Research on the Influence of Small-Scale Terrain on Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Research Methods
2.2.1. Two-Dimensional Empirical Mode Decomposition
2.2.2. Precipitation Spatial Model
2.2.3. Definition of PPD
3. Results
3.1. Results of Model Decomposition
3.2. Research on Residual Terrain Classification
3.3. Simulation Results of Precipitation Model
4. Discussion
4.1. Analysis of Precipitation Simulation Results
4.2. Selection and Comparison of Optimal Models
5. Conclusions
- (1)
- By comparing the comprehensive evaluation indexes of all precipitation models in Central China based on the correlation coefficient, average relative error and average absolute error, model B2 is better than TRMM model A and monthly precipitation model B0.
- (2)
- In Central China, the macrotopography plays a leading role in the precipitation distribution in April, while the small-scale topography interferes with the precipitation fitting.
- (3)
- Different levels of small-scale terrain have different effects on precipitation. In Central China, the first- and second-order small-scale terrain has interference effects on precipitation fitting, and the third-order small-scale terrain has an enhancement effect on precipitation. Therefore, eliminating primary and secondary small-scale terrain features is conducive to improving the accuracy of the model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- North, G.R. Climate change 1994: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Intergovernmental panel on climate change (IPCC). Glob. Planet. Chang. 1997, 15, 59–60. [Google Scholar] [CrossRef]
- Bennett, M.E.; Tobin, K.J. Adjusting Satellite Precipitation Data to Facilitate Hydrologic Modeling. J. Hydrometeorol. 2010, 11, 966–978. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Jabareen, Y. The Risk City: Countering Climate Change: Emerging Planning Theories and Practices around the World; Springer: Berlin, Germany, 2015. [Google Scholar]
- Cattani, E.; Merino, A.; Levizzani, V. Evaluation of Monthly Satellite-Derived Precipitation Products over East Africa. J. Hydrometeorol. 2016, 17, 2555–2573. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrolol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Langella, G.; Basile, A.; Bonfante, A. High-resolution space–time rainfall analysis using integrated ANN inference systems. J. Hydrol. 2010, 387, 328–342. [Google Scholar] [CrossRef]
- Jiang, Q. Precipitation over Concave Terrain. J. Atmos. Sci. 2006, 63, 2269–2288. [Google Scholar] [CrossRef]
- LEE, W.C. Tropical Cyclone Kinematic Structure Retrieved from Single-Doppler Radar Observations. Part I: Interpretation of Doppler Velocity Patterns and the GBVTD Technique. Mon. Weather Rev. 1999, 127, 2419–2439. [Google Scholar] [CrossRef]
- Bougeault, P.; Buzzi, A.; Dirks, R. The MAP Special Observing Period. Bull. Am. Meteorol. Soc. 2001, 82, 433–462. [Google Scholar] [CrossRef] [Green Version]
- Bosch, D.D.; Davis, F.M. Rainfall Variability and Spatial Patterns for the Southeast. In Proceedings of the Fourth International Conference on Precision Agriculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Marquínez, J.; Lastra, J.; García, P. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis. J. Hydrol. 2003, 270, 1–11. [Google Scholar] [CrossRef]
- Naoum, S.; Tsanis, I.K. Orographic Precipitation Modeling with Multiple Linear Regression. J. Hydrol. Eng. 2004, 9, 79–101. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L.; Xia, Z.; Lin, Y.; Myneni, R.B.; Choi, S.; Wang, L.; Ni, X.; Lao, C.; Yang, F. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sens. 2015, 7, 5849–5878. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Qiu, X.; Zeng, Y.; Ren, W.; Tao, B.; Pan, H.; Gao, T.; Gao, J. High-resolution precipitation downscaling in mountainous areas over China: Development and application of a statistical mapping approach. Int. J. Climatol. 2018, 38, 77–93. [Google Scholar] [CrossRef]
- Demko, J.C.; Geerts, B. A Numerical Study of the Evolving Convective Boundary Layer and Orogra. Mon. Weather Rev. 2010, 138, 3603–3622. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Zhu, K.; Zhao, K.; Zhou, B.; Xue, M. Role of the Nocturnal Low-level Jet in the Formation of the Morning Precipitation Peak over the Dabie Mountains. Adv. Atmos. Sci. 2019, 36, 17–30. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, P. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv. Atmos. Sci. 2011, 28, 1177–1183. [Google Scholar] [CrossRef]
- Nunes, J.C.; Niang, O.; Bouaoune, Y.; Delechelle, E.; Bunel, P. Bidimensional Empirical Mode Decomposition Modified for Texture Analysis. In Proceedings of the Scandinavian Conference on Image Analysis, Halmstad, Sweden, 29 June–2 July 2003; Springer: Berlin, Germany, 2003. [Google Scholar]
- Nunes, J.C.; Guyot, S.; Delechelle, E. Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition. Mach. Vis. Appl. 2005, 16, 177–188. [Google Scholar] [CrossRef]
- Yang, J.; Guo, L.; Yang, H. A new multi-focus image fusion algorithm based on BEMD and improved local energy. IEEJ Trans. Electr. Electron. Eng. 2015, 10, 447–452. [Google Scholar] [CrossRef]
- Lahmiri, S. Image denoising in bidimensional empirical mode decomposition domain: The role of Student’s probability distribution function. Healthc. Technol. Lett. 2016, 3, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhao, K.; Xu, Y.; Peng, F. An image compression method based on the multi-resolution characteristics of BEMD. Comput. Math. Appl. 2011, 61, 2142–2147. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Feng, G. Remote sensing image texture enhancement based on HSV-BEMD algorithm. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 10–13 May 2019. [Google Scholar]
- Broucke, S.V.; Wouters, H.; Demuzere, M.; van Lipzig, N.P.M. The influence of convection-permitting regional climate modeling on future projections of extreme precipitation: Dependency on topography and timescale. Clim. Dyn. 2019, 52, 5303–5324. [Google Scholar] [CrossRef]
- Ding, S.; Du, P.; Zhao, X. BEMD image fusion based on PCNN and compressed sensing. Soft Comput. 2019, 23, 10045–10054. [Google Scholar] [CrossRef]
- Simpson, J.; Tao, W.K. The Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Ocean. Sci. 1993, 4, 73–116. [Google Scholar] [CrossRef]
- Zhang, K.; Ba, M.; Meng, H.; Sun, Y. Correlation Analysis of Elevation and the Relief Degree of Land Surface in Henan Province. In Proceedings of the 2018 2nd International Conference on Applied Mathematics, Modelling and Statistics Application (AMMSA 2018), Sanya, China, 27–28 May 2018. [Google Scholar]
- Benichou, M.; Gauthier, J.M.; Hentges, G.; Ribiere, G. The efficient solution of large-scale linear programming problems—some algorithmic techniques and computational results. Math. Program. 1977, 13, 280–322. [Google Scholar] [CrossRef]
- Guan, H.; Wilson, J.L.; Makhnin, O. Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydrometeorol. 2005, 6, 1018–1031. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Hydrometeorol. 1994, 33, 140–158. [Google Scholar] [CrossRef] [Green Version]
Terrain | DEM | OR1 | OR2 | OR3 | OR4 | OR5 | OR6 | OR7 | OR8 |
---|---|---|---|---|---|---|---|---|---|
Ratio | 0.14 | 0.13 | 0.15 | 0.14 | 0.19 | 0.26 | 0.24 | 0.23 | 0.15 |
Model Category | TRMM | Precipitation Models | ||||
---|---|---|---|---|---|---|
Model Scale | Null | DEM | OR3 | OR5 | OR8 | |
Mode Code | A | B0 | B1 | B2 | B3 | |
April | R | 0.97 | 0.97 | 0.97 | 0.98 | 0.98 |
MAE | 10.68 | 9.238 | 8.81 | 7.04 | 8.68 | |
MRE | 10.11% | 8.4% | 7.19% | 6.57% | 8.14% | |
MARE | 14.51 | 15.35 | 13.92 | 11.36 | 12.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Zhu, X.; Meng, X.; Qiu, X. Research on the Influence of Small-Scale Terrain on Precipitation. Water 2021, 13, 805. https://doi.org/10.3390/w13060805
Gu W, Zhu X, Meng X, Qiu X. Research on the Influence of Small-Scale Terrain on Precipitation. Water. 2021; 13(6):805. https://doi.org/10.3390/w13060805
Chicago/Turabian StyleGu, Wenya, Xiaochen Zhu, Xiangrui Meng, and Xinfa Qiu. 2021. "Research on the Influence of Small-Scale Terrain on Precipitation" Water 13, no. 6: 805. https://doi.org/10.3390/w13060805
APA StyleGu, W., Zhu, X., Meng, X., & Qiu, X. (2021). Research on the Influence of Small-Scale Terrain on Precipitation. Water, 13(6), 805. https://doi.org/10.3390/w13060805