On the Power of Microwave Communication Data to Monitor Rain for Agricultural Needs in Africa
Abstract
:1. Introduction
1.1. On the Scarcity of Rain Measurement Resources in Africa
1.2. Rain Monitoring Using CMLs
2. On Added-Value of Harnessing CMLs for Agricultural Needs
3. Method
3.1. Estimating the Rainfall Intensity
3.2. Performance Evaluation
- Rmi—the ith rainfall intensity as measured using the CML.
- Rgi—the ith rainfall intensity as measured using the rain gauge.
- N—number of samples.
4. Real Data Demonstration
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuente, D.; Allaire, M.; Jeuland, M.; Whittington, D. Forecasts of mortality and economic losses from poor water and sanitation in sub-Saharan Africa. PLoS ONE 2020, 15, e0227611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiser, J.; Singer, B.H.; Smith, T.A.; De Castro, M.C.; Tanner, M.; Utzinger, J. Urbanization in sub-Saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 2004, 71, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef] [Green Version]
- Douglas, I.; Alam, K.; Maghenda, M.; McDonnell, Y.; McLean, L.; Campbell, J. Unjust waters: Climate change, flooding and the urban poor in Africa. Environ. Urban. 2008, 20, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Calderón, C.; Servén, L. Infrastructure and economic development in sub-Saharan Africa. J. Afr. Econ. 2010, 19, i13–i87. [Google Scholar] [CrossRef] [Green Version]
- Salami, A.; Kamara, A.B.; Brixiova, Z. Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities; Working Papers Series No. 105; African Development Bank: Tunis, Tunisia, 2010. [Google Scholar]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Huang, W.-R.; Liu, P.-Y.; Chang, Y.-H.; Liu, C.-Y. Evaluation and application of satellite precipitation products in studying the summer precipitation variations over Taiwan. Remote Sens. 2020, 12, 347. [Google Scholar] [CrossRef] [Green Version]
- Park, N.-W.; Kyriakidis, P.C.; Hong, S. Geostatistical integration of coarse resolution satellite precipitation products and rain gauge data to map precipitation at fine spatial resolutions. Remote Sens. 2017, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, J.; Moiseev, D.; Skaropoulos, N.; Heijnen, S.; Zwan, F.; Russchenberg, H. Spectral polarimetric measurements in the radar bright band. In Proceedings of the URSI- 21 F Open Symposium on Propagation and Remote Sensing, Garmisch-Partenkirchen, Germany, 12–15 February 2002. [Google Scholar]
- Harrison, D.L.; Driscoll, S.J.; Kitchen, M. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol. Appl. 2000, 7, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, W.F.; Ntelekos, A.A.; Goska, R. A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: Two examples from the US NEXRAD network. Comput. Geosci. 2006, 32, 283–302. [Google Scholar] [CrossRef]
- Rico-Ramirez, M.A.; Cluckie, I.D. Classification of ground clutter and anomalous propagation using dual-polarization weather radar. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1892–1904. [Google Scholar] [CrossRef]
- Koonin, S.E.; Holland, M.J.; Lane, J.; Stodden, V.; Bender, S.; Nissenbaum, H. The value of big data for urban science. In Privacy, Big Data, and the Public Good; Cambridge University Press: New York, NY, USA, 2014; pp. 137–152. [Google Scholar]
- David, N. Harnessing crowdsourced data and prevalent technologies for atmospheric research. Adv. Atmos. Sci. 2019, 36, 766–769. [Google Scholar] [CrossRef]
- Overeem, A.; Robinson, J.C.R.; Leijnse, H.; Steeneveld, G.J.; Horn, B.K.P.; Uijlenhoet, R. Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 2013, 40, 4081–4085. [Google Scholar] [CrossRef]
- Mass, C.F.; Madaus, L.E. Surface pressure observations from smartphones: A potential revolution for high-resolution weather prediction? Bull. Am. Meteorol. Soc. 2014, 95, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- McNicholas, C.; Mass, C.F. Smartphone pressure collection and bias correction using machine learning. J. Atmos. Ocean. Technol. 2018, 35, 523–540. [Google Scholar] [CrossRef]
- Price, C.; Maor, R.; Shachaf, H. Using smartphones for monitoring atmospheric tides. J. Atmos. Solar-Terr. Phys. 2018, 174, 1–4. [Google Scholar] [CrossRef]
- Wong, C.J.; MatJafri, M.Z.; Abdullah, K.; Lim, H.S.; Low, K.L. Temporal air quality monitoring using surveillance camera. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2864–2868. [Google Scholar]
- Cox, J.; Indiana University Bloomington, Bloomington, IN, USA; Plale, B.; Indiana University Bloomington, Bloomington, IN, USA. Improving Automatic Weather Observations with the Public Twitter Stream. Personal communication, 2011. [Google Scholar]
- Messer, H.; Zinevich, A.; Alpert, P. Environmental monitoring by wireless communication networks. Science 2006, 312, 713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijnse, H.; Uijlenhoet, R.; Stricker, J.N.M. Rainfall measurement using radio links from cellular communication networks. Water Resour. Res. 2007, 43, 03201. [Google Scholar] [CrossRef]
- Overeem, A.; Leijnse, H.; Uijlenhoet, R. Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA 2013, 110, 2741–2745. [Google Scholar] [CrossRef] [Green Version]
- Fencl, M.; Rieckermann, J.; Sýkora, P.; Stránský, D.; Bareš, V. Commercial microwave links instead of rain gauges: Fiction or reality? Water Sci. Technol. 2014, 71, 31–37. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, M.; Manzoni, A.; Solazzi, G.L. Use of operational microwave link measurements for the tomographic reconstruction of 2-D maps of accumulated rainfall. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1827–1831. [Google Scholar] [CrossRef]
- Chwala, C.; Kunstmann, H. Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. Wiley Interdiscip. Rev. Water 2019, 6, 1337. [Google Scholar] [CrossRef] [Green Version]
- David, N. Utilizing microwave communication data for detecting fog where satellite retrievals are challenged. Nat. Hazards 2018, 94, 867–882. [Google Scholar] [CrossRef]
- Chwala, C.; Kunstmann, H.; Hipp, S.; Siart, U. A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing. Atmos. Res. 2014, 144, 57–72. [Google Scholar] [CrossRef] [Green Version]
- David, N.; Alpert, P.; Messer, H. Technical note: Novel method for water vapour monitoring using wireless communication networks measurements. Atmos. Chem. Phys. 2009, 9, 2413–2418. [Google Scholar] [CrossRef] [Green Version]
- David, N.; Gao, H.O. Using cellular communication networks to detect air pollution. Environ. Sci. Technol. 2016, 50, 9442–9451. [Google Scholar] [CrossRef]
- Leijnse, H.; Uijlenhoet, R.; Stricker, J.N.M. Hydrometeorological application of a microwave link: Evaporation. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Gosset, M.; Kunstmann, H.; Zougmore, F.; Cazenave, F.; Leijnse, H.; Uijlenhoet, R.; Chwala, C.; Keis, F.; Doumounia, A.; Boubacar, B.; et al. Improving rainfall measurement in gauge poor regions thanks to mobile telecommunication networks. Bull. Am. Meteorol. Soc. 2016, 97, ES49–ES51. [Google Scholar] [CrossRef]
- Doumounia, A.; Gosset, M.; Cazenave, F.; Kacou, M.; Zougmore, F. Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed. Geophys. Res. Lett. 2014, 41, 6016–6022. [Google Scholar] [CrossRef]
- David, N.; Gao, H.O.; Kumah, K.K.; Hoedjes, J.C.B.; Su, Z.; Liu, Y. Microwave communication networks as a sustainable tool of rainfall monitoring for agriculture needs in Africa. In Proceedings of the 16th International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 4–7 September 2019. [Google Scholar]
- Giuli, D.; Toccafondi, A.; Gentili, G.B.; Freni, A. Tomographic reconstruction of rainfall fields through microwave attenuation measurements. J. Appl. Meteorol. 1991, 30, 1323–1340. [Google Scholar] [CrossRef] [Green Version]
- David, N.; Alpert, P.; Messer, H. The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions. Atmos. Res. 2013, 131, 13–21. [Google Scholar] [CrossRef]
- Dercon, S.; Hill, R.V.; Clarke, D.; Outes-Leon, I.; Taffesse, A.S. Offering rainfall insurance to informal insurance groups: Evidence from a field experiment in Ethiopia. J. Dev. Econ. 2014, 106, 132–143. [Google Scholar] [CrossRef]
- David, N. Water Vapor, Fog and Rainfall Monitoring Using Commercial Microwave Network Measurements. Ph.D. Thesis, Tel-Aviv University, Tel-Aviv, Israel, 2014. [Google Scholar]
- Harel, O.; David, N.; Alpert, P.; Messer, H. The potential of microwave communication networks to detect dew—Experimental study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4396–4404. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Marta, A.D.; Orlandini, S.; Santos, E.A.; Gillespie, T.J.; Gleason, M.L. Suitability of relative humidity as an estimator of leaf wetness duration. Agric. For. Meteorol. 2008, 148, 392–400. [Google Scholar] [CrossRef]
- Olsen, R.L.; Rogers, D.V.; Hodge, D.B. The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propag. 1978, 26, 318–329. [Google Scholar] [CrossRef]
- Recommendation ITU-R P.838-3. Specific Attenuation Model for Rain for Use in Prediction Methods; ITU: Geneva, Switzerland, 2005. [Google Scholar]
- Zinevich, A.; Messer, H.; Alpert, P. Prediction of rainfall intensity measurement errors using commercial microwave communication links. Atmos. Meas. Tech. 2010, 3, 1385–1402. [Google Scholar] [CrossRef] [Green Version]
- Kumah, K.K.; Hoedjes, J.C.B.; David, N.; Maathuis, B.H.P.; Gao, H.O.; Su, B.Z. Combining MWL and MSG SEVIRI satellite signals for rainfall detection and estimation. Atmosphere 2020, 11, 884. [Google Scholar] [CrossRef]
- Zinevich, A. Spatio-Temporal Monitoring of Precipitation by Microwave Networks. Ph.D. Thesis, Tel Aviv University, Tel-Aviv, Israel, 2010. [Google Scholar]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Ali, G.; Hagan, D.F.T.; Bhatti, A.S.; Lou, D. Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Remote Sens. 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Moroder, C.; Siart, U.; Chwala, C.; Kunstmann, H. Modeling of wet antenna attenuation for precipitation estimation from microwave links. IEEE Geosci. Remote Sens. Lett. 2019, 17, 386–390. [Google Scholar] [CrossRef]
- Hoedjes, J.C.B.; Kooiman, A.; Maathuis, B.H.P.; Said, M.Y.; Becht, R.; Limo, A.; Mumo, M.; Nduhiu-Mathenge, J.; Shaka, A.; Su, Z. A conceptual flash flood early warning system for Africa, based on terrestrial microwave links and flash flood guidance. ISPRS Int. J. Geo-Inf. 2014, 3, 584–598. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
David, N.; Liu, Y.; Kumah, K.K.; Hoedjes, J.C.B.; Su, B.Z.; Gao, H.O. On the Power of Microwave Communication Data to Monitor Rain for Agricultural Needs in Africa. Water 2021, 13, 730. https://doi.org/10.3390/w13050730
David N, Liu Y, Kumah KK, Hoedjes JCB, Su BZ, Gao HO. On the Power of Microwave Communication Data to Monitor Rain for Agricultural Needs in Africa. Water. 2021; 13(5):730. https://doi.org/10.3390/w13050730
Chicago/Turabian StyleDavid, Noam, Yanyan Liu, Kingsley K. Kumah, Joost C. B. Hoedjes, Bob Z. Su, and H. Oliver Gao. 2021. "On the Power of Microwave Communication Data to Monitor Rain for Agricultural Needs in Africa" Water 13, no. 5: 730. https://doi.org/10.3390/w13050730
APA StyleDavid, N., Liu, Y., Kumah, K. K., Hoedjes, J. C. B., Su, B. Z., & Gao, H. O. (2021). On the Power of Microwave Communication Data to Monitor Rain for Agricultural Needs in Africa. Water, 13(5), 730. https://doi.org/10.3390/w13050730