Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Procedure
2.2. Numerical Model
2.3. Grid Resolution and Quality Verification
3. Results
Scale Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Definition |
dr | refined index of agreement (-) |
g | gravity acceleration (ms−2) |
h | pool water depth (m) |
hm | pool mean water depth (m) |
k | turbulent kinetic energy (m2s−2) |
L | length scale (m) |
LES_IQ | LES model index of quality (-) |
LES_IQk | LES model index of quality based on TKE (-) |
p | apparent order of the method (-) |
R2 | coefficient of determination (-) |
mean velocity magnitude (ms−1) | |
Vo | theoretical maximum velocity through the orifice (ms−1) |
u, v, w | instantaneous longitudinal, transversal, and vertical velocity component (ms−1) |
u’, v’, w’ | fluctuating longitudinal, transversal, and vertical velocity component (ms−1) |
mean longitudinal, transversal, and vertical velocity component (ms−1) | |
longitudinal, transversal, and vertical Reynolds normal stress (m2s−2) | |
x, y, z | streamwise, transversal, and perpendicular to the flume bottom coordinates (m) |
Δh | head drop between pools (m) |
ρ | mass density of water (kgm−3) |
τuv | parallel to the bottom Reynolds shear stress component (m2s−2) |
Appendix A
ADV—Numerical Model | PIV—Numerical Model | ||||
---|---|---|---|---|---|
ADV—Cmodel | ADV—Dmodel | PIV—Cmodel | PIV—Dmodel | ||
Nº points a | 840 | 251,697 | 393,601 | ||
MAD (ms−1) | 0.057 | 0.047 | 0.070 | 0.059 | |
R2 | 0.84 | 0.89 | 0.83 | 0.88 | |
dr | 0.76 | 0.80 | 0.77 | 0.81 | |
Nº points a | 840 | 141,991 | 222,316 | ||
MAD (ms−1) | 0.029 | 0.027 | 0.032 | 0.028 | |
R2 | 0.74 | 0.81 | 0.73 | 0.78 | |
dr | 0.76 | 0.78 | 0.74 | 0.77 | |
Nº points a | 840 | 109,706 | 171,285 | ||
MAD (ms−1) | 0.036 | 0.029 | 0.040 | 0.035 | |
R2 | 0.52 | 0.70 | 0.57 | 0.67 | |
dr | 0.64 | 0.71 | 0.64 | 0.69 | |
Nº points a | 840 | b | |||
MAD (ms−1) | 0.058 | 0.048 | |||
R2 | 0.70 | 0.77 | |||
dr | 0.62 | 0.68 | |||
Nº points a | 840 | 251,697 | 393,601 | ||
MAD (m2s−2) | 0.0044 | 0.0040 | 0.0048 | 0.0044 | |
R2 | 0.62 | 0.73 | 0.53 | 0.63 | |
dr | 0.71 | 0.73 | 0.72 | 0.75 | |
Nº points a | 840 | 141,991 | 222,316 | ||
MAD (m2s−2) | 0.0029 | 0.0025 | 0.0032 | 0.0030 | |
R2 | 0.55 | 0.66 | 0.50 | 0.58 | |
dr | 0.67 | 0.71 | 0.67 | 0.69 | |
Nº points a | 840 | 109,706 | 171,285 | ||
MAD (m2s−2) | 0.0024 | 0.0021 | 0.0037 | 0.035 | |
R2 | 0.56 | 0.70 | 0.53 | 0.62 | |
dr | 0.63 | 0.67 | 0.68 | 0.70 | |
κ | Nº points a | 840 | b | ||
MAD (m2s−2) | 0.0043 | 0.0037 | |||
R2 | 0.63 | 0.74 | |||
dr | 0.71 | 0.75 | |||
τuv | Nº points a | 840 | 141,991 | 222,316 | |
MAD (m2s−2) | 1.6 | 1.4 | 1.5 | 1.4 | |
R2 | 0.46 | 0.64 | 0.46 | 0.50 | |
dr | 0.69 | 0.73 | 0.66 | 0.70 |
References
- Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [Google Scholar] [CrossRef]
- Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [Google Scholar] [CrossRef]
- Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [Google Scholar] [CrossRef]
- Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power Administration: Portland, Oregon, 2002. [Google Scholar]
- Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [Google Scholar] [CrossRef]
- Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [Google Scholar] [CrossRef]
- Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [Google Scholar] [CrossRef] [Green Version]
- Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [Google Scholar] [CrossRef]
- Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [Google Scholar] [CrossRef]
- Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714, 145–154. [Google Scholar] [CrossRef]
- Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [Google Scholar] [CrossRef]
- Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [Google Scholar] [CrossRef]
- Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [Google Scholar] [CrossRef]
- Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130, 10–23. [Google Scholar] [CrossRef]
- Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132, 765–777. [Google Scholar] [CrossRef]
- Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [Google Scholar] [CrossRef]
- Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [Google Scholar] [CrossRef]
- Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [Google Scholar] [CrossRef]
- Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [Google Scholar] [CrossRef]
- Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [Google Scholar] [CrossRef]
- Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [Google Scholar] [CrossRef]
- Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [Google Scholar] [CrossRef]
- Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [Google Scholar] [CrossRef]
- Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Bombač, M.; Novak, G.; Rodič, P.; Četina, M. Numerical and physical model study of a vertical slot fishway. J. Hydrol. Hydromech. 2014, 62, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Bombač, M.; Novak, G.; Mlacnik, J.; Četina, M. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [Google Scholar] [CrossRef]
- Bombač, M.; Četina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. Ecol. Eng. 2017, 107, 126–136. [Google Scholar] [CrossRef]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [Google Scholar] [CrossRef]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [Google Scholar] [CrossRef]
- Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [Google Scholar] [CrossRef]
- Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [Google Scholar] [CrossRef]
- Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid Mech. 2018, 18, 1435–1461. [Google Scholar] [CrossRef]
- Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard vertical slot fishways. Water 2019, 11, 199. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864) for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25, 173–177. [Google Scholar] [CrossRef]
- Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [Google Scholar] [CrossRef]
- Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [Google Scholar] [CrossRef]
- Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [Google Scholar] [CrossRef]
- Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [Google Scholar] [CrossRef]
- Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [Google Scholar] [CrossRef]
- Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [Google Scholar] [CrossRef]
- Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [Google Scholar] [CrossRef]
- Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [Google Scholar] [CrossRef] [Green Version]
- Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [Google Scholar] [CrossRef]
- Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016. [Google Scholar]
- Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985. [Google Scholar]
- Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [Google Scholar] [CrossRef]
- Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [Google Scholar] [CrossRef]
- Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [Google Scholar] [CrossRef] [Green Version]
- Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [Google Scholar] [CrossRef]
- Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [Google Scholar] [CrossRef] [Green Version]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [Google Scholar] [CrossRef]
- Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [Google Scholar] [CrossRef]
- Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438. [Google Scholar]
- Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [Google Scholar] [CrossRef]
- Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [Google Scholar] [CrossRef]
- Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [Google Scholar] [CrossRef]
- Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [Google Scholar] [CrossRef]
- Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [Google Scholar] [CrossRef]
- Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [Google Scholar] [CrossRef]
Mesh | Number of Mesh Blocks | Cell Sizes (Δx × Δy × Δz) (cm3) | Number of Cells | Computation Time for 10 s of Simulation Time (h) (a) |
---|---|---|---|---|
Amodel | 5 | 2 × 2 × 2 1 × 1 × 1 | 380,650 | 2.1 |
Bmodel | 2 | 1 × 1 × 1 0.5 × 0.5 × 0.5 | 2,714,000 | 11.2 |
Cmodel | 1 | 0.25 × 0.25 × 0.25 | 12,364,800 | 98.7 |
Dmodel | 1 | 0.20 × 0.20 × 0.20 | 23,417,910 | 268.8 |
Aprototype | 5 | 5 × 5 × 5 2.5 × 2.5 × 2.5 | 380,650 | 0.5 |
Bprototype | 2 | 2.5 × 2.5 × 2.5 1.25 × 1.25 × 1.25 | 2,714,000 | 8.7 |
Parameter | p | Percentage of Points Showing Oscillatory Convergence |
---|---|---|
1.9 | 27 | |
1.7 | 56 | |
2.1 | 58 | |
1.9 | 61 | |
1.8 | 59 | |
1.6 | 64 | |
1.6 | 65 | |
κ | 1.6 | 66 |
τuv | 1.5 | 56 |
ADV—Numerical Model | PIV—Numerical Model | ||||
---|---|---|---|---|---|
ADV—Amodel | ADV—Bmodel | PIV—Amodel | PIV—Bmodel | ||
Nº points a | 840 | 15,884 | 63,820 | ||
MAD (ms−1) | 0.031 | 0.036 | 0.038 | 0.039 | |
R2 | 0.93 | 0.92 | 0.92 | 0.92 | |
dr | 0.87 | 0.85 | 0.88 | 0.87 | |
Nº points a | 840 | 8963 | 35,852 | ||
MAD (ms−1) | 0.020 | 0.023 | 0.023 | 0.019 | |
R2 | 0.90 | 0.87 | 0.90 | 0.91 | |
dr | 0.83 | 0.81 | 0.82 | 0.85 | |
Nº points a | 840 | 6921 | 27,968 | ||
MAD (ms−1) | 0.026 | 0.025 | 0.035 | 0.026 | |
R2 | 0.78 | 0.78 | 0.73 | 0.80 | |
dr | 0.73 | 0.75 | 0.69 | 0.77 | |
Nº points a | 840 | b | |||
MAD (ms−1) | 0.032 | 0.036 | |||
R2 | 0.85 | 0.81 | |||
dr | 0.79 | 0.76 | |||
Nº points a | 840 | 15,884 | 63,820 | ||
MAD (m2s−2) | 0.0028 | 0.0032 | 0.0046 | 0.0032 | |
R2 | 0.80 | 0.68 | 0.72 | 0.72 | |
dr | 0.80 | 0.79 | 0.74 | 0.82 | |
Nº points a | 840 | 8963 | 35,852 | ||
MAD (m2s−2) | 0.0026 | 0.0019 | 0.0032 | 0.0023 | |
R2 | 0.38 | 0.80 | 0.33 | 0.76 | |
dr | 0.70 | 0.78 | 0.66 | 0.76 | |
Nº points a | 840 | 6921 | 27,968 | ||
MAD (m2s−2) | 0.0022 | 0.0021 | 0.0032 | 0.0021 | |
R2 | 0.55 | 0.82 | 0.44 | 0.82 | |
dr | 0.65 | 0.67 | 0.72 | 0.82 | |
κ | Nº points a | 840 | b | ||
MAD (m2s−2) | 0.0025 | 0.0028 | |||
R2 | 0.77 | 0.79 | |||
dr | 0.83 | 0.81 | |||
τuv | Nº points a | 840 | 8963 | 35,852 | |
MAD (m2s−2) | 1.2 | 1.5 | 1.4 | 1.7 | |
R2 | 0.57 | 0.57 | 0.54 | 0.53 | |
dr | 0.77 | 0.72 | 0.68 | 0.62 |
ADV—Numerical Model | PIV—Numerical Model | ||||
---|---|---|---|---|---|
ADV—Aprototype | ADV—Bprototype | PIV—Aprototype | PIV—Bprototype | ||
Nº points a | 840 | 15,884 | 63,820 | ||
MAD (ms−1) | 0.054 | 0.062 | 0.058 | 0.069 | |
R2 | 0.92 | 0.91 | 0.92 | 0.92 | |
dr | 0.86 | 0.84 | 0.88 | 0.86 | |
Nº points a | 840 | 8963 | 35,852 | ||
MAD (ms−1) | 0.035 | 0.036 | 0.033 | 0.033 | |
R2 | 0.90 | 0.87 | 0.91 | 0.90 | |
dr | 0.82 | 0.81 | 0.83 | 0.84 | |
Nº points a | 840 | 6921 | 27,968 | ||
MAD (ms−1) | 0.049 | 0.042 | 0.051 | 0.041 | |
R2 | 0.75 | 0.76 | 0.75 | 0.80 | |
dr | 0.69 | 0.73 | 0.72 | 0.77 | |
Nº points a | 840 | b | |||
MAD (ms−1) | 0.051 | 0.062 | |||
R2 | 0.84 | 0.80 | |||
dr | 0.78 | 0.74 | |||
Nº points a | 840 | 15,884 | 63,820 | ||
MAD (m2s−2) | 0.0073 | 0.0085 | 0.0095 | 0.0082 | |
R2 | 0.80 | 0.72 | 0.72 | 0.75 | |
dr | 0.80 | 0.77 | 0.78 | 0.82 | |
Nº points a | 840 | 8963 | 35,852 | ||
MAD (m2s−2) | 0.0061 | 0.0052 | 0.0074 | 0.0060 | |
R2 | 0.47 | 0.81 | 0.38 | 0.75 | |
dr | 0.72 | 0.77 | 0.69 | 0.75 | |
Nº points a | 840 | 6921 | 27,968 | ||
MAD (m2s−2) | 0.0057 | 0.0043 | 0.0076 | 0.0064 | |
R2 | 0.58 | 0.80 | 0.49 | 0.83 | |
dr | 0.64 | 0.63 | 0.74 | 0.78 | |
κ | Nº points a | 840 | b | ||
MAD (m2s−2) | 0.0064 | 0.0075 | |||
R2 | 0.77 | 0.82 | |||
dr | 0.83 | 0.80 | |||
τuv | Nº points a | 840 | 8963 | 35,852 | |
MAD (m2s−2) | 2.9 | 3.3 | 3.3 | 3.7 | |
R2 | 0.65 | 0.68 | 0.58 | 0.62 | |
dr | 0.78 | 0.75 | 0.70 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaresma, A.L.; Pinheiro, A.N. Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment. Water 2021, 13, 851. https://doi.org/10.3390/w13060851
Quaresma AL, Pinheiro AN. Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment. Water. 2021; 13(6):851. https://doi.org/10.3390/w13060851
Chicago/Turabian StyleQuaresma, Ana L., and António N. Pinheiro. 2021. "Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment" Water 13, no. 6: 851. https://doi.org/10.3390/w13060851
APA StyleQuaresma, A. L., & Pinheiro, A. N. (2021). Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment. Water, 13(6), 851. https://doi.org/10.3390/w13060851