski, W., Ed.; Technical University of Wrocław: Wrocław, Poland, 1987; pp. 5–15. [Google Scholar]
- Bajkowski, S. Strumień przelewowy upustu wieżowego—Planowanie badań laboratoryjnych. Zesz. Nauk. Akad. Rol. Krakowie, Ser. Inżynieria Sr. 2002, 23, 159–167. (In Polish) [Google Scholar]
- Voron, B. Regulation and management of water in irrigation canals and water saving irrigation methods and technologies. Houille Blanche 1995, 4, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Frankenberger, J.; Kladivko, E.; Sands, G.; Jaynes, D.; Fausey, N.; Helmers, M.; Cooke, R.; Strock, J.; Nelson, K.; Brown, L. Drainage Water Management for the Midwest; Agricultural and Biosystems Engineering Extension and Outreach Publications: West Lafayette, IN, USA, 2004; 8p. [Google Scholar]
- Jaynes, D.B. Changes in yield and nitrate losses from using drainage water management in central Iowa, United States. J. Soil Water Conserv. 2012, 67, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Sunohara, M.D.; Gottschall, N.; Craiovan, E.; Wilkes, G.; Topp, E.; Frey, S.K.; Lapen, D.R. Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water. Agric. Water Manag. 2016, 178, 159–170. [Google Scholar] [CrossRef]
- Sojka, M.; Kozłowski, M.; Stasik, R.; Napierała, M.; Kęsicka, B.; Wróżyński, R.; Jaskuła, J.; Liberacki, D.; Bykowski, J. Sustain-able Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Sub-surface Outflow. Sustainability 2019, 11, 4201. [Google Scholar] [CrossRef] [Green Version]
- Szymczak, T.; Kodura, A.; Kubrak, M. Water Level Controller in Drain Collectors. Patent Application No. P.426011, 2 January 2020. (In Polish). [Google Scholar]
- Sojka, M.; Stasik, R.; Napierała, M.; Wróżyński, R. Water Level Regulator, Especially in Drainage Network. Patent Application No. P.430541, 10 July 2019. (In Polish). [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popek, Z.; Bajkowski, S.; Siwicki, P.; Urbański, J. Laboratory Tests of New Groundwater Table Level Regulators in Subsurface Drainage Systems. Water 2021, 13, 631. https://doi.org/10.3390/w13050631
Popek Z, Bajkowski S, Siwicki P, Urbański J. Laboratory Tests of New Groundwater Table Level Regulators in Subsurface Drainage Systems. Water. 2021; 13(5):631. https://doi.org/10.3390/w13050631
Chicago/Turabian StylePopek, Zbigniew, Sławomir Bajkowski, Piotr Siwicki, and Janusz Urbański. 2021. "Laboratory Tests of New Groundwater Table Level Regulators in Subsurface Drainage Systems" Water 13, no. 5: 631. https://doi.org/10.3390/w13050631
APA StylePopek, Z., Bajkowski, S., Siwicki, P., & Urbański, J. (2021). Laboratory Tests of New Groundwater Table Level Regulators in Subsurface Drainage Systems. Water, 13(5), 631. https://doi.org/10.3390/w13050631