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Abstract: Improving agricultural water use efficiency (AWUE) is an important way to solve the
shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data
envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018.
Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA)
to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model
was then used to analyze the main factors that influence the AWUE in Northwest China. The
results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a
steady upward trend. However, only a few cities achieved effective agricultural water usage by
2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial
autocorrelation in Northwest China and showed significant high–high and low–low agglomeration
characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have
significant, positive effects on AWUE, while per capita water resource has a significant, negative
influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be
formulated according to local conditions. The results of this study can provide new ideas on the
study of AWUE in arid and semi-arid regions and provide references for the formulation of regional
agricultural water resource utilization policies as well.

Keywords: agricultural water use efficiency; spatial–temporal evolution; influencing factors; North-
west China; spatial econometric model

1. Introduction

Water is an essential and vital natural resource for the survival of all life on Earth [1].
However, due to factors such as rapid population and economic growth, urbanization,
and industrialization [2], the global demand for water is growing at a rate of 1% per year,
and the growth in demand for water is coming mostly from developing countries and
emerging economies. At the same time, climate change is accelerating the global water
cycle, resulting in more rain in wet areas and drought in dry areas. The quantity and
quality of water resources will be further reduced in the coming decades, with increasing
threats to human health, the environment, and sustainable development [3].

China is the world’s largest developing country and one of the 21 water-poor countries;
its per capita water resources share is low, being less than 1/4 of the world per capita [4].
The contradiction between socio-economic development and water shortage is serious. As
a traditionally agricultural country, agricultural production consumes 60–65% of China’s
total water use and feeds 22% of the world’s population on 7% of the world’s arable
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land [5]. However, China’s agricultural base is weak, and the long-term crude production
method relying on large-scale factor inputs makes the effective utilization coefficient of
irrigation water and the water productivity of farmland only equivalent to 60% of the
world’s advanced level [6]. At the same time, with the accelerated industrialization and
urbanization in China, the demand for industrial and domestic water resources is increas-
ing, and the proportion of agricultural water consumption to total water consumption is
on a decreasing trend, from 97.1% in 1949 to 61% in 2019 [7]. China’s agricultural water
resources are utilized in a crude manner and coupled with competition between different
water use sectors, resulting in increasingly prominent agricultural water use efficiency
(AWUE) problems and a structural scarcity of water resources [8], which have serious and
far-reaching impacts on agricultural production and food security.

In the face of the increasingly serious problem of agricultural water resources, the
Chinese government set the goal of saving water and increasing efficiency in agricultural
development in the National Water-Saving Action Plan [9], released in 2019, so as to
effectively improve the utilization efficiency of water resources and the capacity for water
security. As an important grain base in China, Northwest China has extremely distinct
characteristics of water resource formation and transformation, water cycle processes, and
spatial–temporal distribution. It is a typical representative of arid and semi-arid regions
in the world [10]. Therefore, taking Northwest China as the research area, this paper
discusses the spatio-temporal evolution characteristics of AWUE and identifies the key
factors influencing the improvement in AWUE. This not only will enable the Chinese
government to propose a specific and feasible path to improve AWUE in Northwest China
but will also have important implications for promoting the AWUE in arid and semi-arid
regions around the world and for developing countries in terms of formulating policies
related to the sustainable development of agricultural water resources.

The scientific evaluation of AWUE is a basic prerequisite for the overall improvement
of AWUE. In general, the evaluation of AWUE is a multi-objective and multi-criterion
synthetical problem in essence [11], and related evaluation studies have been developed
and refined in the course of production and life, resulting in different types of AWUE.
According to its development history, there has been a gradual shift from the study of
engineering efficiency of irrigation water delivery and field utilization to various efficiency
studies with water productivity as an indicator [12]. Hu et al. [13] measured water use
efficiency (WUE) in the framework of total factor production by the “ratio of target water
consumption to actual quantity”. This measurement idea considers the contribution of
various input factors on economic growth, so as to measure the macro-comprehensive
economic benefits of a resource system more truly and objectively [14]. Since then, the
total factor water use efficiency (TWUE) has gradually been recognized and applied by the
academic community. On the basis of this evaluation, scholars have measured the AWUE
by the stochastic frontier analysis (SFA) [15,16], data envelopment analysis (DEA) [17–19],
and other methods.

Research on factors affecting the AWUE has been conducted in two main areas: on the
one hand, AWUE studies were conducted based on farm household survey data. Based
on the stochastic frontier analysis, Xu et al. [20] measured wheat irrigation AWUE and
its influencing factors among farmers in Anhui Province. Geng [21] evaluated the AWUE
and influencing factors of 806 cotton households in Xinjiang and found that differences
in individual farmer characteristics and business practices can have a significant impact
on the AWUE of cotton. Based on the survey data of 213 farmers’ planting production in
Northwest China, Yu [22] found that the AWUE of maize and sunflower varied greatly
under different irrigation methods. On the other hand, AWUE studies were conducted
based on national or provincial agricultural water use data [23–26]. Tong [27] used the
Tobit model to analyze the influence of agricultural water use in China and found that
annual precipitation, imports and exports of agricultural products, and the proportion of
groundwater in the water supply structure have a significant, positive effect on AWUE,
while per capita water resources and irrigation fees inhibit AWUE. Mu et al. [18] used grey
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system analysis technology to analyze the influencing factors and found that both financial
status and agricultural water conservation technologies have a positive influence on AWUE.
Veettil et al. [28] found that the construction and upgrading of irrigation facilities and the
adoption of agricultural water-saving technologies contributed to the improvement of
AWUE in the Krishna River basin in India.

Generally, the existing literature has laid a firm foundation for the in-depth study of
AWUE, but many deficiencies still remain to be improved: Firstly, most of the traditional
models use the input–output data of the current period of the decision unit to construct the
production frontier surface, which leads to an inability to directly compare the efficiency
values in different years and makes it difficult to accurately and scientifically reflect the
variability of each decision unit. Secondly, existing studies often ignore the impact of
geographical and spatial factors on the development of regional AWUE when using the
traditional panel model for analysis. However, in the process of agricultural production,
due to the similarity of natural resource endowment, economic development level, and
agricultural water use mode in adjacent areas, the AWUE between different regions may
have mutual spatial influence. Thirdly, fewer studies have been conducted on AWUE in
Northwest China, and the limited research is only at a national level and analyzes the
AWUE differences between provinces in Northwest China. However, the important role
of local and municipal governments in coordinating the allocation of resources within
cities makes the study of meso-geographic units necessary. Thus, the study at the local
and municipal levels allows for a more in-depth examination of the characteristics and
unevenness of AWUE development between regions.

Based on this, the current paper takes Northwest China as an example, using the
global benchmark technology to construct an input-oriented Super-DEA to measure the
AWUE of 52 cities in the region from 2000 to 2018. ESDA was used to analyze the spatial–
temporal dynamic evolution and differentiation characteristics of AWUE, and a spatial
panel econometric model was then constructed to examine the influencing factors of AWUE
from the perspectives of resource conditions, agricultural modernization, and social and
economic development. Qualitative analysis and empirical tests yield relevant policy
implications.

2. Study Area

Northwest China encompasses the provinces of Shaanxi, Gansu, Qinghai, Ningxia,
and Xinjiang (Figure 1). It has an arid and semi-arid climate. Located in the hinterland of
the Eurasian continent, Northwest China represents approximately 30% of China’s land
area, 7.3% of its population, and 5.4% of its GDP. It has a scarce precipitation, has less than
500 mm of annual rainfall, and is characterized by arid, continental arid, semi-arid, and
alpine climates [29].

Northwest China is rich in light, heat, and soil resources. It is an important reserve
base for grain production in China and has an important agricultural value and strategic
position [30]. However, the ecological environment in this region is generally arid and short
of water. The total water resources are only 202.7 billion m3, accounting for 7.25% of China’s
total water resources. After deducting the water resources that are difficult to use or cannot
be used, the actual per capita water resources in the northwest region are approximately
990 m3, less than 1/10 of the world average, and the average water resources per mu of
cultivated land is less than half of China’s average level [31]. It is one of the regions with
the greatest shortage of water resources and the most prominent contradiction between
human and water in China. Meanwhile, the social and economic development level and
the degree of agricultural mechanization of Northwest China is relatively backward, and
the agricultural development mode is relatively extensive [32]. In some areas, such as the
Shiyang river basin, the utilization rate of water resource development exceeds 100% [33].
The irrational (i.e., inefficient, extensive, and wasteful) use of water resources further
exacerbates the shortage of agricultural water resources.
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3. Materials and Methods
3.1. AWUE Evaluation Indicator System

This paper uses global benchmark technology to construct the input-oriented Super-
DEA model and measure the AWUE in Northwest China, which effectively solves the
problem that multiple decision-making units cannot be compared across periods. Under
the constant returns to scale (CRS) assumption, the input–output factors are evaluated
in the Super-DEA model to obtain the optimal input of agricultural water resources. On
this basis, the ratio of the optimal water consumption to the actual water consumption is
used to obtain the value of AWUE. The efficiency value of the ith decision making units
(DMU) is

PGlobal = P1 ∪ P2 ∪ . . . ∪ Pt (1)

min
θ,z

θ
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(2)

where Pt represents the production reference set constructed based on the input–output
data of the current section DMU, and PGlobal represents the production reference set
constructed based on the input–output data of the global benchmark.

Compared to traditional single-factor indicators, the AWUE will consider agricultural
water inputs and other agricultural input factors in an integrated manner. In the process of
agricultural production, input factors such as water, land, capital, labor, and technology
are required. Referring to the existing literature [17,23], in this study, agricultural water
consumption represents the input of water factor, the total sown area of crops represents
the land input, the total power of agricultural machinery represents the capital input, the
total number of primary industry employees represents the labor input, and the application
amount of agricultural chemical fertilizer represents the technical input. Total agricultural
output value represents the output index, which builds this study’s index system of AWUE
in Northwest China (Table 1).

Table 1. Evaluation index system of AWUE (agricultural water use efficiency).

Variable Unit Variable Definition

Inputs

Land input khm2 Total sown area of crop
Labor input 104 labor Total number of primary industry employees

Capital input 104 kW Total power of agricultural machinery
Water input 104 m3 Total agricultural water consumption

Technical input 104 t
Total application amount of agricultural

chemical fertilizer
Outputs Agricultural output value Hundred million yuan Total agricultural output value

3.2. Exploratory Spatial Data Analysis (ESDA)

Exploratory Spatial Data Analysis (ESDA) is a collection of spatial data analysis
methods and techniques. Its core function is to test spatial homogeneity or heterogeneity
through global and local spatial autocorrelation measurements.

3.2.1. Global Spatial Autocorrelation

In this paper, global Moran’s I index is adopted to explore the spatial correlation and
spatial difference of AWUE among 52 prefecture-level cities in Northwest China. The
calculation formula is as follows:

I =
n ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 wij ∑n

i=1(xi − x)2 (3)

where n is the sample size, xi and xj are the observation quantities of space positions i and j,
and wij represents the proximity relationship between spatial positions i and j. When i and j
are adjacent, wij = 1; otherwise, wij = 0. The value range of global Moran’s I index is [−1, 1].
If the value of I is greater than 0 and significant, there is a positive spatial correlation
between regions, showing the characteristics of spatial agglomeration. If the value of I is
less than 0 and is significant, there is a negative spatial correlation between regions, which
shows the spatial dispersion feature.
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3.2.2. Local Spatial Autocorrelation (LISA)

In this paper, LISA was used to further measure the local spatial variation of AWUE
in Northwest China, and the difference degree and significance level of local spatial
agglomeration were analyzed. The calculation formula is as follows:

Ii = zi ∑j wijzj, zi =
n(xi − x)2

∑i(xi − x)
, zj =

(
xj − x

)
(4)

where zi and zj are the standardization of observed values on region i and region j, respec-
tively.

3.3. Spatial Econometric Model

Combining the factors of AWUE change, the spatial weight matrix is introduced to
construct the spatial panel measurement model, which is mainly divided into a spatial lag
model (SLM) and a spatial error model (SEM).

3.3.1. SLM Model

The SLM model is used to study whether the spatial correlation of AWUE between
neighboring regions is caused by the spatial dependence between variables, and the
expression is

Y = ρWY + Xβ + ε (5)

where W is the space weight matrix, X is the independent variable matrix, β is the regression
coefficient of all variables, and ρ is the spatial regression coefficient, which reflects the
direction and degree of spatial dependence.

3.3.2. SEM Model

The SEM model is used to study whether the spatial correlation of adjacent regions is
caused by the error term. The expression is

Y = Xβ + (1− λW)−1 µ µ ∼
(

0, σ2
)

(6)

where the parameter λ is the magnitude of the spatial dependence between the perturbation
error terms of the observation unit, reflecting the extent and direction of the influence of the
dependent variable errors of the neighboring cities on the observed values in the region.

3.4. Variable Selection

The explained variable of this study is AWUE, which is calculated by Super-DEA.
The explanatory variables were selected from water resource conditions, the agricul-

tural modernization level, and the social and economic development levels (Table 2). The
AWUE in different cities is influenced by internal factors such as agricultural technical
conditions, the popularization of mechanized services, and the popularization of water-
saving technologies, which lead to changes in farmers’ water use in agricultural production.
Furthermore, the diversification of natural conditions, economic growth, urbanization,
and other factors causes AWUE to change constantly. Referring to existing studies and
considering the availability of data, water resource endowment (per capita water resources
and annual precipitation), the agricultural modernization level (mechanization degree and
effective irrigation degree), and the economic and social development level (urbanization
level and per capita GDP) were selected as explanatory variables.

Water resource endowment: There is a negative effect of resource endowment on
resource utilization efficiency. The two water resources most directly related to the effect of
regional AWUE are irrigation water and precipitation. In regions where water resources
are relatively abundant, farmers may have a poor awareness of water conservation. An
unnecessary waste of water resources may occur in agricultural production, which increases
the redundancy of agricultural water input and thus reduces the AWUE. Referring to



Water 2021, 13, 632 7 of 19

existing studies [18–21], water resources per capita and annual precipitation were used to
represent water resource endowment.

Agricultural modernization level: Agricultural modernization is an effective way to
realize the efficient development of agricultural water use. The degree of mechanization
can represent the application degree of machinery in farming, irrigation, drainage, etc.
The effective irrigation area refers to the area of land equipped with irrigation equipment
capable of normal irrigation. Both of them are important indexes reflecting the develop-
ment level of agricultural modernization. Improving the level of agricultural equipment
can create an efficient agricultural production system, further enhance the comprehensive
production capacity, and promote the improvement of AWUE. Referring to existing stud-
ies [18–21], the degree of mechanization and effective irrigation were used to represent the
level of agricultural modernization.

Economic and social development level: Economic and social development is the
driving force to improve AWUE. Urbanization level and per capita GDP are important
indicators to measure the level of economic and social development of a region. The
higher the level of economic and social development is, the more farmers will be able to
purchase and adopt efficient water-saving technologies and facilities, so as to improve the
AWUE. Referring to existing studies [18–21], the urbanization rate and per capita GDP
were adopted to represent the level of economic and social development.

Table 2. Variable selections and definitions. DEA: data envelopment analysis.

Variable/Unit Variable Definition

Explained Variable AWUE Calculated by Super-DEA

Explanatory
variables

water resource
conditions

per capita water
resources(PCW)/%

Total regional water resources/Total
population of each region

precipitation (PRE)/mm
The depth at which rainfall accumulates on
the horizontal plane without evaporation,

infiltration and loss

agricultural
modernization

mechanization degree
(MECH)/%

Total power of agricultural machinery in
various regions/Total planting area of crops

effective irrigation
degree(EIG)/%

Effective irrigation area in each region/Total
planting area of crops

economic growth
(pGDP)/yuan RMB GDP per capita

Socio-economic
development urbanization (URBAN)/% Urbanization rate of the resident population

3.5. Data Sources

In this paper, panel data on the provinces of Shaanxi, Ningxia, Xinjiang, Gansu, and
Qinghai from 2000 to 2018 are used as the research sample. The data of the variables are
derived from the China Rural Statistical Yearbook, the China Agricultural Statistical Report,
the China Water Resources Bulletin, and the statistical yearbooks of all cities. There are
missing data in individual years, and the adjacent year interpolation method is used to
smooth the data.

4. Results and Discussion
4.1. Calculation of AWUE in Northwest China

MaxDEA software was used to calculate the AWUE of cities in Northwest China from
2000 to 2018 based on the total factor method, as shown in Appendix A. The average
AWUE of 52 cities in Northwest China was ranked (Table 3). The mean AWUE values of
different provinces were compared and analyzed (Figure 2).
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Table 3. AWUE and ranking by region from 2000 to 2018.

City 2000 2009 2018 Mean Ranking City 2000 2009 2018 Mean Ranking

Xi’an 0.13 0.36 1.27 0.46 19 Wuzhong 0.06 0.25 0.34 0.23 43
Tongchuan 0.29 0.48 0.78 0.50 14 Guyuan 0.09 0.29 0.58 0.30 33

Baoji 0.13 0.41 0.81 0.44 20 Zhongwei 0.06 0.26 0.59 0.25 42
Xianyang 0.07 0.31 0.98 0.50 15 Xining 0.09 0.23 0.61 0.28 34
Weinan 0.09 0.22 0.50 0.26 40 Haidong 0.10 0.24 0.45 0.26 39
Yan’an 0.20 0.48 1.06 0.57 11 Haibei 0.30 0.50 0.99 0.53 12

Hanzhong 0.01 0.08 0.98 0.35 28 Huangnan 0.46 0.74 1.01 0.73 5
Yulin 0.08 0.32 0.88 0.40 23 Hainan 0.32 0.41 0.88 0.49 16

Ankang 0.09 0.20 0.29 0.22 44 Golog 1.00 0.91 2.14 0.97 2
Shangluo 0.19 0.35 1.07 0.47 18 Yushu 0.51 0.76 2.67 0.87 4
Lanzhou 0.13 0.26 0.69 0.31 30 Haixi 0.24 0.30 0.79 0.43 21

Jiayuguan 1.05 1.01 0.93 0.94 3 Urumqi 0.21 0.51 0.99 0.61 8
Jinchang 0.16 0.24 0.53 0.26 36 Kelamayi 1.01 1.03 1.20 1.00 1

Baiyin 0.10 0.23 0.51 0.26 38 Shihezi 0.03 0.11 0.61 0.25 41
Tianshui 0.11 0.25 0.63 0.26 35 Tulufan 0.08 0.17 0.43 0.22 45
Wuwei 0.11 0.26 0.73 0.32 29 Hami 0.15 0.48 1.05 0.48 17

Zhangye 0.22 0.36 0.68 0.39 24 Changji 0.28 0.67 1.10 0.66 6
Pingliang 0.24 0.26 0.84 0.39 25 Ili 0.16 0.58 1.00 0.58 10
Jiuquan 0.07 0.38 0.66 0.37 26 Tarbagatay 0.28 0.67 0.97 0.63 7

Qingyang 0.10 0.27 0.58 0.35 27 Altay 0.14 0.21 0.31 0.21 46
Dingxi 0.16 0.21 0.43 0.26 37 Bortala 0.28 0.53 0.64 0.59 9

Longnan 0.14 0.21 0.73 0.31 31 Bayingol 0.15 0.43 1.00 0.52 13
Linxia 0.11 0.16 0.43 0.21 47 Aksu 0.05 0.13 0.24 0.13 50

Gannan 0.26 0.38 0.74 0.43 22 Kizilsu 0.17 0.20 0.25 0.21 48
Yinchuan 0.15 0.24 0.57 0.30 32 Kashgar 0.00 0.05 0.23 0.08 51

Shizuishan 0.06 0.05 0.45 0.17 49 Hoton 0.05 0.04 0.04 0.03 52
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Figure 2. Evolution trend of agricultural water use efficiency (AWUE) in Northwest China from 2000 to 2018.

From the overall perspective of Northwest China, by observing the trend of Figure 2,
the AWUE showed a steady upward trend from 2000 to 2018. The average efficiency
increased from 0.21 in 2000 to 0.77 in 2018, with an average growth rate of 3.11%. However,
the average AWUE in each year is below 0.8, which is still far from the effective frontier,
indicating that there is still large room for improvement in AWUE in Northwest China.
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From the provincial level (Figure 2), the average AWUE of the five northwest provinces
was close to and at a low level at the beginning of the investigated period. By 2018, only
Qinghai had achieved an effective AWUE of 1.19, followed by Shaanxi (0.86), Xinjiang (0.67),
and Gansu (0.65). Ningxia had the lowest AWUE (0.51), and the inter-provincial difference
was constantly expanding. During the investigation period, the AWUE of Qinghai was
significantly higher than the average level of the other four provinces, but it also showed a
trend of fluctuation and rise. The AWUE of Qinghai has significantly increased from 0.75 in
2017 to 1.19 in 2018, reaching the frontier of efficiency. The AWUE of Shaanxi rose steadily
from 2000 to 2018, but after reaching its peak (0.89) in 2017, it declined slightly in 2018. From
the perspective of the value of AWUE in Xinjiang, it showed a trend of steady fluctuation
and progress during the investigated period. It only declined in 2014 and then began to rise
slowly. The AWUE of Gansu dropped from 0.21 in 2000 to 0.08 in 2003, quickly recovered
to the initial level of 0.22 in 2004, and then showed a steady upward trend. The AWUE of
Ningxia kept rising steadily. However, due to the low initial efficiency and slow rise, the
AWUE of Ningxia remained at the lowest level from 2000 to 2018.

From the city level (Tables A1 and A2), the AWUE in Hoton and Jiayuguan was
reduced, and the AWUE in the other 50 cities increased to varying degrees during the
investigation period. From 2000 to 2010, the AWUE of various cities showed a trend of rising
fluctuation, but the change range was small, and the overall AWUE was still at a low level.
Since 2011, when the Chinese government called for the implementation of the strictest
water resource management system, the AWUE in cities has increased significantly, which
shows the government’s determination to save water, improve efficiency, and promote the
improvement of AWUE. The AWUE in Hanzhong, Kashgar, Shihezi, Xianyang, and Yulin
increased greatly, with an average growth rate of more than 10%. Altay, Bortala, Kizilsu,
and Kelamayi had the smallest increase in AWUE with an average growth rate of less than
5%. According to the ranking results of the average AWUE from 2000 to 2018, the average
AWUE in Kashgar and Hoton was the lowest, both below 0.01. The AWUE of Kelamayi,
Golog, and Jiayuguan were the three highest, with an AWUE above 0.9.

4.2. Spatial Pattern and Differentiation Characteristics of AWUE in Northwest China

The time series analysis of AWUE in Northwest China can only describe the change
trend and agglomeration difference of AWUE in time and cannot reflect the evolution law
of the combination of time and space. Thus, the spatial pattern and differentiation charac-
teristics of AWUE in Northwest China were explored based on the ESDA, an exploratory
spatial data analysis method in GIS. According to the minimum AWUE value of 0.0026
and the maximum value of 2.6736 in Northwest China from 2000 to 2018, with an effective
value of 1 in the Super-DEA model as the boundary, the values with an efficiency value of
less than 1 were divided according to intervals of 0.3 and 0.6, and the AWUE in Northwest
China was finally divided into four different intervals: (0.0026, 0.3), (0.3,0.6), (0.6, 1), and
(1, 2.6736). Spatial distribution maps were produced showing typical time points in 2000,
2006, 2012, and 2018 (Figure 3).

It can be concluded from the spatial distribution diagram that, similar to the time
series analysis above, the AWUE in Northwest China shows an obvious rising trend on
the whole; however, it also reflects the fact that the efficiency of agricultural water use in
cities of Northwest China has been low for a long time. In 2018, only individual cities in
the provinces of Shaanxi, Qinghai, and Xinjiang were efficient in agricultural water use.
Specifically, only Xi’an, Shangluo, Yan’an, Golog, Yushu, Huangnan, Kelamayi, Changji,
Ili, Hami, and Bayingol achieved an effective AWUE of more than 1. Xi’an, Shangluo,
and Yan’an are representative cities of Shaanxi. Compared with other cities in the same
province, Xi’an, Shangluo, and Yan’an have a relatively high economic strength, a high
agricultural technology level, and relatively high policy support. Qinghai is short of water
all year. Therefore, the AWUE of these three cities is relatively high. Guoluo, Yushu, and
Huangnan are located in the south of Qinghai, and in the range of the Sanjiangyuan Nature
Reserve. They are important ecological barriers and water conservation areas. The scale of
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agriculture and animal husbandry is small, and they can produce more output with less
input. The cities of Kelamay, Changji, Ili, and Hami are all located in Northern Xinjiang.
They are not blocked by the Tianshan mountains and are affected by the moisture from
the Atlantic Ocean and the Iberian airflow. As a result, the climate in Northern Xinjiang is
wetter, and the water resources are more abundant. The optimal allocation of input and
output can be achieved so as to realize the effective use of agricultural water.
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In order to further reveal the spatial variation and differentiation characteristics of
AWUE in Northwest China, based on the support of ArcGIS and GeoDa software, the
global Moran’s I index, LISA agglomeration, and hotspot analysis under ESDA were used
to analyze the spatial evolution characteristics, so as to characterize the spatial relationship
between AWUE and its adjacent cities in Northwest China. The global Moran’s I index
conceptualizes the spatial relationship between cities based on the born-adjacent principle
and standardizes the row to obtain the Moran’s I of AWUE in Northwest China from
2000 to 2018. Moran’s I was located in the interval of AWUE during the study period
(0.1688, 0.3459), and all of them passed the significance test, indicating that there was a
significant, positive correlation between AWUE in Northwest China, that is, a significant,
positive agglomeration and dependency feature. However, the positive correlation of
agglomeration characteristics experienced a “rise–fall–rise” similar to the N-type change
process, i.e., an overall enhancement (Figure 4).
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Under a 95% confidence interval, the relationship between the AWUE of a city in
Northwest China and its neighboring cities was further explored based on a Moran’s
I scatter plot, taking 2000, 2006, 2012, and 2018 as typical time points (Figure 4). The
range of Moran’s I slope value is (−1, 1). The closer it is to −1, the stronger the negative
correlation will be. The closer it is to 1, the stronger the positive correlation will be. The I, III
quadrants in the four quadrants represent H–H (high–high) agglomeration and L–L (low–
low) agglomeration, and the II, IV quadrants represent a H–L (high–low) anomaly and an
L–H (low–high) anomaly. The scatter plot shows most cities in the first study period in the I,
III quadrant, and it can be said that the agricultural water use efficiency in Northwest China
presents the agglomeration characteristics of H–H and L–L, i.e., the spatial distribution
characteristics of AWUE cities and adjacent high efficiency cities, inefficient cities, and
adjacent low efficiency cities. Fewer cities fall into quadrant II and IV, indicating that there
are fewer obvious anomalies in their AWUE and adjacent cities.

In order to further determine the agglomeration or abnormal distribution of AWUE in
the local space in Northwest China, the LISA agglomeration method under local Moran‘s I
was used to analyze this. Similar to Moran‘s I scatter plot, the LISA cluster plot divides
AWUE into four different types: (1) high–high agglomeration (H–H), meaning the AWUE
of a city and its neighboring cities is high; (2) low–low agglomeration (L–L), meaning
the AWUE of a city and its neighboring cities is low; (3) high–low agglomeration (H–L),
meaning a city has a high AWUE, but that of its neighboring cities are low; and (4) low–high
agglomeration (L–H), meaning a city’s own AWUE is low, but that of its neighboring cities
are higher. In addition, hot spot analysis can further detect the key location and local
correlation of spatial agglomeration and identify the contribution of specific regions to a
global autocorrelation. The Getis-OrdGi hotspot analysis of AWUE can be divided into
hot, sub-hot, sub-cool, and cold spot areas, and can be combined with LISA agglomeration
results (Figure 5), so that we can clearly explore, from a space perspective, Northwest
China’s AWUE in terms of agglomeration characteristics and spatial correlation.
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According to the distribution characteristics of local autocorrelation and hot spots,
the distribution of high-value and low-value areas does not show obvious spatial trend
characteristics, nor does it show consistent rules with the level of urban economic devel-
opment. However, the following conclusions can be drawn from the figure: (1) The H–H
type basically coincides with hot spot areas, but the change in a H–H area is more volatile
from 2000 to 2018. It is distributed from Golog and Huangnan in Eastern Qinghai in 2000
to Ili and Tacheng in Northwestern Xinjiang in 2006 and 2012, and then to Haixi and Yushu
in Western and Southern Qinghai in 2018. These cities and their neighboring cities are
rich in water resources and have high AWUE, and the cities have significant, positive
impacts on neighboring cities. (2) There is no cold point area with agricultural water
use efficiency in Northwest China from 2000 to 2018, while the L–L type is more often in
secondary cold point areas, and the change in L–L type is stable. These areas are basically
located in the southwest of Xinjiang Kizilsu, Kashgar, Aksu, and other cities. Lanzhou
is the only provincial capital city of the L–L type, which does not drive the surrounding
cities to develop into an agricultural mode of high-efficiency water use. Lanzhou is the
only provincial capital city in the L–L model that has not promoted the development of
the surrounding cities to an agricultural model of high-efficiency water consumption. The
AWUE of the low-concentration cities in Shaanxi and Ningxia have gradually improved,
so they no longer exemplify an L–L model. (3) L–H and H–L are rarely distributed and
sporadic over the years. In 2012, Altay, Tulufan, and Jiuquan were characterized mainly
by low–high agglomeration and consisted mainly of sub-hot spots. The AWUE in these
areas is low, and the agricultural production base is weak; however, the efficiency of the
neighboring cities is relatively high. From 2000 to 2018, the scope agglomeration of H–L
and L–H has changed from nothing, to existence, and then to nothing. The AWUE of those
cities basically showed a gradual improvement, with room for further improvement.
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4.3. Analysis on the Influencing Factors of AWUE

The change in AWUE in a region may influence the AWUE of neighboring regions.
This spatial effect can be generated through the reconfiguration of production factors
within the region and the flow of production factors between regions. This section mainly
addresses the influencing factors of AWUE from the perspective of a spatial economet-
ric model.

The premise of spatial econometric model construction is a spatial weight matrix. Two
forms of spatial weight matrix are constructed here. One of them is the Rook adjacency
weight matrix, W1, with a common boundary. When two cities have a common boundary,
the elements in the matrix are set to 1; otherwise, they are set to 0. The other is the
geographical distance weight matrix, W2. The elements in the matrix are constructed based
on the square of the reciprocal of the latitude and longitude distance of the geometric center
of the region.

Moran’s I analysis in the previous article has confirmed that there is a spatial au-
tocorrelation in the distribution of AWUE in Northwest China. Therefore, it is difficult
for traditional regression models to accurately analyze the influencing factors of AWUE
distribution. It is appropriate to use a spatial econometric model to analyze the influencing
factors. The construction of the matrix is consistent with Moran’s I index analysis. The
test results show that the Moran index of AWUE under the two different spatial weight
matrices is significantly positive, which indicates that the development of AWUE between
cities exhibits a significant, positive spatial autocorrelation.

This paper identifies the specific form of the spatial econometric model through two
Lagrange multipliers (LM-lag and LM-error) and their robust forms (Robust LM-lag and
Robust LM-error). The results in Table 4 show that, under the two weight matrices, both
LM-lag and LM-error passed the significance test. Robust LM-lag and Robust LM-error
also passed the significance test. In general, the SLM is better than the SEM, so the SLM was
chosen as the test model for spatial effect analysis. In addition, combined with Hausman’s
test, a fixed effect spatial measurement model was selected.

Table 4. The selection and definition of variables.

Model Selection
W1 W2

χ2 P χ2 P

LM test no spatial lag 15.996 0.000 1.489 0.222
Robust LM test no spatial lag 7.469 0.006 16.017 0.000

LM test no spatial error 8.528 0.003 4.633 0.031
Robust LM test no spatial error 0.001 0.980 19.159 0.000

Table 5 reports the model estimation results under different weight matrices. To facili-
tate comparative analysis, it also reports the measurement results of the one-period lagged
spatial panel models (Models 2 and 4) and the traditional ordinary least squares (OLS )
model (Model 5). From the regression estimation results, the influence of various factors on
AWUE under two spatial weight matrices is significant and consistent in direction. It has
good robustness. At the same time, the coefficients of the time lag effect l.lnAWUE and the
spatial spillover effect ρ are both significantly positive, indicating that the AWUE between
cities has significant path dependence and spatial spillover effects. On the one hand, path
dependence means that the changes in AWUE in the current period are positively affected
by the previous period of AWUE, which shows that the AWUE of various regions has
certain dynamics and related characteristics in time. Past agricultural production and
water-saving methods will influence the subsequent agricultural activities and thus affect
the improvement of the region AWUE. In addition, spatial spillover means that the AWUE
of this region will have a strong demonstration effect and radiant driving effect on the
AWUE of neighboring regions. The similarity of resource endowment, production condi-
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tions, and irrigation tradition between adjacent areas will strengthen the demonstration
effect and the mutual influence of agricultural production water in adjacent areas.

Table 5. Model estimation results.

Variables
W1 W2

Model 5
Model 1 Model 2 Model 3 Model 4

l.lnAWUE 0.755 ***
(14.28)

0.751 ***
(16.31)

lnPCW −0.058 ***
(−3.14)

−0.033 ***
(−3.16)

−0.058 ***
(−2.87)

−0.024 **
(−2.48)

−0.459 ***
(−2.63)

lnPRE −0.002
(0.06)

−0.006
(−0.23)

−0.020
(−0.44)

−0.026
(−1.05)

0.016
(0.36)

lnURBAN 0.223 **
(2.17)

0.071 *
(1.72)

0.268 ***
(3.27)

0.073 **
(1.98)

0.129 ***
(4.19)

lnpGDP 0.663 ***
(6.07)

0.200 ***
(2.87)

0.565 ***
(7.27)

0.198 ***
(2.68)

0.835 ***
(28.13)

lnMECH 0.075
(0.75)

0.039
(0.73)

0.092
(1.17)

0.016
(0.31)

0.074 **
(1.70)

lnEIG 0.258 **
(2.19)

0.160 ***
(3.18)

0.254 ***
(2.57)

0.176 ***
(3.24)

0.180 ***
(2.61)

ρ
0.163 **
(2.11)

0.031
(0.74)

0.129 **
(2.29)

0.073 *
(1.74)

sigma2 0.136 ***
(4.44)

0.074 ***
(4.67)

0.162 ***
(4.16)

0.055 ***
(6.99) 0.419

Adj-R2 0.687 0.828 0.655 0.854 0.649
LogL −79.701 −90.369 −132.883 39.9647 271.310

N 936 936 936 936 936

Notes: *, **, *** represent significance at 10%, 5%, and 1%, respectively; value in the bracket is Z-test value.

In terms of water resource endowment, both per capita water resources and annual
precipitation have a negative influence on AWUE, but only per capita water resources
passed the significance test. This might be because people in areas with high per capita wa-
ter resources are less aware of water conservation. People in these areas have behaviors that
lead to wasted agricultural water, thereby reducing AWUE. There is a positive relationship
between annual precipitation and AWUE, which is different from the conclusion drawn by
other scholars from a national perspective, but it accords with the fact of drought and water
shortage in Northwest China. The annual water volume in Northwest China, the region
with the least rainfall in the country, is 15–910 mm. Under the predicament of drought
and water shortage, relatively abundant rainfall will reduce the amount of agricultural
irrigation water to a certain extent, and relatively ease the tension between water supply
and demand in agricultural production. However, scarce rainfall is still difficult to meet
the needs of production development and has no significant impact on AWUE.

In terms of economic and social development levels, per capita GDP and the urbaniza-
tion level both have a significant, positive impact on AWUE. The impact of economic and
social development on AWUE may have two effects. On the one hand, in areas with higher
levels of economic and social development, farmers are more likely to accept advanced
agricultural technology concepts and have the ability to purchase and adopt efficient
water-saving technologies and facilities in agricultural production. On the other hand, the
higher the level of urbanization, the stronger the effect of absorption and radiation, which
can provide a solid guarantee for regional industrial agglomeration and technological
innovation and is conducive to the development of local production equipment, water-
saving technology, and water conservancy facilities, thus contributing to the improvement
of AWUE.

In terms of the agricultural modernization level, the effective irrigation level has a
positive and significant influence on the AWUE; that is, the improvement of the effective
irrigation level can improve the AWUE. The improvement of the effective irrigation level
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can improve the extensive irrigation methods in Northwest China, reduce the amount of
agricultural water consumption, and reduce the redundant input of water resources, which
will increase the AWUE. The level of mechanization did not have a positive impact on the
AWUE. It may be because of the blind planning and construction of water conservancy fa-
cilities in Northwest China that the introduced technology and equipment are not effective
and cannot easily play their due role.

5. Conclusions

In this study, cities in Northwest China from 2000 to 2018 were considered as research
objects, and the Super-DEA model was adopted to measure the AWUE of 52 cities in North-
west China. The spatial and temporal dynamic evolution and divergence characteristics of
AWUE were explored through the global Moran’s I index and LISA agglomerative maps,
and a spatial panel econometric model was then constructed to analyze the influencing
factors of AWUE. The main conclusions are as follows:

From the trend of time evolution, the AWUE in Northwest China shows a trend of
a steady rise, yet it is still far from the effective frontier. There is still a large space for
improvement. According to the analysis results of the broken line diagram, the AWUE of
various cities showed a trend of fluctuation and increase, but the range of change was small,
and the overall efficiency was still at a low level. After 2011, the rising degree increased
and then in 2018 reached 0.77. The AWUE values of Kelamayi, Golog, and Jiayuguan were
the three highest. The average AWUE in Kashgar and Hoton was the lowest.

From the spatial evolution pattern, the spatial distribution of AWUE in Northwest
China has a significant, positive correlation. According to ESDA analysis, the AWUE values
of 52 cities in Northwest China show significant, positive agglomeration and dependency
characteristics. The high–high and low–low agglomeration effects are significant, and the
distribution is concentrated.

The change in AWUE is influenced by factors such as resource endowment, socio-
economic development, and agricultural modernization development, and there is a
significant spatial dependence. Per capita GDP, the urbanization level, and the effective
irrigation degree have a significant, positive impact on AWUE, and per capita water
resources have a significant, negative impact on AWUE.

Based on the above analysis, some policy implications for improving AWUE in North-
west China can be made: First, on the basis of the implementation of measures such as the
development of economies of scale, it is necessary to develop agricultural water conser-
vation strategies and countermeasures according to local conditions based on the water
resource endowment, the degree of agricultural development, the level of technology, and
other factors in each city to avoid the implementation of uniform policies. Second, in
order to achieve the coordinated development of AWUE in various cities, the radiating
role of areas with high AWUE should be brought into play, the free flow of agricultural
production factors should be promoted, and the cooperation and exchange of agricultural
water conservation strategies between municipalities should be expanded. Third, it is nec-
essary to further change the water-saving production mode and strengthen the innovation
and promotion of agricultural science and technology, so that agricultural water resources
can be effectively managed and fully utilized. At the same time, in areas with relatively
abundant water resources, publicity on water conservation should be strengthened to
improve farmers’ awareness of water conservation.

Improving AWUE is not only important for solving the shortage of water resources,
but also a necessary way to realize the construction of agricultural ecological civilization.
The Super-DEA solves the problem of comparing efficiency values across periods, but it
does not fully consider water resource input constraints, surface source pollution emissions,
or the various influencing factors that lead to the loss of AWUE. Future research could
measure AWUE by incorporating agricultural carbon emissions and agricultural surface
pollution into the non-desired output. At the same time, natural and socio-economic factors,
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such as different crop types, irrigation technology, climatic conditions and population
density, can be introduced to explore in depth the influencing factors of AWUE.
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Appendix A

Table A1. The AWUE in China from 2000 to 2018.

Regions 2000
Year

2001
Year

2002
Year

2003
Year

2004
Year

2005
Year

2006
Year

2007
Year

2008
Year

2009
Year

Xi’an 0.13 0.14 0.14 0.15 0.18 0.20 0.21 0.25 0.34 0.36
Tongchuan 0.29 0.28 0.29 0.29 0.29 0.30 0.32 0.36 0.45 0.48

Baoji 0.13 0.14 0.17 0.15 0.19 0.21 0.24 0.28 0.33 0.42
Xianyang 0.07 0.08 0.20 0.11 0.16 0.19 0.20 0.25 0.29 0.29
Weinan 0.09 0.09 0.11 0.10 0.12 0.13 0.14 0.17 0.19 0.28
Yan’an 0.20 0.23 0.25 0.23 0.25 0.28 0.31 0.36 0.49 0.48

Hanzhong 0.01 0.01 0.22 0.01 0.02 0.03 0.04 0.05 0.08 0.08
Yulin 0.08 0.07 0.10 0.09 0.12 0.13 0.17 0.22 0.33 0.32

Ankang 0.09 0.10 0.23 0.16 0.10 0.06 0.07 0.09 0.11 0.20
Shangluo 0.19 0.14 0.32 0.10 0.20 0.23 0.25 0.29 0.23 0.35
Lanzhou 0.13 0.14 0.04 0.15 0.17 0.18 0.18 0.22 0.26 0.26

Jiayuguan 1.05 0.91 0.35 1.04 1.01 0.95 0.90 0.87 0.72 1.01
Jinchang 0.16 0.15 0.07 0.15 0.15 0.16 0.18 0.21 0.24 0.24

Baiyin 0.10 0.10 0.05 0.10 0.13 0.14 0.15 0.18 0.19 0.23
Tianshui 0.11 0.12 0.04 0.12 0.13 0.14 0.13 0.05 0.11 0.11
Wuwei 0.11 0.11 0.05 0.13 0.16 0.18 0.19 0.22 0.21 0.26

Zhangye 0.22 0.09 0.07 0.19 0.28 0.23 0.25 0.28 0.33 0.36
Pingliang 0.24 0.10 0.06 0.17 0.27 0.21 0.23 0.27 0.29 0.26
Jiuquan 0.07 0.04 0.08 0.20 0.08 0.26 0.30 0.32 0.37 0.38

Qingyang 0.10 0.11 0.05 0.14 0.13 0.17 0.18 0.20 0.24 0.27
Dingxi 0.16 0.20 0.05 0.14 0.17 0.15 0.15 0.19 0.22 0.21

Longnan 0.14 0.13 0.03 0.11 0.15 0.14 0.15 0.18 0.22 0.21
Linxia 0.11 0.12 0.06 0.12 0.13 0.14 0.15 0.17 0.17 0.16
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Table A1. Cont.

Regions 2000
Year

2001
Year

2002
Year

2003
Year

2004
Year

2005
Year

2006
Year

2007
Year

2008
Year

2009
Year

Gannan 0.26 0.26 0.10 0.27 0.28 0.29 0.31 0.33 0.36 0.38
Yinchuan 0.15 0.15 0.12 0.12 0.14 0.16 0.17 0.20 0.22 0.24

Shizuishan 0.06 0.06 0.10 0.11 0.07 0.07 0.07 0.07 0.07 0.05
Wuzhong 0.06 0.07 0.08 0.09 0.18 0.19 0.20 0.21 0.22 0.25
Guyuan 0.09 0.09 0.10 0.10 0.13 0.15 0.16 0.21 0.22 0.29

Zhongwei 0.06 0.06 0.06 0.06 0.13 0.17 0.17 0.19 0.23 0.26
Xining 0.09 0.09 0.10 0.10 0.10 0.12 0.13 0.17 0.21 0.23

Haidong 0.10 0.10 0.10 0.11 0.12 0.14 0.15 0.20 0.24 0.24
Haibei 0.30 0.30 0.31 0.32 0.32 0.34 0.33 0.31 0.45 0.50

Huangnan 0.46 0.46 0.45 0.46 0.50 0.60 0.60 0.58 0.71 0.74
Hainan 0.32 0.32 0.34 0.24 0.40 0.28 0.29 0.34 0.42 0.41
Golog 1.00 1.00 1.00 0.99 0.98 1.05 0.98 0.99 1.05 0.91
Yushu 0.51 0.51 0.55 0.55 0.66 0.62 0.50 0.73 1.11 0.76
Haixi 0.24 0.25 0.27 0.28 0.28 0.29 0.28 0.30 0.30 0.30

Urumqi 0.21 0.23 0.31 0.49 0.61 0.62 0.58 0.54 0.52 0.51
Kelamayi 1.01 1.00 1.00 1.00 1.00 0.99 1.36 0.91 0.98 1.03
Shihezi 0.03 0.02 0.03 0.03 0.03 0.06 0.06 0.07 0.11 0.11
Tulufan 0.08 0.08 0.10 0.11 0.13 0.15 0.18 0.19 0.19 0.17
Hami 0.15 0.15 0.12 0.17 0.18 0.23 0.28 0.41 0.42 0.48

Changji 0.28 0.28 0.30 0.34 0.38 0.46 0.49 0.51 0.55 0.67
Ili 0.16 0.16 0.18 0.26 0.30 0.37 0.40 0.48 0.49 0.58

Tarbagatay 0.28 0.30 0.33 0.37 0.37 0.43 0.48 0.52 0.53 0.67
Altay 0.14 0.14 0.15 0.15 0.16 0.17 0.18 0.17 0.19 0.21

Bortala 0.28 0.29 0.30 0.36 0.39 0.41 0.43 0.46 0.45 0.53
Bayingol 0.15 0.16 0.17 0.20 0.22 0.25 0.25 0.35 0.39 0.43

Aksu 0.05 0.05 0.05 0.05 0.06 0.07 0.07 0.09 0.11 0.13
Kizilsu 0.17 0.17 0.18 0.18 0.18 0.20 0.20 0.21 0.20 0.20

Kashgar 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.02 0.04 0.05
Hoton 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.04

Table A2. The AWUE in China from 2000 to 2018 (continued from Table A1).

Regions 2010 Year 2011 Year 2012 Year 2013 Year 2014 Year 2015 Year 2016 Year 2017 Year 2018 Year

Xi’an 0.45 0.48 0.60 0.69 0.73 0.76 0.81 0.87 1.27
Tongchuan 0.49 0.55 0.64 0.68 0.72 0.76 0.75 0.76 0.78

Baoji 0.47 0.48 0.60 0.65 0.72 0.74 0.77 0.79 0.81
Xianyang 0.45 0.54 0.61 0.66 0.76 0.84 0.87 1.89 0.98
Weinan 0.28 0.26 0.34 0.35 0.40 0.43 0.46 0.48 0.50
Yan’an 0.54 0.62 0.76 0.84 0.89 1.01 0.95 1.01 1.06

Hanzhong 0.15 0.40 0.49 0.67 0.85 0.79 0.88 0.96 0.98
Yulin 0.38 0.44 0.54 0.63 0.70 0.77 0.77 0.89 0.88

Ankang 0.25 0.41 0.45 0.50 0.26 0.27 0.28 0.30 0.29
Shangluo 0.43 0.49 0.62 0.72 0.74 0.85 0.84 0.95 1.07
Lanzhou 0.29 0.30 0.35 0.41 0.44 0.51 0.55 0.66 0.69

Jiayuguan 0.86 1.02 0.99 1.16 1.02 0.96 1.00 1.03 0.93
Jinchang 0.25 0.27 0.29 0.31 0.35 0.39 0.41 0.52 0.53

Baiyin 0.28 0.27 0.31 0.37 0.42 0.44 0.46 0.49 0.51
Tianshui 0.23 0.27 0.30 0.42 0.47 0.45 0.60 0.59 0.63
Wuwei 0.28 0.30 0.38 0.43 0.49 0.52 0.55 0.69 0.73

Zhangye 0.38 0.42 0.47 0.55 0.62 0.61 0.61 0.68 0.68
Pingliang 0.35 0.36 0.44 0.50 0.60 0.63 0.72 0.81 0.84
Jiuquan 0.40 0.43 0.47 0.55 0.59 0.64 0.63 0.61 0.66

Qingyang 0.33 0.33 0.44 0.71 0.83 0.76 0.56 0.56 0.58
Dingxi 0.26 0.25 0.30 0.38 0.44 0.41 0.42 0.43 0.43

Longnan 0.26 0.24 0.32 0.41 0.49 0.58 0.66 0.71 0.73
Linxia 0.20 0.19 0.21 0.27 0.29 0.31 0.33 0.41 0.43

Gannan 0.46 0.40 0.46 0.52 0.63 0.63 0.67 0.74 0.74
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Table A2. Cont.

Regions 2010 Year 2011 Year 2012 Year 2013 Year 2014 Year 2015 Year 2016 Year 2017 Year 2018 Year

Yinchuan 0.31 0.33 0.39 0.43 0.46 0.48 0.52 0.54 0.57
Shizuishan 0.10 0.11 0.10 0.14 0.37 0.38 0.41 0.43 0.45
Wuzhong 0.22 0.28 0.29 0.33 0.34 0.35 0.36 0.26 0.34
Guyuan 0.32 0.36 0.39 0.45 0.53 0.49 0.47 0.54 0.58

Zhongwei 0.26 0.28 0.34 0.39 0.26 0.33 0.31 0.54 0.59
Xining 0.30 0.31 0.35 0.42 0.49 0.49 0.52 0.57 0.61

Haidong 0.25 0.34 0.38 0.40 0.38 0.44 0.38 0.39 0.45
Haibei 0.52 0.54 0.60 0.70 0.92 0.95 0.76 0.66 0.99

Huangnan 0.75 0.78 0.80 0.93 1.01 0.96 1.02 1.01 1.01
Hainan 0.47 0.47 0.54 0.62 0.72 0.76 0.79 0.79 0.88
Golog 0.92 0.79 0.88 0.67 0.76 1.03 0.44 0.87 2.14
Yushu 0.89 0.81 0.87 0.94 1.02 1.02 0.94 0.94 2.67
Haixi 0.37 0.38 0.39 0.51 0.63 0.72 0.76 0.75 0.79

Urumqi 0.59 0.59 0.67 0.76 0.75 0.84 0.89 0.89 0.99
Kelamayi 0.97 0.87 0.97 1.34 0.46 0.87 0.99 0.98 1.20
Shihezi 0.13 0.13 0.18 0.32 0.41 0.79 0.79 0.79 0.61
Tulufan 0.21 0.20 0.22 0.31 0.32 0.36 0.37 0.37 0.43
Hami 0.52 0.46 0.65 0.77 0.65 0.74 0.85 0.91 1.05

Changji 0.71 0.78 0.90 0.99 0.96 0.91 0.98 0.90 1.10
Ili 0.60 0.68 0.78 0.90 0.95 0.94 0.83 0.92 1.00

Tarbagatay 0.69 0.73 0.98 0.94 0.81 0.79 0.88 0.96 0.97
Altay 0.20 0.21 0.21 0.24 0.29 0.29 0.31 0.32 0.31

Bortala 0.62 0.82 0.82 0.87 0.87 0.84 0.89 0.93 0.64
Bayingol 0.50 0.58 0.76 0.94 0.71 0.99 0.91 0.84 1.00

Aksu 0.13 0.15 0.14 0.19 0.20 0.22 0.22 0.21 0.24
Kizilsu 0.21 0.20 0.22 0.23 0.26 0.22 0.24 0.24 0.25

Kashgar 0.08 0.08 0.07 0.08 0.15 0.21 0.22 0.21 0.23
Hoton 0.03 0.04 0.04 0.04 0.02 0.01 0.01 0.01 0.04

References
1. Richey, A.S.; Thomas, B.F.; Lo, M.L.; Famiglietti, J.S.; Swenson, S.; Rodell, M. Uncertainty in global groundwater storage estimates

in a total groundwater stress framework. Water Resour. Res. 2015, 51, 5198–5216. [CrossRef]
2. Voeroesmarty, C.J.; Mcintyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P. Global threats to human water security

and river biodiversity. Nature 2010, 467, 555–561. [CrossRef] [PubMed]
3. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. Available online: https:

//www.unwater.org/publications/world-water-development-report-2018/ (accessed on 19 March 2018).
4. Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China.

Agric. Water Manag. 2006, 80, 23–40. [CrossRef]
5. Geng, Q.; Ren, Q.; Nolan, R.H.; Wu, P.; Yu, Q. Assessing china’s agricultural water use efficiency in a green-blue water perspective:

A study based on data envelopment analysis. Ecol. Indic. 2019, 96, 329–335. [CrossRef]
6. Peng, S. Water resources strategy and agricultural development in china. J. Exp. Bot. 2011, 62, 1709–1713. [CrossRef]
7. Song, P.; Wang, X.; Wang, C.; Lu, M.; Wang, H. Analysis of agricultural water use efficiency based on analytic hierarchy process

and fuzzy comprehensive evaluation in Xinjiang, China. Water 2020, 12, 3266. [CrossRef]
8. Sun, S.K.; Liu, J.; Wu, P.T.; Wang, Y.B.; Zhao, X.N.; Zhang, X.H. Comprehensive evaluation of water use in agricultural production:

A case study in Hetao irrigation district, China. J. Clean Prod. 2011, 112, 4569–4575. [CrossRef]
9. National Water-Saving Action Plan. Available online: http://www.mwr.gov.cn/xw/slyw/201910/t20191016_1365357.html

(accessed on 16 October 2019).
10. Chen, Y.; Li, B.; Li, Z.; Li, W. Water resource formation and conversion and water security in arid region of northwest china. J.

Geogr. Sci. 2016, 26, 939–952. [CrossRef]
11. Tan, Q.; Zhang, T.Z. Robust fractional programming approach for improving agricultural water-use efficiency under uncertainty.

J. Hydrol. 2018, 564, 1110–1119. [CrossRef]
12. Halsema, G.E.V.; Vincent, L. Efficiency and productivity terms for water management: A matter of contextual relativism versus

general absolutism. Agric. Water Manag. 2012, 108, 9–15. [CrossRef]
13. Hu, J.L.; Wang, S.C.; Yeh, F.Y. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [CrossRef]
14. Cao, X.; Zeng, W.; Wu, M.; Guo, X.; Wang, W. Hybrid analytical framework for regional agricultural water resource utilization

and efficiency evaluation. Agric. Water Manag. 2020, 231, 106027. [CrossRef]

http://doi.org/10.1002/2015WR017351
http://doi.org/10.1038/nature09440
http://www.ncbi.nlm.nih.gov/pubmed/20882010
https://www.unwater.org/publications/world-water-development-report-2018/
https://www.unwater.org/publications/world-water-development-report-2018/
http://doi.org/10.1016/j.agwat.2005.07.021
http://doi.org/10.1016/j.ecolind.2018.09.011
http://doi.org/10.1093/jxb/err049
http://doi.org/10.3390/w12113266
http://doi.org/10.1016/j.jclepro.2015.06.123
http://www.mwr.gov.cn/xw/slyw/201910/t20191016_1365357.html
http://doi.org/10.1007/s11442-016-1308-x
http://doi.org/10.1016/j.jhydrol.2018.07.080
http://doi.org/10.1016/j.agwat.2011.05.016
http://doi.org/10.1016/j.resourpol.2007.02.001
http://doi.org/10.1016/j.agwat.2020.106027


Water 2021, 13, 632 19 of 19

15. Liu, X.; Shi, L.; Qian, H.; Sun, S.; Wu, P.; Zhao, X. New problems of food security in northwest china: A sustainability perspective.
Land Degrad. Dev. 2020, 31, 975–989. [CrossRef]

16. Kaneko, S.; Tanaka, K.; Toyota, T.; Managi, S. Water efficiency of agricultural production in china: Regional comparison from 1999
to 2002. Int. J. Agric. Res. Gov. Ecol. 2004, 3, 231–251. [CrossRef]

17. Azad, M.A.; Ancev, T.; Hernández-Sancho, F. Efficient water use for sustainable irrigation industry. Water Res. Manag. 2015,
29, 1683–1696. [CrossRef]

18. Mu, L.; Fang, L.; Wang, H.; Chen, L.; Yang, Y.; Qu, X.J. Exploring northwest china’s agricultural water-saving strategy: Analysis
of water use efficiency based on an SE-DEA model conducted in Xi’an, Shaanxi province. Water Sci. Technol. 2016, 74, 1106–1115.
[CrossRef]

19. Liu, Y.; Hu, X.; Zhang, Q.; Zheng, M. Improving agricultural water use efficiency: A quantitative study of zhangye city using the
static CGE model with a CES water−land resources account. Sustainability 2017, 9, 308. [CrossRef]

20. Xu, L.; Huang, Y. Measurement of Irrigation Water Efficiency and Analysis of Influential Factors: An Empirical Study of
Mengcheng County in Anhui Province. Res. Sci. 2012, 34, 105–113.

21. Geng, X.H.; Zhang, X.H.; Song, Y.L. Measurement of Irrigation Water Efficiency and Analysis of Influential Factors: An Empirical
Study based on stochastic production frontier and cotton farmers’ data in Xinjiang. J. Nat. Resour. 2014, 29, 934–943.

22. Yu, Z.Y.; Liang, S.M. Analysis of irrigation water using efficiency in arid and semi-arid areas in Northwest China based on Miami
model. J. Arid. Land Res. Environ. 2017, 31, 49–55.

23. Wang, Y. Urban land and sustainable resource use: Unpacking the countervailing effects of urbanization on water use in china,
1990–2014. Land Use Policy 2020, 9, 104307. [CrossRef]

24. Zhang, X.D.; Zhu, S. Spatial differences and influencing factors of regional agricultural water use efficiency in Heilongjiang
province, China. Water Supply 2019, 19, 545–552.

25. Wang, G.F.; Chen, J.C.; Wu, F.; Li, Z.H. An integrated analysis of agricultural water-use efficiency: A case study in the Heihe river
basin in northwest china. Phys. Chem. Earth Parts A/B/C 2015, 89, 3–9. [CrossRef]

26. Azad, M.A.; Ancev, T. Measuring environmental efficiency of agricultural wateruse: A Luenberger environmental indicator. J.
Environ. Manag. 2014, 145, 314–320. [CrossRef]

27. Tong, J.P.; Ma, J.F.; Wang, H.M. Agricultural Water Use Efficiency and Technical Progress in China Based on Agricultural Panel
Data. Res. Sci. 2014, 36, 1765–1772.

28. Veettil, P.C.; Speelman, S.; Huylenbroeck, G.V. Estimating the impact of water pricing on water use efficiency in semi-arid
cropping system: An application of probabilistically constrained nonparametric efficiency analysis. Water Res. Manag. 2013,
27, 55–73. [CrossRef]

29. Guo, B.; Kong, W.H.; Jiang, L. Dynamic monitoring of vulnerability and quantitative analysis of driving factors in northwest arid
desert ecosystem. J. Nat. Resour. 2018, 33, 412–424.

30. Deng, M.J. “Three Water Lines” strategy: Its spatial patterns and effects on water resources allocation in Northwest China. Acta
Geogr. Sin. 2018, 73, 1189–1203.

31. Huang, Y.J.; Su, Y.; Li, R.L.; He, H.Q.; Liu, H.Y. Study of the spatio-temporal differentiation of factors influencing carbon emission
of the planting industry in arid and vulnerable areas in northwest china. Int. J. Environ. Res. Public Health 2019, 17, 187. [CrossRef]

32. Wang, G.F.; Lin, N.; Zhou, X.X.; Li, Z.H.; Deng, X.Z. Three-stage data envelopment analysis of agricultural water use efficiency: A
case study of the Heihe river basin. Sustainability 2018, 10, 568. [CrossRef]

33. Ma, J.Z.; Wang, X.S.; Edmunds, W.M. The characteristics of ground-water resources and their changes under the impacts of
human activity in the arid northwest china—A case study of the Shiyang river basin. J. Arid Environ. 2005, 61, 277–295. [CrossRef]

http://doi.org/10.1002/ldr.3498
http://doi.org/10.1504/IJARGE.2004.006038
http://doi.org/10.1007/s11269-014-0904-8
http://doi.org/10.2166/wst.2016.286
http://doi.org/10.3390/su9020308
http://doi.org/10.1016/j.landusepol.2019.104307
http://doi.org/10.1016/j.pce.2015.10.009
http://doi.org/10.1016/j.jenvman.2014.05.037
http://doi.org/10.1007/s11269-012-0155-5
http://doi.org/10.3390/ijerph17010187
http://doi.org/10.3390/su10020568
http://doi.org/10.1016/j.jaridenv.2004.07.014

	Introduction 
	Study Area 
	Materials and Methods 
	AWUE Evaluation Indicator System 
	Exploratory Spatial Data Analysis (ESDA) 
	Global Spatial Autocorrelation 
	Local Spatial Autocorrelation (LISA) 

	Spatial Econometric Model 
	SLM Model 
	SEM Model 

	Variable Selection 
	Data Sources 

	Results and Discussion 
	Calculation of AWUE in Northwest China 
	Spatial Pattern and Differentiation Characteristics of AWUE in Northwest China 
	Analysis on the Influencing Factors of AWUE 

	Conclusions 
	
	References

