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Abstract: In this study, we investigated the interdecadal variability in monsoon rainfall in the
Myanmar region. The gauge-based gridded rainfall dataset of the Global Precipitation Climatology
Centre (GPCC) and Climatic Research Unit version TS4.0 (CRU TS4.0) were used (1950–2019) to
investigate the interdecadal variability in summer monsoon rainfall using empirical orthogonal
function (EOF), singular value decomposition (SVD), and correlation approaches. The results reveal
relatively negative rainfall anomalies during the 1980s, 1990s, and 2000s, whereas strong positive
rainfall anomalies were identified for the 1970s and 2010s. The dominant spatial variability mode
showed a dipole pattern with a total variance of 47%. The power spectra of the principal component
(PC) from EOF revealed a significant peak during decadal timescales (20–30 years). The Myanmar
summer monsoon rainfall positively correlated with Atlantic multidecadal oscillation (AMO) and
negatively correlated with Pacific decadal oscillation (PDO). The results reveal that extreme monsoon
rainfall (flood) events occurred during the negative phase of the PDO and below-average rainfall
(drought) occurred during the positive phase of the PDO. The cold phase (warm phase) of AMO
was generally associated with negative (positive) decadal monsoon rainfall. The first SVD mode
indicated the Myanmar rainfall pattern associated with the cold and warm phase of the PDO and
AMO, suggesting that enhanced rainfall for about 53% of the square covariance fraction was related
to heavy rain over the study region except for the central and eastern parts. The second SVD mode
demonstrated warm sea surface temperature (SST) in the eastern equatorial Pacific (El Niño pattern)
and cold SST in the North Atlantic Ocean, implying a rainfall deficit of about 33% of the square
covariance fraction, which could be associated with dry El Niño conditions (drought). The third
SVD revealed that cold SSTs in the central and eastern equatorial Pacific (La Niña pattern) caused
enhance rainfall with a 6.7% square covariance fraction related to flood conditions. Thus, the extra-
subtropical phenomena may affect the average summer monsoon trends over Myanmar by enhancing
the cross-equatorial moisture trajectories into the North Atlantic Ocean.

Keywords: summer monsoon rainfall; interdecadal variability; AMO; PDO; Myanmar

1. Introduction

Rainfall variability is among the basic indicators of climate and water cycle changes
in a region [1]. Anomalous changes in rainfall dynamics may cause hydro-meteorological
hazards such as flood, drought, and storms [2,3], thus ultimately resulting in loss of human
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lives, and destruction of biodiversity and natural resources [4,5]. Variation in rainfall
pattern may also occur on intra-seasonal and inter-annual scales, posing serious threats
to agriculture, water resources, and the sustainable development of a region [5,6]. The
Intergovernmental Panel on Climate Change (IPCC) stated that global -warming-induced
climate change has intensified the variability in rainfall over space and time across the
globe [7]. It is also projected that the spatiotemporal variability in rainfall and related
extremes will intensify in the near future [7]. These projections can be used as feedback
for the policy makers in water resource management, disaster risk reduction, and regional
climate analysis [8].

The climate of Myanmar is dominated by the Southeast Asian (SEA) monsoon; about
70% of the total annual rainfall is received during monsoon season (June to September),
with large spatiotemporal variance at the country level across latitude and longitude. With
high exposure and low resilience, the SEA region is highly vulnerable to climate change
influences, especially as the intensity and frequency of extreme events may increase in the
near future [9]. Ge et al. [10] showed future projections in rainfall extremes over the SEA
using CMIP6 multi-model ensemble. They reported significant changes in the number of
heavy rainfall days and the intensity of daily rainfall, demonstrating that locally heavy
rainfall is likely to occur over a short time and that more rainfall extremes over the SEA
are probable in a warmer future. Such increasing trends in extreme rainfall have been
scientifically observed during last few decades over Asia [10,11], and will likely increase
further with global warming. Variation in the monthly distribution of monsoon rainfall
and its amounts will have a substantial impact on the agricultural production, water
resources, and overall economy. It is expected that rainfall intensity shifting and patterns
will undergo certain changes, and extreme weather events such as drought and flood may
occur more frequently [12]. In recent years, such changes have already been experienced
over the SEA, resulting in heavy rainfall and loss of capital, infrastructure, and human
lives during 2009 and 2014 in Myanmar [13–15] and the 2015 and 2017 floods in India and
Bangladesh [16]. These changes, to some extent, were linked to large-scale anomalous
atmospheric circulation patterns and the resultant flux, which caused local and remote
damage on a vast scale [17].

The classical division of monsoon areas used at the beginning of the 20th century was
entirely based on the annual reversal of winds and increase rainfall during a short period of
time [18]. The classical definition binds the monsoon to the eastern hemisphere, including
Asian, Australian, tropical African, and Indian Ocean monsoon systems. The simulation
experiments and geological records suggest that the Asian monsoon is sensitive to land
surface features such as Tibetan uplift and Himalayan terrain [19,20]. Regional variability
in magnitude, onset, and withdrawal of monsoonal rainfall is linked to continental, oceanic,
and atmospheric circulation patterns [21]. Changes in these features are usually used as an
integrated component in the forecast for predicting the above features [22,23]. The IPCC
indicated that the impact of climate change on regional monsoon rainfall intensity and
variability is more complex and uncertain, and the near-future monsoon system may be
more severe than in the present decade [11].

Numerous studies have been conducted in Myanmar to identify the spatiotemporal
trends in monthly, annual, and seasonal rainfall [21,24]. These variations strongly affect
the ecological, social, and economic aspects of the country, such as availability of water
resources, agricultural production, and economic practices [25,26]. A recent study indi-
cated that the seasonal monsoon rainfall exhibits an increasing trend in the northwest of
Myanmar, but a decreasing trend in the southern coastal belt [27,28]. The monsoon rainfall
showed an upward trend in southeastern Myanmar, but a downward trend in the central
parts [29]. The northern and northeastern plateau of Myanmar experienced an increasing
trend in monsoon rainfall [30]. It has been projected that the interannual variation in
monsoon rainfall will continue in the future with significant intensity, which will adversely
impact the climate and hydrometeorological aspects of Myanmar [4,31]. Chhin et al., (2019)
proposed an area-averaged sea surface temperature (SST) and a combination of different
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variables at each corresponding location over an equatorial region, and found a good
predictor for operational long-term statistical prediction of monthly rainfall in the southern
Indochina Peninsula, particularly for the pre-monsoon season. The aforementioned studies
provided detailed information about the spatiotemporal changes in monsoon rainfall over
Myanmar; however, none of the studies considered the sub-seasonal rainfall variation.
Furthermore, the perceived potential drivers of monsoon variability have also not been
explored in detail in the region [17,32].

According to Zaw et al., (2020), extreme events are associated with the broader-scale
atmospheric circulations of the Pacific and Indian Oceans, especially during the positive
phase of the El Niño southern oscillation (ENSO). Long-term climate variation affects
seasonal to interannual climate variability and is important in the climate research over
the SEA region, mainly over Myanmar. In this study, the empirical orthogonal function
(EOF) method was used to analyze the decadal timescales of the dominant mode of the
monsoon rainfall pattern. The extreme behavior of summer monsoon rainfall variability,
which is related to global climate phenomena such as the Pacific decadal oscillation (PDO)
and the Atlantic multidecadal oscillation (AMO), was analyzed using the singular value
decomposition (SVD) method. After this, we examined the correlation between summer
monsoon rainfall and SST on the decadal time scale. We aimed to fill the gap in the literature
by assessing the interdecadal variability in summer monsoon rainfall to identify the relevant
large-scale phenomena of the atmospheric and oceanic circulation. The summer monsoon
mostly occurs during the months of May to October in the study region. Therefore, we
considered May to October in our investigation of the monsoon season influence over
Myanmar from 1950 to 2010 [4,33,34]. The rest of this paper is structured as follows:
Section 2 describes our data and methodology; the results are provided in Section 3, with
the discussion and conclusions presented in Section 4.

2. Study Area

Myanmar is a tropical country situated in the SEA region at 9◦–28◦ N and 92◦–101◦ E
(Figure 1). SEA is located in Asia, comprising the south of China, the east of India, and
the northwest of Australia. The region is located between the Indian Ocean and the Bay of
Bengal (BoB) in the west, the Philippine Sea, the South China Sea, and the Pacific Ocean in
the east [35]. Myanmar’s climate is mostly influenced by the Indian summer monsoon [36].
The country has a tropical to subtropical monsoon climate with three seasons: hot, dry
inter-monsoonal (mid-February to mid-May); rainy southwest monsoon (mid-May to late
October); and cool and dry northeast monsoon (late October to mid-February) (NAPA, 2012).
Myanmar is an agricultural country and monsoon rice occupies 80% of the planted rice area;
for summer rice, it occupies 20% [37]. The region is located in the Indian monsoon regions
where weather and climate disasters frequently produce damage in the summer monsoon
season (May–October). For example, in 2019 and 2020, extreme floods and landslides in
Myanmar occurred due to the strong monsoon rainfall, resulting in considerable loss of life
and property. Long-lasting extremely dry periods and the very low amount of total monsoon
rainfall (May–October) affect water scarcity and threaten the economy, livelihood, and food
security in the country [4,31]. Water scarcity occurs in the central dry and deltaic regions
during the summer (March–April) [38].
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3. Data and Methodology
3.1. Data

We used monthly gauge-based gridded rainfall datasets of the Global Rainfall Clima-
tology Centre (GPCC) and Climatic Research Unit version TS4.0 (CRU TS4.0) during the
period of 1950–2019 [39–42]. The gridded climate datasets were collected with a spatial
resolution of 0.5◦ × 0.5◦ over the study region. Several institutes have developed gridded
climate datasets during the past few decades, which are frequently used in hydro-climatic
assessments [40,43,44]. Among others, the data products of CRUTS4.0 and GPCC are
commonly used due to a longer temporal span [39,41]. The in situ observation data of 35
meteorological stations were acquired from the Department of Meteorology and Hydrol-
ogy (DMH), Myanmar. The long-term in situ observation data were further used after
validation with observed summer monsoon rainfall (1950–2019), which is highly correlated
with GPCC gridded data, to investigate the interdecadal variability.

The monthly data of the Pacific decadal oscillation (PDO) Index from May–October
for the period 1950 to 2010 were used in this study [22,45]. The AMO index is defined
as a local estimate over the entire North Atlantic low-resolution annual SST anomalies
after removing any direct trend [46]. The North Pacific (NP) index, North Atlantic Os-
cillation (NAO) index, and the Arctic Oscillation (AO) index data were also used in this
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study [47]. Large-scale atmospheric circulation, such as air temperature and relative hu-
midity, was collected from ERA5 the 5th generation reanalysis of the European Centre
for Medium-Range Weather Forecasts (ECMWF) to determine the related breakouts and
their moisture transport [48,49]. The extended version of the Reproduced Ocean Surface
Temperature (ERSST, version3b), published in the National Maritime and Barometrical
Administration/National Climatic Information Center, was used for seawater heating [50].
Analytical data from the National Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) [51], such as speed, zonal and meridional wind,
vertical speed (0.5◦ × 0.5◦), were used to explore long-term wind zones.

3.2. Methods

The EOF is a statistical method broadly used to minimize the multidimensionality
of complex climate information and recognize the most imperative physical modes with
the least chance of data being misplaced [52,53]. Principal component analysis (PCA)
is used for the assessment of atmospheric information based on the EOF method [54].
The technique describes the variance and covariance of the data, describing a few modes
of variability. The modes that explain the largest percentage of the original variability
are considered significant. The modes can be represented by orthogonal spatial patterns
(eigenvectors) and corresponding time series (principal components). The EOF technique
has been successfully used in Myanmar to investigate the interannual variability in summer
monsoon rainfall [25]. With regard to the temporal behavior of the EOF mode, a 10-year
running average was applied to obtain the long-term variability. The summer monsoon
rainfall data were normalized to prevent areas and seasons of maximum variance from
dominating the eigenvectors [55]. The standardized rainfall values were computed for
all the years from the long-term mean, yearly mean, and the standard deviation using
Equation (1):

Z =
X− X

Sd
(1)

where Z represents the standardized departure, X is the long-term mean value, and Sd is
the standard deviation from the mean. The Z value provides immediate information about
the significance of a specific deviation from the mean [25,56].

The orthogonal function of EOF is defined as:

z(x, y, t) =
N

∑
k−1

PC(t) × EOF (x, y) (2)

where z(x, y, t) denotes the function of space (x, y) and time (t), while EOF(x, y) represents
the spatial structure in relation to the temporal variation in Z.

A power spectrum was analyzed to evaluate the multiscale temporal variations result-
ing from the wavelet transform employed in the long-term rainfall dataset [57–59]. The
decadal spectra were used to estimate the changes that occur in the rainfall pattern on a
decadal basis. Prior to performing the power spectrum analysis from the results of the EOF,
PCA was used to verify the significance of the scales of interdecadal variation in this study.
The red noise spectrum of the decadal spectrum was computed [54]. The confidence limits
related to the read noise spectrum were calculated with 90% confidence levels.

Composites include classifying and averaging one or more category of the variable
fields according to their relation with the prevailing situations [60]. Composites results are
used to produce hypotheses for patterns related to individual scenarios [53,61]. The goal
of the composite analysis was to produce the wet and dry years separately. It is primarily
used in China and Myanmar to detect the circulation anomalies connected with wet/dry
events [25,45,62].

Horizontal moisture transfer rate/flux convergence (MFC), known as moisture con-
vergence, was identified for wet and dry years using the vector character. The MFC results
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from the conservation of water vapor in pressure coordinates, which has been discussed in
detail previous [63]. MFC can be calculated as:

MFC = − ∇.(qVh) = − Vh.∇q− q∇.Vh (3)

where ∇ = î
(

∂
∂x

)
+ ĵ
(

∂
∂y

)
, q is the specific humidity, and Vh = (u, v).

The nonparametric Mann–Kendall test (MK) test was used to detect the trend in
monsoon rainfall [64,65]. The MK test is widely used to evaluate trends in rainfall, agrome-
teorological, and hydrological time series [66–72]. This trend test’s limitations are normally
associated with its own null hypothesis, which assumes that the data are independently
and identically distributed. However, the null hypothesis is commonly taken as evidence
of the null hypothesis, which is commonly used as evidence of a trend in a given agro-
meteorological and/or hydrological time series. The MK test investigates the sequential
change point to emphasize an abrupt change significant at the 95% confidence level. This
approach has been used successfully worldwide [70,73,74] to detect climate variables’
change points. For certain datasets consisting of x values with a sample size Sen slope (SS),
the MK calculation begins by estimating the S statistic as:

S =
SS−1

∑
i=1

SS

∑
j=i+1

sgn
(
xj − xi

)
. . . f or j > I (4)

As presented in Mann (1945) and Kendall (1975), when SS ≥ 8, the distribution of S
approaches the Gaussian form with mean E(S) = o and variance V (S) is calculated using:

V (S) =
SS (SS− 1)(2SS + 5)−∑SS

m=1 ti (m− 1)(2m + 5)m
18

(5)

where ti is the number of ties of length m.
The S statistic is standardized Z, as shown in Equation (6), and its significance can be

estimated from the normal cumulative distribution function.

Z =


S−1√

Vs
→ S > 0

0 → S = 0
S+1√

Vs
→ S < 0

(6)

Singular value decomposition (SVD) analysis is used in two techniques: meteoro-
logical and oceanographic data analysis. SVD is applied between two identical datasets
of two jointly analyzed fields to identify pairs of the coupled spatiotemporal variations.
Bretherton et al., (1992) [75] and Wallace et al., (1992) [76] provided a brief introduction to
the SVD method as a fundamental matrix operation that can be considered an extension of
rectangular matrices of the diagonalization of a square symmetric matrix. In the calcula-
tion, each pair defines the covariance percentage between the two joint fields, allowing the
extraction of the dominant modes of pair covariability between the two analyzed fields.
Moreover, the SVD of the cross-covariance matrix identifies from two data fields pairs of
spatial patterns that explain as much as possible of the mean-squared temporal variance
between the two fields. This method is widely used [25] because it works on common
and ambiguous data sets. In this work, SVD was used to find the maximum covariance
or correlation between the summer monsoon rainfall over Myanmar and the SST over the
Indian Ocean and Pacific Ocean.

After this, we used ensemble empirical mode decomposition (EEMD), which is an
adaptive time-frequency data analysis technique developed by Wu et al., (2007) [77] and
Wu and Huang (2009) [78]. It is used to resolve problems of mixed-mode and false
components in the empirical mode decomposition (EMD) decomposition process. This
method is a major modification of the original EMD method, emphasizing the adaptiveness
and temporal locality of the data decomposition [79]. The EMD method can decompose
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any complicated data series into a few amplitudes of frequency-modulated oscillatory
components, called intrinsic mode functions (IMFs), of distinct timescales [80]. EMD is
based on the local characteristic time scale of a signal, and decomposes the complicated
signal into a number of IMFs. The main steps of the EEMD method employed in this study
were similar to those outlined by Qian (2009) [81,82]. In this study, EEMD was used to
decompose the summer monsoon rainfall and PDO index.

4. Results
4.1. General Characteristics of Monsoon Rainfall
4.1.1. Annual Cycle

The climatological annual cycle of the monthly mean monsoon rainfall over Myanmar
(1950–2019) was estimated based on: in situ observation, CRUTS4.0, and GPCC datasets;
the results are shown in Figure 2. The error bars shows the monthly standard deviation
of climatological annual cycle with in each active and break spells. The horizontal solid
lines show the monthly standard deviations of all datasets with blue, grey, and orange bars.
Interestingly, the significant number of active spells (blue and orange bars) show positive
rainfall pattern from June to August whereas the break spells show relatively weak rainfall
pattern during September to October. Table 1 reveals the amount of average monthly
summer monsoon rainfall (May–October) from in situ observations, CRUTS4.0, and GPCC
for the period of 1950–2019. The country experienced a relatively high unimodal rainfall
pattern in June, July, and August, observed in all datasets. The average monthly rainfall
from in situ observations was 480 mm in June, 520 mm in July, and 524 mm in August. From
GPCC, these amounts were 478, 519, and 519 mm, respectively. The rainfall from CRUTS4.0
exhibited a weaker pattern in these three months (444, 466, and 476 mm, respectively). The
higher rainfall agrees with the northern hemisphere summer and monsoon season. The
rainfall season in Myanmar extends from May to October, and the rainfall season coincides
with summer monsoon onset in the country, which generally occurs in the third week of
May. Similar monsoon onset periods were observed by Sein et al., (2015) in a simulation
study using Regional Climate Model (RegCM3). Notably, the GPCC dataset produced
more accurate results compared to the in situ observations. CRUTS4.0 reported less rainfall
compared to the in situ observations and GPCC. We found a strong correlation (0.94)
between the in situ observations and GPCC datasets, but a relatively weak correlation (0.52)
between the in situ observations and the CRUTS4.0 dataset (Table 2). The root mean square
error (RMSE) for GPCC (14.24) for summer rainfall was lower than that of the CRUTS4.0
dataset (45.29) (Table 2). Therefore, GPCC was thus used in most analyses since the data are
continuous and can be extrapolated to cover all parts of the country to identify longer time
periods. Roy et al., (2011) studied the interannual variability in summer monsoon rainfall
in relation to Indian Ocean Dipole (IOD) and ENSO using the GPCC dataset. Therefore,
the use of GPCC data provided better results, due to extended longer periods, which were
more complete as compared to the observed data.
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Table 1. Monthly average of the summer monsoon rainfall (mm) from in situ observations, and
Global Rainfall Climatology Centre (GPCC) and Climatic Research Unit version TS4.0 (CRUTS4.0)
datasets. The bold values represents the significance level (0.05).

Month In Situ GPCC (mm) CRUTS4.0 (mm)

Jan 4.66 5.28 5.60
Feb 9.94 10.54 12.12
Mar 20.93 20.19 20.72
Apr 55.25 53.95 62.75
May 248.03 237.92 224.41
Jun 480.32 478.80 444.51
Jul 520.03 519.32 466.11

Aug 524.53 519.38 475.89
Sep 340.86 344.49 328.81
Oct 175.52 179.23 190.30
Nov 53.25 57.80 64.77
Dec 9.10 9.36 9.54

Table 2. Summary of correlation and root mean square error (RMSE) among GPCC and CRUTS4.0
datasets and in situ observation stations’ data over Myanmar.

Dataset Correlation Coefficient (R) RMSE

GPCC 0.94 14.24
CRUTS4.0 0.52 45.29

4.1.2. Climatology of Summer Monsoon Rainfall

Figure 3 shows the climatology of observed May–October mean monsoon rainfall
over Myanmar (Figure 3a) and GPCC rainfall (Figure 3b) for the period of 1950 to 2019.
Both datasets showed relatively similar spatial rainfall patterns over the country (Figure 3).
Maximal rainfall was received along the western coast (Rakhine State), and southern (Mon,
Kayin States and Tanintharyi Region) and northern tips (Kachin State) of Myanmar. This
aligns with the recent extreme events (floods, strong winds, and landslides) that have occur
in these areas due to the strong monsoon rainfall. Along the coastal area (west and south),
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regions close to the BoB, Andaman Sea, and northern tip (Kachin State) occupy the highest
mountain, called Hkakabo Razi. The central (dry zone) and eastern areas receive less
rainfall than other places in the region. The central dry zone receives the lowest amount
of rainfall compared to rest of the study area (Figure 3). The observed low rainfall in the
central dry zone is attributed to the topography: the area is situated between two mountain
ranges: the Shan Plateau to the east and Rakhine Yoma Mountain to the west. Kumar
et al., (2006) indicated that increased rains on the Myanmar coast contribute more than
total rainfall in the West Ghats, associated to the central and northern regions.
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4.2. Spatial and Temporal Interdecadal Variability in Summer Monsoon Rainfall.

The change in decadal mean May–October rainfall from the long-term mean rainfall
over Myanmar was estimated using GPCC data (Figure 4). In the six decades, the results
show strong negative anomalies during the periods of 1971–1980, 1981–1990, and 1991–
2000 (Figure 4c–e). From the results, the highest frequency of rainfall occurred during
the period 1961–1970, followed by 2001–2010, suggesting frequent extreme rainfall in the
recent decade, whereas 1981–1990 and 1991–2001 showed the maximum displacement
toward the right side of the figure, indicating an increase in the maximum intensity of
monsoon rainfall in the region. Figure 4a,b indicates less rainfall in the western and
central parts of Myanmar; however, the opposite was true: the patterns in Figure 4d,e
exhibit strong negative change anomalies. Sein et al., (2015) studied ENSO associated
with summer monsoon rainfall. They found that most of the El Niño years showed strong
negative decadal rainfall anomalies in Myanmar. In addition, strong positive anomalies
were recorded in 1961–1970 and 2001–2010 (Figure 4b,f). The results further support the
findings of Zaw et al., (2020), who reported that the occurrence of extreme events (i.e.,
drought and flood) is significantly associated with large-scale atmospheric circulations of
the Pacific and Indian Oceans, particularly during the positive phase of the ENSO. The
overall strong and positive decadal rainfall anomalies occurred in La Niña years over the
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target region. Table 3 reveals that the observed extreme rainfall between 1950 and 2019
occurred in the first three decades for the west coast (Rakhine State), for two decades along
the south coast (Tanintharyi Region), and for one decade in the Upper Sagaing Region.
This result agrees with the spatial decadal monsoon rainfall in Figure 4.
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Table 3. Observed extreme decadal rainfall over Myanmar during the period of 1950–2019.

Sr. No Year Station Region/State Rainfall (mm)

1 4.9.1965 Kyaukpyu Rakhine 568
2 24.8.1997 Dawei Tanintharyi 549
3 29.6.1989 Hkamti Upper Sagaing 527
4 4.7.2006 Dawei Tanintharyi 447
5 5.6.1980 Sittwe Rakhine 422
6 18.7.1956 Thandwe Rakhine 353

From Figure 4 and Table 3, the decadal rainfall fluctuated during the period of
1950–2019, with a positive skewness and increased frequency in recent decades. This
suggests an increase in the extreme rainfall events with increased frequency in all study
regions, especially in the western and southern regions. This may be associated with
increased global-warming-induced changes in monsoon and circulation patterns in the
regions; similar rainfall patterns were previously reported [83].

The results for various regions in Myanmar revealed that the west, south, and north
regions received the most rainfall, while the east and central regions received relatively
less (Figure 5). Figure 5 shows that an overall increasing trend in rainfall occurred over
all regions, which corresponds to previously reported findings [18,84,85]; however, the
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annual rainfall variability on the regional scale differed. In the northern part, the rainfall
variability appeared to be increasing, with an amount of 500 mm. The peak rainfall years
(dry years) were recorded during 1992, 1997, and 2010 (1982, 1991, 2005, and 2009). In
the eastern part, monsoon rainfall slightly increased, as depicted by a rainfall amount
of 250 mm with dry and wet years appearing to be the possible reason for balancing the
overall trend in the region. In this region, the highest (lowest) monsoon rainfall was
observed in 1988 and 2013 (1987 and 2009). In the central part, the monsoon rainfall
exhibited an increasing trend at the rate of 300 mm per year. The analysis showed that
1960, 1997, 2010, and 2014 (1987, 1991, 1999 and 2009) were the peak wet (dry) years in the
northern and central parts. Our results concur with the findings of Zaw et al., (2021), who
found that 2–4 year high-frequency periodicities from spectral peaks, and predominant
regions of high spatial correlations indicated the summer rainfall in Myanmar is associated
with large-scale atmospheric circulations, mainly linked with the ENSO events due to
SST deviations in the tropical Pacific Ocean. The variations in the western region’s dry
condition were observed in the late 1960s and 1980s (Figure 5d) and in the late 2000s in
southern region (Figure 5e). In the western part, the monsoon rainfall experienced an
increasing trend initially with an amount of 250 mm, but a decreasing pattern in the last
few decades. In the southern part, the opposite pattern to the western region was observed,
recording the highest rainfall (530 mm) over last decades, being the highest amongst all
regions. The maximum (minimum) rainfall was recorded in 1960, 1980, 1998, 2006, and
2011 (1987, 1991, 1999, 2002, 2004, 2005, and 2014) in the region.
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The time series of interdecadal variability in rainfall over the whole region is shown
in Figure 6. The mean rainfall was observed to increase in the late 1950s, reaching its peak
around 1965, and subsequently decreased during the mid-1980s before increasing again in
the early 1990s. The second climax was observed in the early 2000s; however, the rainfall
decreased in the recent decade. We classified wet and dry years based on the standardized
rainfall anomaly as ≥1 and ≤–1 for wet and dry years, respectively. The same approach
was used effectively by other authors (Chen and Huang, (2017) in China, Lone et al., (2019)
in India, and Sein et al., (2015) in Myanmar). The wet periods were 1962–1967, 1998, 2003,
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and 2004; typical dry years were observed during the periods of 1978–1986 and 1988–1990.
The results from the sequential Mann–Kendall test statistic were calculated for interdecadal
rainfall variability over the region to detect the statistically significant turning points in the
decadal trend in rainfall (Figure 7). An abrupt interdecadal change was noted during the
1970s; however, there was a significant reduction (at the 95% confidence level) in rainfall
between the 1980s and 2000s (Figure 7), which agrees with spatial map shown in Figure 4.
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Figures 6 and 7 show that regional variability in monsoon rainfall over Myanmar
was obvious during the 1950–2019 period. The magnitude of the rainfall variability could
possibly be associated with the geographical location of the region and monsoon circulation
patterns. The temporal trend in the Asian and Indian monsoon system showed a strong
variation on different time scales, including monthly, inter-annual, intra-seasonal, and
annual time scale [18,84,85]. Such large-scale variation due to different factors could induce
changes in monsoon rainfall over the diverse study regions [21,86,87].
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4.3. Interdecadal Variations in Rainfall and Associated Circulation Influences
4.3.1. Interdecadal Rainfall Variability

The EOFs were examined with the first three eigenvectors of the summer monsoon
rainfall in Myanmar for the decadal 10 year running mean (Figure 8). In Myanmar, EOF
approaches have been used to detect the interannual variability in summer monsoon
rainfall [31,83]. These methods are suitable for finding the total variance in monsoon
rainfall in the region. The results reveal that the first EOF (EOF1), explaining 47% of the
total variance, showed a dipole spatial pattern with positive loading on the western coast
(Rakhine region) and negative loading in northwestern region (Sagaing Region) over the
target region (Figure 8a, top and bottom), and explained the corresponding PC-1, which
clearly exhibited interdecadal variability. EOF2, explaining 18% of the total variance,
exhibited a dipole pattern, with the opposite pattern to EOF1 (Figure 8b, top and bottom),
revealing that the PC time series is related to EOF2 (PC2). The third EOF (EOF3), explaining
11% of the total variance, showed strong positive loading in the southern region, and the
time series of the consistent PC is connected to EOF3 (PC3), as shown in Figure 8c. To
validate the significance of the scales of interdecadal variation, we used the power spectrum
from the results EOF: the PC for 53 years was analyzed (Figure 9). PC1–PC3 exhibited a
significant spectral peak detected at nearly 20–30 year time scales.
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From Figures 8 and 9, we inferred that the interdecadal rainfall pattern over Myanmar
has significantly changed over the study period, especially during EOF2 and EOF3. PC1
and PC2 experienced an increasing spectrum over the target region during the period
1950–2019. The humid regions of the country appeared to experience decreasing rainfall,
as can be seen in Figure 8c, while the arid regions in the northwestern area experienced an
increase in monsoon rainfall. The humid central region appeared to be the core monsoon
region of Myanmar; thus, this could imply a shift toward the northwestern parts of the
country. Further studies with more data and modeling approaches are needed to validate
the current hypotheses.

4.3.2. Large-Scale Atmospheric Circulation Pattern

Rainfall variability is influenced by atmospheric circulation, geographical location, and
low latitude in a country like Myanmar. In this section, the general circulation anomalies
over low latitudes are examined as a major issue. Circulation patterns on an interdecadal
scale are analyzed over the region. To examine the interdecadal variability in the country’s
rainfall related to the typical circulation patterns on the interdecadal time scale, we em-
ployed a low level of horizontal and vertical wind anomalies of 850 hPa for the wet and
dry periods (Figure 10). The results show a significant negative westerly or southwesterly
winds anomaly from the BoB and Andaman Sea over almost the whole region except the
eastern and southern parts during wet years, as shown in Figure 10a. During dry years
(Figure 10a), significant negative northeasterly and easterly wind anomalies prevailed in
the region. The southwesterly and BoB appeared, which are assumed to be the prime
sources of oceanic water transport to continental land masses for rainfall during monsoon
seasons (Figure S2). A similar pattern was observed for wind anomalies, further explaining
dry conditions and elevated air temperature due to less rainfall. The continental land mass
of South East Asia (SEA) experiences a strong anticyclonic pattern, which (in the northern
hemisphere) is associated with decreased wind and rainfall. The anticyclonic pattern
appeared to be pushing the cyclonic activity toward the tropical region and northern parts
of the BoB by pushing the south easterlies to the peninsular tip of India (Figure S2).
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(negative) anomalies over the target region.

During wet years (Figure 10b), the subtropical and Somali jet streams appeared to be
pushing the oceanic moisture-rich winds toward the continental land mass. The southern
region received northeasterly and easterly winds from the South China Sea, which is the
core region experiencing monsoon rainfall. However, the anomalous cloud liquid water
contents were obvious over the Western SEA, which includes Myanmar, with enhanced
winds speed and reduced air temperature, implying increased rainfall. The anticyclonic
pattern appeared to move to the BoB region strengthening the intensity of sub-tropical jets,
pushing them further into continental land masses.

To assess the rainfall variability and its relationship with regional-scale atmospheric
circulation, oceanic temperature, and monsoon indices, a composite analysis was per-
formed. To do so, the regional-scale monthly and annual rainfall standardized index was
developed to the inter-annual scale.

To further clarify the atmospheric circulation and its possible association with mon-
soon rainfall, we assessed the pressure vertical velocity (ω) for the wet and dry periods
along latitude 15◦, 20◦, and 25◦ N, as shown in Figure 11. The results reveal that upward
(rising) motions over the region were significant positive anomalies at 15◦ and 20◦ N
(Figure 11a,c,e). Sinking motion occurred over the region during dry years, characterized
by the significant positive anomaly at 15◦ and 20◦ N (Figure 11b,d,f). The difference in wet
minus dry period moisture transport at 850 hPa revealed that anomalous moisture con-
vergence (positive anomalies) emerge in the central and northern regions where moisture
comes from BoB and the Gulf of Thailand (Figure S1). We also identified a relationship
between the distribution of air space at lower and higher levels and the flow of moisture
transport. An unfamiliar airfield at low levels aligned with the location of a large junction
of the complete flow of moisture in a stormy area. Figure S2 shows the distribution of
field streams for the diversity of summer varieties for wet drying seasons at 850 hPa. The
cyclonic broadcast in Southern Myanmar during the period 1950–2019 occurred in the
southwest, with its center around 10◦ N (Taninthary region). Therefore, more water vapor
entered the region, especially since the convergence center of the corresponding humidity
was associated with a clear climate zone that cuts the region, increasing rainfall in that
region. In these cases, water vapor from the BoB and the Andaman Sea was transported
into the land.
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4.3.3. Role of Oceans

From the composite analysis, we elucidated that large-scale atmospheric circulation had
less (not-significant) influence on the summer monsoon rainfall variability over Myanmar. The
observed relationship was rather weaker and could not be associated with rainfall variability
over the study region. However, the composite analysis revealed that the anomalous wind
pattern led the rainfall variability due to the regional rainfall dependence on moisture/water
vapor. The trend in rainfall was obvious but the driver of the trend appeared to be complex; a
simple mean trend may not provide enough explanation since sub-seasonal variability may
balance each other, which may smooth or even remove the trend.
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Figure 12 reveals a correlation map between the mean May–October SST (over the Indian
Ocean and the Pacific Ocean) and mean May–October rainfall over Myanmar. A significant
correlation (hatched regions) is displayed at the 95% confidence level in Figure 12. The results
show a strong negative correlation between rainfall over Myanmar and Indian Ocean SST,
which means that more (less) rainfall was recorded over Myanmar and with cooling (warming)
over the Indian Ocean. The results further indicate that the air temperature in the northwest
part of the SEA was obviously higher than in the southeast part of the region, which may affect
the indicator of regional extreme temperature. Interestingly, we detected increasing trends
in warm temperature events in the northern part of the region, in agreement with previous
studies in the target regions [81,88]. Kreft and Eckstein (2013b) examined the monsoon rainfall
over Myanmar and found a negative correlation with the positive phase of the Indian Ocean
dipole (IOD).
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This instability in the increase/decrease in SST and maximum/minimum rainfall may
be associated with the increasing (decreasing) trend in temperature over the target region,
which might affect the extreme temperature occurrences in the study area. The increase in
frequency and magnitude of daily extreme warm temperature and decrease in extreme cold
temperature may occur on the global scope, resulting in the increase in length, frequency,
and/or intensity of warm periods or heat waves for most land areas [4,33]. Strong winds
can transport water vapor from the ocean to nearby coastal areas, which can affect regional
temperatures and ultimately affect the cooling trends, and vice versa [4,5].

The interdecadal variability in the 10 year running mean in Myanmar rainfall anomaly
was computed using standardized deviation, PDO, and AMO indices, with the results
provided in Figure 14. The effect of positive PDO was low rainfall (dry/drought), and that
of negative PDO was more rainfall (wet/flood) in the region (Figure 14). The PDO index
was statistically significant with a strong negative correlation with rainfall (–0.79), and the
AMO index correlation coefficient explained the positive correlation (0.53), as shown in
Table 4. The correlation coefficients between the Myanmar rainfall and various climate
indices for the interannual and interdecadal components are presented in Table 4. The
correlation coefficients between PDO and AMO indices and Myanmar rainfall for both
the interannual and interdecadal components were significant at the 95% confidence level.
The Myanmar rainfall showed a highly negative correlation with the PDO index and a
positive correlation with the AMO index, particularly for the interdecadal component. The



Water 2021, 13, 729 18 of 27

cumulative role of these large-scale indices, especially during monsoon season, is perceived
as affecting the SEA monsoon circulation pattern and thus resulting in dry/wet conditions
during El Niño/La Niña years. The findings of the current study showed no obvious
or significant association between ENSO, PDO, and monsoon onset timing with rainfall
variability over Myanmar. The cold phase of the AMO is generally associated with negative
Myanmar rainfall anomalies, which is lower than normal rainfall. The warming or positive
phase PDO may decrease rainfall (drought) conditions, and cooling or negative-phase PDO
may increase rainfall (flood) conditions over Myanmar. Moreover, there were nine extreme
years (1952, 1959, 1961, 1965, 1970, 1973, 1974, 1999, and 2001), as shown in Figure 13. The
results of extreme rainfall measures during the negative phases of the PDO show that no
extreme events occurred during the positive phase of the PDO (Figure 13).

Various studies of linearly coupled dominating patterns between the global SST and
rainfall variations in Myanmar related to the interdecadal variability have been conducted
using the SVD method [4,31,37,81]. This method has successfully been applied in the region
to identify the interannual variability in summer monsoon rainfall [89]. Figure 15 indicates
the heterogeneous correlation of the first three SVD modes amongst global SST and Myanmar
rainfall. The SVD of the SST modes closely represents the long-term global warming pattern
(Figure 15a,e), with a correlation coefficient of 0.94 between the time series of its principal
components and the low-pass-filtered global SST anomaly. The southern and eastern regions
of Myanmar and regions of the mid-west extending up to Indian Ocean are strongly correlated
with SST in the tropical and northern Pacific (Figure 15a,b). We found subtle differences
in the global spatial structure of the tropical Pacific SST correlation pattern in this period
(Figure 15c). Although it is unclear if the differences in the global SST spatial patterns for the
three modes regional rainfall are statistically significant, they do provide some insights. The
findings reported using heterogeneous correlation patterns [11] as the first SVD of SST mode
1 were mainly associated with the cold phase of PDO in the Pacific Ocean, north of 20◦ N,
and the warm phase of AMO in the North Atlantic Ocean (Figure 15a). The rainfall mode 1
explains much of the rainfall over the regions except for the central core and eastern regions
(Figure 15b). The squared covariance fraction of this mode is about 53%, and the correlation
coefficient between the two fields is 0.94. SVD2 of SST mode 2 demonstrated a warm SST in
the eastern equatorial Pacific SST, like the El Niño SST pattern in the Pacific Ocean, and a cold
SST in the North Atlantic Ocean (Figure 15c). The result show that relatively low rainfall over
the region contributed to rainfall mode 2 (Figure 15d). Thus, the El Niño SST pattern in the
Pacific Ocean and cold phase of the AMO were associated with dry/drought conditions over
the region. The time series of the coefficients for the three SVD modes of global ocean SST
and Myanmar rainfall are presented in Figure 16. The squared covariance fraction of SVD
mode 2 was detected at a rate of 33%, and the correlation coefficient between the two fields’
time coefficients is around 0.94. SST mode 3 explains cold SSTs in the central and eastern
equatorial Pacific SSTs as a La Niña SST pattern (Figure 15e). Rainfall mode 3 exhibits enhanced
rainfall over the region (Figure 15f). SVD3 of the squared covariance fraction of this mode
was detected with a 6.7% rate, and the correlation coefficient between the two fields is 0.93
(Table 5). Therefore, we inferred that the role of the oceanic circulation is important for decadal
Myanmar rainfall.

Table 4. Correlation coefficients between various indices and Myanmar rainfall for interannual and
interdecadal components. * Significant values at the 95% confidence level. NP, North Pacific index;
NAO, North Atlantic oscillation index; AO, Arctic oscillation.

Indices Interannual Component Interdecadal Component

NP –0.24 –0.17
NAO –0.38 * –0.15
AO –0.02 –0.21

PDO –0.39 * –0.79 *
AMO 0.53 * 0.54 *
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Table 5. Statistics of the leading singular value decomposition (SVD) sea surface temperature (SST)
and rainfall modes over the study area.

Mode Squared
Covariance

Temporal
Correlation SST Variance Rainfall

Variance

Mode 1 53% 0.94 47% 20%
Mode 2 33% 0.94 21% 28%
Mode 3 6.7% 0.93 9% 13%Water 2021, 13, x FOR PEER REVIEW 19 of 28 
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5. Discussion

In this study, we evaluated the interdecadal variability in the summer monsoon rainfall
(May–October) in Myanmar (1950–2019) using EOF, SVD, EEMD, and correlation analyses
based on 10 year running means. This study is the first of its kind to use a large number
of statistical approaches to investigate the interdecadal variability in monsoon rainfall,
which is beneficial for the scientific community and climate change adaptation in Myanmar.
The results reveal that the dominant summer monsoon regions (south, central, and east)
observed dry conditions during 1998 and 2002. Sein et al., (2015) described the lowest
rainfall over Myanmar since 1997, and the most intensive heat wave (60%) occurred in 1998
during an ENSO year. Webster and Yang (1992) [90] showed that 1998 was the driest year
during the period of 1950–2019, with extreme temperature recorded in May 1998 (43.6 ◦C).
Our results agree with the findings of previous studies [27], reporting similar results over
the target regions. We used EOF analysis with the 10 year running means of summer
monsoon rainfall, and the results show that the first leading EOF pattern explained 47%
of the variance. The maximum loading occurs along the western coast and the minimum
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in the northwest region, while the corresponding PC1 exhibits a dipole pattern. Our
results support the findings of Zhang et al., (2014), who reported similar results over
South China using a drought index. The circulation patterns on an interdecadal scale 2343
analyzed using the composites (dry and wet years) in this study. Interdecadal variability in
circulation mode consists of upward (rising) motion over the region, significantly positive
anomaly over central Myanmar. The southwest moisture flux comes from the north Indian
Ocean across the entire west coast of Myanmar.

Reckien and Petkova (2019) [91] studied the first component of EOF of the vertically
integrated moisture transport vector in summer, and strong northward moisture transport
from the tropical Indian and West Pacific Oceans dominated the whole East Asian region.
In this study, PDO index values were found to be significantly related to Myanmar summer
monsoon rainfall (–0.79) during the 1950–2019 period. The result show a positive correlation
with phase changes in the PDO, but negative PDO change was found with lower summer
monsoon rainfall over Myanmar, which agrees with Roy et al., (2011) and Kumar et al.,
(2006). Lone et al., (2019) investigated the ENSO, PDO, and the summer monsoon rainfall
in Myanmar over 52 years (1951–2002). They found that the overall negative relationship
between ENSO and rainfall patterns had a strong positive association across Myanmar.
The role of ENSO in the resulting rainfall patterns during El Niño years was stronger
during the cold phase of the PDO compared with during La Niña years. The difference
between rainfall during the different phases of ENSO was superimposed with the warm
and cold periods of the PDO, showing overall higher average annual rainfall during cold
PDO episodes [92].

The results reveal that the Indian monsoon is more vulnerable to drought when El
Niño events occur during warm phases of the Pacific interdecadal variability. Conversely,
wet monsoons are more likely to prevail when La Niña events coincide during cold phases
of the Pacific interdecadal variability. Based on the EEMD analysis, highly extreme summer
monsoon rainfall (i.e., 1952, 1959, 1961, 1965, 1970, 1973, 1974, 1999, and 2001) occurs during
the negative phases of the PDO; no extreme events occurred during the positive phase
of the PDO. Our results support the findings of Chen and Huang (2017), who described
that between 1951 and 2012, there were five extreme events that had a strong correlation
with the negative phases of the PDO. The AMO index was significantly associated with
Myanmar summer monsoon rainfall recorded, at 0.54. Here, to determine the interdecadal
summer monsoon rainfall modes and SST, a further SVD analysis was performed. The
results of SVD mode 1 explain that the positive phase of the AMO receives higher summer
monsoon rainfall, except in central and east regions in Myanmar. The positive phase of
the AMO significantly correlated with higher summer monsoon rainfall and negatively
correlated with lower summer monsoon rainfall over Myanmar, which is in agreement
with Sein et al., (2015).

Our findings do not negate the potential impact of large-scale oceanic indices but
rather postulate the hypothesis that these controls need to be reviewed with clear links to
summer monsoon rainfall variability over Myanmar. Another possible reason could be the
quality of station data, since they are recorded for synoptic-scale use and climatological
processes usually occur on longer time scale; thus, the data may lack such large-scale
signals. These are some of the points that need to be thoroughly investigated in future
studies, including the frequency and intensity of extreme rainfall events and their role as
drivers of regional rainfall variability.

6. Conclusions

In this study, we attempted to explore the spatiotemporal trend and variability in
monsoon rainfall during the period of 1950–2019 over Myanmar. Using statistical and
composite analyses, we found significant variation in rainfall on seasonal, annual, and
interdecadal scales. The main conclusions based on the findings are as follows:
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(1) The interdecadal variation over the target region increased in the late 1950s, reaching
its peak around 1965, and subsequently decreased in the mid-1980s before increasing
again in the early 1990s. An abrupt rainfall shift was recorded during the 1970s and a
significant reduction (at the 95% confidence level) in rainfall was evident between the
1980s and the 2000s.

(2) In terms of rainfall trend, the regional variability in monsoon rainfall over Myanmar
was obvious during the 1950–2019 period. The magnitude of the rainfall variability
could possibly be associated with the geographical location of the region and monsoon
circulation patterns. The temporal trend over the Asian and Indian monsoon systems
showed strong variation on different time scales, including monthly, inter-annual,
intra-seasonal, and annual time scales. Such large-scale variation caused by different
factors could induce changes in monsoon rainfall over the diverse study regions.

(3) The widely used EOF method showed that the interdecadal rainfall pattern over
Myanmar significantly changed over the study period, especially during EOF2 and
EOF3. PC1 and PC2 experienced an increasing trend over the target region during
the period 1950–2019.

(4) The results further demonstrate the significant negative westerly and southwesterly
wind anomalies from the BoB and Andaman Sea over almost the whole region except
for the eastern and southern regions during wet years. The moisture transport at 850
hPa revealed that the anomalous moisture convergence (positive anomalies) emerged
in the central and northern region, transporting moisture from the Western BoB and
Eastern Gulf of Thailand. This cyclonic circulation may cause more water vapor from
the BoB and Andaman Sea to be transported into the country. In addition, warm or
positive PDO phase was associated with low rainfall in Myanmar, and cooling or
negative PDO phase can increase rainfall over Myanmar. The AMO index had a mean
average value of 0.53 for the same period. In addition, the effects of excessive rainfall
occurred in the negative stages of the PDO, and no serious adverse events occurred
in the positive phase of the PDO. The first SVD of SST mode 1 was mainly linked to
the PDO cold phase in the Pacific Ocean above the North Pacific Ocean (20◦ N) and
the warm AMO phase in the North Atlantic Ocean.

(5) The SST patterns showed that the warm SST of the eastern equatorial Pacific SST is a
pattern of the El Niño SST in the Pacific Ocean and the cold SST in the North Atlantic
Ocean. The fractional covariance fraction of SVD2 was recorded as 33%, whereas the
coefficient of correlation between the coefficients for the two-phase period was 0.94.
Therefore, we concluded that the findings of the present study provide valuable results
regarding the interdecadal variability in Myanmar summer monsoon rainfall, which
is shown as a negative correlation with the PDO and a positive association with the
AMO. In addition, Myanmar’s decadal summer monsoon rainfall and relationships
with the PDO and AMO indexes explain the flood and dry conditions (drought) in
the region.
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441/13/5/729/s1, Figure S1: Difference fields of wet period (1962–1967, 1998, 2003–2004) minus
dry period (1978–1986, 1988–1990) of moisture transport at 850 hPa (g kg−1 ms−1) over Myanmar
computed from ERA-interim dataset. Vector shows moisture transport, while the shaded regions
specify convergence (positive) and divergence (negative) moisture fluxes convergence., Figure S2:
Difference stream fields of wet period (1962–1967, 1998, 2003–2004) minus dry period (1978–1986,
1988–1990) at 850 hPa in summer.
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