Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Context
2.2. Methodology
2.2.1. Model Data and Assumptions
2.2.2. Hydro-Economic Model Formulation
2.2.3. Solving the optimization problem through stochastic dual dynamic programming (SDDP)
General Description
- is the expectation operator;
- is the index of time (month);
- is the last time period (month);
- is a discount factor for the value of economic benefit over time;
- is the benefit function at stage t (R$);
- is a vector of storage at time t (hm3);
- is the allocation vector (decision variables: turbine, flow) (hm3);
- is the affluent flows vector (hm3);
- is a terminal value function that estimates the value of de at time period T (R$);
Model Output
3. Results and Discussion
3.1. Energy and Economic Arrangements
3.2. Marginal Water Values
3.3. Total Economic Benefits and Tradeoffs
4. Conclusions
- While the water–food–energy nexus brings in tradeoffs from water allocation in the watershed, the overall result can be positive, as is the case in the modeled system. The energy generation is often perceived as a much higher value, but irrigated agriculture can reach significant values as well;
- The location and water allocation to the demands affect the tradeoffs. In the system modeled, water has been overallocated upstream of the powerplants, which makes the problem more difficult to address;
- As the agricultural benefits outweigh the potential energy losses in the modeled system, the best course of action is to find an economically compensated reallocation strategy, upon negotiation among users, rather than imposing water supply cutbacks to the agriculture sector. The tradeoff values presented here are useful information to negotiate those strategies among irrigators and power companies;
- Hydrologic variability is responsible for some benefit losses, especially upstream in the system where water is scarcer;
- There is already a great deal of hydropower revenue variation even without irrigation demands, and sharing water with irrigation further increases this risk.
- The variation in irrigated agriculture economic benefits is comparatively smaller by one order of magnitude than the variation in hydropower benefits. As irrigation receives water first and its water demand is relatively smaller, it is less affected by hydrologic variability;
- The economic value of water varies over time and space, which indicates users’ availability to pay or to be compensated for water considering its scarcity in different months, hydrological scenarios, and places. This is a starting point for a negotiated allocation process capable of signaling to current and future users the spatial location and the demand pattern that can be accommodated in the basin, depending on the economic value of the water;
- The variability in the water’s economic values reflects the hydrological variability in the basin itself (combined with water use and storage operations). It can be used to better understand the risks associated with decisions taken from the negotiated allocation. This aspect is still little explored by the management of water resources in Brazil, but it contributes to give more transparency in the information process to the parties involved in the negotiation process. Knowing the likelihood of making a given amount of water available for reallocation, as well as how much it would cost in compensation, allows for better planning by those involved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho, R.C.D.; Magrini, A. Conflicts over Water Resource Management in Brazil: A Case Study of Inter-Basin Transfers. Water Resour. Manag. 2006, 20, 193–213. [Google Scholar] [CrossRef]
- Ioris, A.A.R. Water Resources Development in the São Francisco River Basin: Conflicts and Management Perspectives. Water Int. 2001, 26, 24–39. [Google Scholar] [CrossRef]
- De Penteado, C.L.C.; Almeida, D.L.; Benassi, R.F. Conflitos hídricos na gestão dos reservatórios Billings e Barra Bonita. Estud. Av. 2017, 31, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Getirana, A.C.V.; de Malta, V.F.; de Azevedo, J.P.S. Decision Process in a Water Use Conflict in Brazil. Water Resour. Manag. 2008, 22, 103–118. [Google Scholar] [CrossRef]
- Hess, C.E.E.; Fenrich, E. Socio-Environmental Conflicts on Hydropower: The São Luiz Do Tapajós Project in Brazil. Environ. Sci. Policy 2017, 73, 20–28. [Google Scholar] [CrossRef]
- Amorim, A.; Ribeiro, M.; Braga, C. Conflitos Em Bacias Hidrográficas Compartilhadas: O Caso Da Bacia Do Rio Piranhas-Açu/PB-RN. Rev. Bras. Recur. Hídr. 2016, 21, 36–45. [Google Scholar] [CrossRef]
- Wild, T.B.; Reed, P.M.; Loucks, D.P.; Mallen-Cooper, M.; Jensen, E.D. Balancing Hydropower Development and Ecological Impacts in the Mekong: Tradeoffs for Sambor Mega Dam. J. Water Resour. Plan. Manag. 2019, 145, 05018019. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Ringler, C.; Brown, C.; Mondal, M.A.H. Modeling the Agricultural Water–Energy–Food Nexus in the Indus River Basin, Pakistan. J. Water Resour. Plann. Manag. 2016, 142, 04016062. [Google Scholar] [CrossRef]
- Mercure, J.-F.; Paim, M.A.; Bocquillon, P.; Lindner, S.; Salas, P.; Martinelli, P.; Berchin, I.I.; de Andrade Guerra, J.B.S.O.; Derani, C.; de Albuquerque Junior, C.L.; et al. System Complexity and Policy Integration Challenges: The Brazilian Energy-Water-Food Nexus. Renew. Sustain. Energy Rev. 2019, 105, 230–243. [Google Scholar] [CrossRef]
- Mushtaq, S.; Maraseni, T.N.; Maroulis, J.; Hafeez, M. Energy and Water Tradeoffs in Enhancing Food Security: A Selective International Assessment. Energy Policy 2009, 37, 3635–3644. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, T. Stochastic Multi-Objective Modeling for Optimization of Water-Food-Energy Nexus of Irrigated Agriculture. Adv. Water Resour. 2019, 127, 209–224. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Daher, B. Water, Energy, and Food: The Ultimate Nexus. In Encyclopedia of Agricultural, Food, and Biological Engineering, 2nd ed.; Taylor & Francis: London, UK, 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Do Batista, J.A.N.; Wendland, E.C.; Formiga, K.T.M. Prospecção das Interdependências entre Água, Energia e Alimento no Brasil. RDAE 2019, 67, 86–91. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Sharma, D.; Villela, A.A.; Pereira Junior, A.O. Water-Energy-Food Nexus of Sugarcane Ethanol Production in the State of Goiás, Brazil: An Analysis with Regional Input-Output Matrix. Biomass Bioenergy 2018, 115, 108–119. [Google Scholar] [CrossRef]
- Dalla Fontana, M.; de Moreira, F.A.; Di Giulio, G.M.; Malheiros, T.F. The Water-Energy-Food Nexus Research in the Brazilian Context: What Are We Missing? Environ. Sci. Policy 2020, 112, 172–180. [Google Scholar] [CrossRef]
- Elagib, N.A.; Al-Saidi, M. Balancing the Benefits from the Water–Energy–Land–Food Nexus through Agroforestry in the Sahel. Sci. Total Environ. 2020, 742, 140509. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Water-Energy-Food Nexus; FAO: Rome, Italy, 2014. [Google Scholar]
- FAO. Walking the Nexus Talk: Assessing the Water-Energy-Food Nexus in the Context of the Sustainable Energy for All Initiative; FAO: Rome, Italy, 2014; ISBN 978-92-5-108487-8. [Google Scholar]
- Giampietro, M.; Aspinall, R.J.; Bukkens, S.G.F.; Benalcazar, J.C.; Diaz-Maurin, F.; Flammini, A.; Gomiero, T.; Kovacic, Z.; Madrid, C.; Ramos-Martin, J.; et al. An Innovative Accounting Framework for the Food-Energy-Water Nexus: Application of the MuSIASEM Approach to Three Case Studies; FAO: Rome, Italy, 2013; ISBN 9789251079645. [Google Scholar]
- Sun, J.; Li, Y.P.; Suo, C.; Liu, J. Development of an Uncertain Water-Food-Energy Nexus Model for Pursuing Sustainable Agricultural and Electric Productions. Agric. Water Manag. 2020, 241, 106384. [Google Scholar] [CrossRef]
- UN Water. Water, Food and Energy; UN Water: Geneva, Switzerland, 2017. [Google Scholar]
- UNECE. Water-Food-Energy-Ecosystem Nexus; UNECE: Geneva, Switzerland, 2016. [Google Scholar]
- Mohtar, R.H.; Daher, B. Water-Energy-Food Nexus Framework for Facilitating Multi-Stakeholder Dialogue. Water Int. 2016, 41, 655–661. [Google Scholar] [CrossRef]
- WWAP. Managing Water under Uncertainty and Risk; UNESCO: Paris, France, 2012; Volume 1, ISBN 978-92-3-104235-5. [Google Scholar]
- WWAP. The United Nations World Water Development Report 2014: Water and Energy; UN, Ed.; UNESCO: Paris, France, 2014; Volume 1, ISBN 978-0-12-381510-1. [Google Scholar]
- Daher, B.T.; Mohtar, R.H. Water–Energy–Food (WEF) Nexus Tool 2.0: Guiding Integrative Resource Planning and Decision-Making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Kahil, T.; Albiac, J.; Fischer, G.; Strokal, M.; Tramberend, S.; Greve, P.; Tang, T.; Burek, P.; Burtscher, R.; Wada, Y. A Nexus Modeling Framework for Assessing Water Scarcity Solutions. Curr. Opin. Environ. Sustain. 2019, 40, 72–80. [Google Scholar] [CrossRef] [Green Version]
- OECD. Cobranças Pelo Uso de Recursos Hídricos No Brasil; OECD: Paris, France, 2017. [Google Scholar]
- Macian-Sorribes, H.; Pulido-Velazquez, M.; Tilmant, A. Definition of Scarcity-Based Water Pricing Policies through Hydro-Economic Stochastic Programming. In EGU General Assembly Conference Abstracts; European Geosciences Union: Munich, Germany, 2014; Volume 16, p. 814. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.; Mendoza, M. Alternative Water Allocation Mechanisms: Indian and International Experiences. Econ. Political Wkly 1996, 31, A25–A30. [Google Scholar]
- Kahil, T.; Parkinson, S.; Satoh, Y.; Greve, P.; Burek, P.; Veldkamp, T.I.E.; Burtscher, R.; Byers, E.; Djilali, N.; Fischer, G.; et al. A Continental-Scale Hydro-economic Model for Integrating Water-Energy-Land Nexus Solutions. Water Resour. Res. 2018, 54, 7511–7533. [Google Scholar] [CrossRef] [Green Version]
- Do, P.; Tian, F.; Zhu, T.; Zohidov, B.; Ni, G.; Lu, H.; Liu, H. Exploring Synergies in the Water-Food-Energy Nexus by Using an Integrated Hydro-Economic Optimization Model for the Lancang-Mekong River Basin. Sci. Total Environ. 2020, 728, 137996. [Google Scholar] [CrossRef]
- Expósito, A.; Beier, F.; Berbel, J. Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review. Water 2020, 12, 1559. [Google Scholar] [CrossRef]
- Arjoon, D.; Tilmant, A.; Herrmann, M. Sharing Water and Benefits in Transboundary River Basins. Hydrol. Earth Syst. Sci. Discuss. 2016, 20, 2135–2150. [Google Scholar] [CrossRef] [Green Version]
- Braden, J.B. Value of Valuation: Introduction. J. Water Resour. Plan. Manag. 2000, 126, 336–338. [Google Scholar] [CrossRef]
- Brouwer, R.; Hofkes, M. Integrated Hydro-Economic Modelling: Approaches, Key Issues and Future Research Directions. Ecol. Econ. 2008, 66, 16–22. [Google Scholar] [CrossRef]
- FGV. Estudos Econômicos Específicos de Apoio à Implementação Da Cobrança Para Os Setores Agropecuário, Industrial e Hidrelétrico; ANA: Brasília, Brazil, 2003; p. 50. [Google Scholar]
- Goor, Q.; Halleux, C.; Mohamed, Y.; Tilmant, A. Optimal Operation of a Multipurpose Multireservoir System in the Eastern Nile River Basin. Hydrol. Earth Syst. Sci. 2010, 14, 1895–1908. [Google Scholar] [CrossRef] [Green Version]
- Griffin, R.C. Benchmarking in Water Project Analysis. Water Resour. Res. 2008, 44, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-Economic Models: Concepts, Design, Applications, and Future Prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef] [Green Version]
- De Machado, B.G.F. Alocação De Água Entre Os Usos Irrigação E Produção De Energia Elétrica: O Caso Da Bacia Do Rio Preto; Universidade de Brasília: Brasília, Brazil, 2009. [Google Scholar]
- Marques, G.F.; Tilmant, A. The Economic Value of Coordination in Large-Scale Multireservoir Systems: The Parana River Case. Water Resour. Re. 2013, 49, 7546–7557. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Alvarez-Mendiola, E.; Andreu, J. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plan. Manag. 2013, 139, 583–593. [Google Scholar] [CrossRef]
- Tilmant, A.; Pina, J.; Salman, M.; Casarotto, C.; Ledbi, F.; Pek, E. Probabilistic Trade-off Assessment between Competing and Vulnerable Water Users—The Case of the Senegal River Basin. J. Hydrol. 2020, 587, 124915. [Google Scholar] [CrossRef]
- Tilmant, A.; Marques, G.; Mohamed, Y. A Dynamic Water Accounting Framework Based on Marginal Resource Opportunity Cost. Hydrol. Earth Syst. Sci. 2015, 19, 1457–1467. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; van Ierland, E.C. Economic Modelling for Water Quantity and Quality Management: A Welfare Program Approach. Water Resour. Manag. 2012, 26, 2491–2511. [Google Scholar] [CrossRef] [Green Version]
- Rising, J. Decision-Making and Integrated Assessment Models of the Water-Energy-Food Nexus. Water Secur. 2020, 9, 100056. [Google Scholar] [CrossRef]
- Pereira-Cardenal, S.J.; Mo, B.; Gjelsvik, A.; Riegels, N.D.; Arnbjerg-Nielsen, K.; Bauer-Gottwein, P. Joint Optimization of Regional Water-Power Systems. Adv. Water Resour. 2016, 92, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Águas (ANA); Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Levantamento Da Agricultura Irrigada Por Pivôs Centrais No Brasil—2014; ANA: Brasília, Brazil, 2014. [Google Scholar]
- Agência Nacional de Águas (ANA). Conjuntura Dos Recursos Hídricos No Brasil 2017; Agência Nacional de Águas: Brasília, Brazil, 2017. [Google Scholar]
- Guimarães, D.P.; Landau, E.C.; dos Reis, R.J. Caracterização Da Bacia Hidrográfica Do Rio São Marcos. In Proceedings of the Embrapa Milho e Sorgo-Artigo em anais de congresso (ALICE), Bento Gonçalves, Brazil, 22 November 2013. [Google Scholar]
- Da Costa Silva, L.M. Conflito Pelo Uso Da Água Na Bacia Hidrográfica Do Rio São Marcos: O Estudo De Caso Da Uhe Batalha. Engevista 2015, 17, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Quirino, D.T.; de Sales, L.F.P.; da Silva, O.F. Aplicação Do Sensoriamento Remoto Para Análise Temporal Em Agriculturas Irrigadas Por Pivô Central No Município de Cristalina-GO. In Proceedings of the Anais XV Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Curitiba, Brazil, 11 May 2011; p. 154. [Google Scholar]
- Brunckhorst, A.; de Bias, E.S. Aplicação de SIG na gestão de conflitos pelo uso da água na porção goiana da bacia hidrográfica do rio São Marcos, município de Cristalina—GO. São Paulo 2014, 33, 228–243. [Google Scholar]
- Ministério do Meio Ambiente (MMA). Desenvolvimento de Matriz de Coeficientes Técnicos Para Recursos Hídricos No Brasil; Ministério do Meio Ambiente: Brasília, Brazil, 2011. [Google Scholar]
- Agência Nacional de Energia Elétrica (ANEEL). Sistema de Informações Geográficas Do Setor Elétrico (SIGEL). Available online: http://sigel.aneel.gov.br/portal/home/index.html (accessed on 22 September 2016).
- Brazilian Electric Potential Information System. Brazilian Electric Potential Information System Database; Eletrobras: Rio de Janeiro, Brazil, 1999. [Google Scholar]
- Geraldo, A.; Filho, M.; Dias, M.M.; Junior, D.W. The Construction of the Serra Do Facão Hydroelectric Power Plant. In Main Brazilian Dams III; Comitê Brasileiro de Barragens: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Operador Nacional do Sistema Elétrico (ONS). Operador Nacional Do Sistema Elétrico. Available online: http://www.ons.org.br/home/ (accessed on 2 January 2016).
- Pereira, M.V.F. Optimal Stochastic Operations Scheduling of Large Hydroelectric Systems. Int. J. Electr. Power Energy Syst. 1989, 11, 161–169. [Google Scholar] [CrossRef]
- Tilmant, A.; Arjoon, D.; Marques, G.F. Economic Value of Storage in Multireservoir Systems. J. Water Resour. Plan. Manag. 2014, 140, 375–383. [Google Scholar] [CrossRef]
- Câmara de Comercialização de Energia Elétrica (CCEE). Preço de Liquidação Das Diferenças; CCEE: São Paulo, Brazil, 2017. [Google Scholar]
- Tilmant, A.; Pinte, D.; Goor, Q. Assessing Marginal Water Values in Multipurpose Multireservoir Systems via Stochastic Programming. Water Resour. Res. 2008, 44, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Águas (ANA). Nota Técnica N° 103/GEREG/SOF-ANA—Considerações Sobre Valor Econômico Da Água Na Bacia Do Rio São Marcos; ANA: Brasília, Brazil, 2010. [Google Scholar]
- Takasago, M.; da Cunha, C.A.; Olivier, A.K.G. Relevância Da Agropecuária Brasileira: Uma Análise Insumo-Produto. Rev. Espac. 2017, 38, 31. [Google Scholar]
Arrangement | Hydrologic Scenario | |
---|---|---|
90% Exceedance Scenario | 10% Exceedance Scenario | |
Economic arrangement | 90% exceedance with economic arrangement | 10% exceedance with economic arrangement |
Energy arrangement | 90% exceedance with energy arrangement | 10% exceedance with energy arrangement |
Total for both arrangements | Curves from 100% a 0% exceedance |
Arrangement | Scenario | Benefit Generated (R$ Million/Year) | |
---|---|---|---|
Energy | 90% (drier) | R$479.29 | |
10% (wetter) | R$641.72 | ||
Economic | 90% (drier) | R$452.27 | |
10% (wetter) | R$612.09 | ||
Variation (Energy–Economic) | 90% | Absolute | −R$27.01 |
% | −5.64% | ||
10% | Absolute | −R$29.63 | |
% | −4.62% |
Node | Water Demands (hm3/year) | Water Withdrawals (hm3/year) | Deficit (Demands–Withdrawals) (hm3/year) | |||
---|---|---|---|---|---|---|
# | Name | 90% (Drier) | 10% (Wetter) | 90% (Drier) | 10% (Wetter) | |
1 | Rio Samambaia | 106.2 | 57.3 | 72.8 | 48.9 | 33.3 |
2 | Cabeceira São Marcos | 45.4 | 36.8 | 37.1 | 8.7 | 8.4 |
12 | Irrigação Minas Gerais | 149.6 | 116.5 | 116.5 | 33.1 | 33.1 |
10 | Consumo Batalha | 121.6 | 93.9 | 107.3 | 27.7 | 14.3 |
11 | Consumo Serra do Facão | 118.3 | 97.1 | 104.7 | 21.2 | 13.6 |
9 | Exutório | 8.5 | 10.0 | 10.0 | −1.5 | −1.5 |
Total | 549.7 | 411.6 | 448.4 | 138.1 | 101.2 |
Node | Economic Benefit Generated in Irrigated Agriculture (R$ million/year) | Difference of Economic Benefits | |||
---|---|---|---|---|---|
# | Name | 90% (Drier) | 10% (Wetter) | R$ million/year | % |
1 | Rio Samambaia | R$23.36 | R$27.06 | R$3.70 | 13,67% |
2 | São Marcos Cabeceira | R$17.14 | R$17.18 | R$0.04 | 0,23% |
12 | Irrigação Minas Gerais | R$55.66 | R$55.66 | R$0.00 | 0,00% |
10 | Consumo Batalha | R$37.26 | R$39.57 | R$2.32 | 5,86% |
11 | Consumo Serra do Facão | R$47.53 | R$48.85 | R$1.33 | 2,72% |
9 | Exutório | R$4.60 | R$4.60 | R$0.00 | 0,00% |
Total | R$185.53 | R$192.92 | R$7.38 | 3.83% |
Node | Economic Arrangement | Energy Arrangement | ||
---|---|---|---|---|
10% (Wetter) | 90% (Drier) | 10% (Wetter) | 90% (Drier) | |
1—Rio Samambaia | 125.7 | 145.1 | 95.9 | 105.3 |
2—São Marcos Cabeceira | 98.9 | 106.4 | 95.9 | 105.3 |
3—Confluência | 98.8 | 106.4 | 95.9 | 105.3 |
4—Mundo Novo | 98.8 | 106.4 | 95.9 | 105.3 |
5—Contribuição Batalha | 98.8 | 106.4 | 95.9 | 105.3 |
6—Batalha | 98.8 | 106.4 | 95.9 | 105.3 |
7—Contribuição Serra do Facão | 71.1 | 76.3 | 69.8 | 76.2 |
8—Serra do Facão | 71.1 | 76.3 | 69.8 | 76.2 |
9—Exutório | 0.0 | 0.0 | 0.0 | 0.0 |
10—Consumo Batalha | 102.5 | 122.0 | 95.9 | 105.3 |
11—Consumo Serra do Facão | 76.3 | 95.7 | 69.8 | 76.2 |
12—Irrigação Minas Gerais | 98.8 | 106.4 | 95.9 | 105.3 |
Arrangement | Scenario | Generated Benefit (R$ Million) | |||
---|---|---|---|---|---|
Irrigated Agriculture | Energy Generation | Total | |||
Economic | 90% (drier) | R$185.5 | R$452.3 | R$637.8 | |
10% (wetter) | R$192.9 | R$612.1 | R$805.0 | ||
Energy | 90% (drier) | - | R$479.3 | R$479.3 | |
10% (wetter) | - | R$641.7 | R$641.7 | ||
Variation (energy—economic) | 90% (drier) | Absolute | R$185.5 | −R$27.0 | R$158.5 |
% | - | −5.64% | 33.07% | ||
10% (wetter) | Absolute | R$192.9 | −R$29.6 | R$163.3 | |
% | - | −4.62% | 25.44% |
Origin of Economic Benefits | Generated Benefits at 90% Exceedance Probability (R$ million/year) | Generated Benefits at 10% Exceedance Probability (R$ million/year) |
---|---|---|
Generated by the energy sector without irrigated agriculture. (B) | R$479.3 | R$641.7 |
Generated by the energy sector with irrigated agriculture. (C) | R$452.3 | R$612.1 |
Loss of energy benefits from the presence of agriculture (D) = (B − C) | R$27.0 | R$29.6 |
Generated by irrigated agriculture with the energy sector (A) | R$185.5 | R$192.9 |
Irrigated agricultural benefits discounted the loss of energy benefits (A − D) | R$158.5 | R$163.3 |
Total system benefits (energy + irrigated agriculture) (C + A) | R$637.8 | R$805.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bof, P.H.; Marques, G.F.; Tilmant, A.; Dalcin, A.P.; Olivares, M. Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin. Water 2021, 13, 817. https://doi.org/10.3390/w13060817
Bof PH, Marques GF, Tilmant A, Dalcin AP, Olivares M. Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin. Water. 2021; 13(6):817. https://doi.org/10.3390/w13060817
Chicago/Turabian StyleBof, Pedro Henrique, Guilherme Fernandes Marques, Amaury Tilmant, Ana Paula Dalcin, and Marcelo Olivares. 2021. "Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin" Water 13, no. 6: 817. https://doi.org/10.3390/w13060817
APA StyleBof, P. H., Marques, G. F., Tilmant, A., Dalcin, A. P., & Olivares, M. (2021). Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin. Water, 13(6), 817. https://doi.org/10.3390/w13060817