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Abstract: Actual evapotranspiration (ETa) estimations in arid regions are challenging because this
process is highly dynamic over time and space. Nevertheless, several studies have shown good results
when implementing empirical regression formulae that, despite their simplicity, are comparable in
accuracy to more complex models. Although many types of regression formulae to estimate ETa exist,
there is no consensus on what variables must be included in the analysis. In this research, we used
machine learning algorithms—through implementation of empirical linear regression formulae—to
find the main variables that control daily and monthly ETa in arid cold regions, where there is
a lack of available ETa data. Meteorological data alone and then combined with remote sensing
vegetation indices (VIs) were used as input in ETa estimations. In situ ETa and meteorological
data were obtained from ten sites in Chile, Australia, and the United States. Our results indicate
that the available energy is the main meteorological variable that controls ETa in the assessed sites,
despite the fact that these regions are typically described as water-limited environments. The VI that
better represents the in situ ETa is the Normalized Difference Water Index, which represents water
availability in plants and soils. The best performance of the regression equations in the validation
sites was obtained for monthly estimates with the incorporation of VIs (R2 = 0.82), whereas the worst
performance of these equations was obtained for monthly ETa estimates when only meteorological
data were considered. Incorporation of remote-sensing information results in better ETa estimates
compared to when only meteorological data are considered.

Keywords: evapotranspiration; remote sensing; machine learning; arid regions

1. Introduction

Arid and semi-arid regions cover approximately 41% of the world’s land and are
inhabited by more than 2500 million people [1]. These regions are expected to expand
because of unsustainable land and water use, as well as a result of climate change, which is
exacerbating desertification [1]. In this context, an accurate quantification of evapotranspi-
ration (ET), a relevant hydrological process in arid regions, is important for managing water
resources to ensure their availability for human and environmental needs [2–4]. Although
there have been many efforts to quantify actual evapotranspiration (ETa) in arid regions [5],
few ETa direct observations exist in cold desert climates (also known as arid cold regions).
For instance, from a total of 267 sites in the FLUXNET 2015 dataset, only seven sites located
in arid cold regions have more than one year of records [6]. This lack of data hinders
the understanding of the main processes that drive ET in these environments. Hence,
the motivation of this work is to further explore if ETa in arid cold regions is driven by
similar or different variables than other climates. Broadly speaking, ETa is mainly driven
by energy exchange and water availability, but there are plenty of meteorological and
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vegetational characteristics that influence it and make its estimations more complex [7,8].
Major challenges in ETa estimation are those that make the process even more dynamic
over time and variable in space. For example, when water is a limiting factor, plants
decrease their transpiration through physiological adaptations such as stomata closure.
Furthermore, regional advection can bring additional energy to the system, resulting in
higher ETa rates that can even exceed potential ET [8]. As arid lands are vastly different
from irrigated farms, typically having native vegetation with high resistance to transpira-
tion and low ground cover, traditional ETa estimation methods are not suitable for these
environments. The most common approach to determine ETa is the crop coefficient method,
in which ETa is estimated from the reference evapotranspiration (ETo), computed from the
Penman–Monteith formula [7] and using a crop coefficient (Kc), i.e., ETa = Kc × ETo, where
Kc represents four effects that distinguish the crop from reference grass: aerodynamic
resistance, albedo, surface resistance, and soil evaporation [7,8]. Nonetheless, it has been
demonstrated that the crop coefficient method in general is not suitable for determining
ETa of native vegetation adapted to arid conditions, because transpiration is overestimated
when plants encounter suboptimal conditions of soil water as a result of not considering
stomatal regulation and plant adaptations to drought [9]. Only in few exceptions has
the crop coefficient method been suitable to estimate ETa in crops cultivated in arid or
semi-arid regions [10,11].

Remote sensing methods have been developed to estimate ETa and have been posi-
tioned as the only feasible approach for wide areas of mixed landscapes, allowing for an
improvement in water balance estimations over basin and regional scales [12–15]. One
of the most used operational global ETa satellite products is MOD16, which is based on
Moderate Resolution Imaging Spectroradiometer (MODIS) information. Moreover, the
Satellite Application Facility on Land Surface Analysis (LSA-SAF) is widely used, but it
only covers Europe, Africa, and most of South America [16,17]. Hu et al. [16] demonstrated
that LSA-SAF has a better performance than MOD16, but neither products capture ETa in
water-limited regions. ETa data can also be obtained from the Agricultural Research Service
of the United States Department of Agriculture (USDA-ARS) ET dataset, and the data
provided from the European Centre for Medium-Range Weather Forecasts (ECMWF) or
the Global Land Data Assimilation System (GLDAS) models [18,19]. However, their spatial
resolutions are even coarser than that of the MOD16 and LSA-SAF datasets [17]. In 2019,
the European Space Agency (ESA) released the Sen-ET open-source software application
for ETa modeling at high (tens of meters) and medium (1 km) spatial resolutions, and at a
temporal resolution of ~5 to 10 days. The Sen-ET software uses observations of Sentinel-2
and Sentinel-3 for field-scale applications. The first validation procedure in latent heat
flux was performed in the Skjern river basin (Denmark) and resulted in a correlation of
0.76 when comparing data obtained from three eddy covariance flux towers, with the
best performance estimated in croplands [17]. The most common remote sensing ETa
approaches are based on the surface energy balance (SEB) equation, where sensible heat
(H) is estimated using land surface temperature (LST) derived from thermal infrared (TIR)
sensor on satellites [12]. Although these methods have been cataloged as operational, there
are difficulties on their implementation: small errors in the estimation of the LST translate
into large errors in H estimates, and only few sensors offer open source TIR data [12,20].

Vegetation index (VI)-based methods to estimate ETa were developed to take advan-
tage of remote sensing, avoiding the disadvantages associated with the methods based on
SEB. VIs were developed for vegetation monitoring due to spectral reflectance signature
revealing information about the state, biogeochemical composition, and structure of a leaf
and canopy, but VIs can also provide information about water and carbon cycles [21]. ETa
estimation methods based on VIs depend on an estimate of the density of green vegetation
over the landscape, as measured by VIs or related products that combine the VIS and IR
bands [12]. For example, the Normalized Difference Vegetation Index (NDVI) captures
the contrast in light reflection from green leaves between the red and near infrared (NIR)
bands, because red light is strongly absorbed by chlorophyll and nearly all the NIR is
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transmitted [22], whereas the Normalized Difference Water Index (NDWI) is sensitive to
other properties, e.g., leaf water content [23], and it is also capable of representing both
canopy and soil water content [24]. Thus, it is able to represent plant water stress [25]. VIs
have several advantages for use in ETa algorithms: they are available from multiple sensors,
and they usually change on time scales of weeks to months, so it is feasible to interpolate
VI values with observations obtained several days apart, especially if they represent the
activity of the vegetation. In addition, VI methods are usually simple and resilient in the
presence of data gaps [4]. Moreover, VIs have been applied to natural ecosystems and
achieved good results [26,27].

Several studies have demonstrated the potential of combining site-specific ETa data
with remotely sensed and meteorological parameters to develop empirical models based
on statistical correlations for regional-scale ETa estimates [3,12,14,15,28]. Despite their
simplicity, empirical regression formulae can produce ETa values that are comparable
in accuracy to more complex models, without as much computational requirements for
specific expertise [4]. However, the estimation of ETa with a higher degree of accuracy and
over extended time scales has forced researchers to look for techniques such as machine
learning [28–36]. Elbeltagi et al. [37] applied five machine learning techniques to develop
the Combined Terrestrial Evapotranspiration Index. Zhao et al. [30] constructed a physics-
constrained machine learning model to estimate ETa, which conserves the surface energy
balance and successfully reproduces extreme values. Torres et al. [29] forecasted potential
ET using the multivariate relevance vector machine and limited climatic data. Granata [28]
provides some examples of machine learning applications in hydrology and mentions
some investigations related to ETa. However, he states that these investigations are limited
and that the knowledge on the topic is still partial and fragmented. Moreover, studies that
use empirical regression formulae and basic machine learning concepts usually focus on
the form of the formulae that predict ETa instead of the factors that drive ETa [4,20].

The aim of this research is to investigate the main variables that control ETa in arid cold
regions through implementation of empirical regression formulae using machine learning
algorithms. The machine learning algorithms, based on the exhaustive feature selection
(EFS) approach, which has not been used before in ETa applications, were formulated first
with meteorological data and then with remote sensing data. Consequently, a secondary
objective of this work is to analyze if the inclusion of remote sensing data improves ETa
estimations. The scope of this work is restricted to spatial extents within the field and
landscape scales (between a few hundred and a few thousand square meters) and in
arid cold regions, as our review revealed that these locations are underrepresented in the
scientific literature.

2. Materials and Methods
2.1. Study Sites

In this study, we used 10 sites located around the world that, according to the Köeppen
climate classification system, correspond to arid cold climate (BSk and BWk) [38]. Arid cold
climates are characterized by little precipitation with warm/dry summers and cold/dry
winters, as opposed to hot desert climates. Arid cold climates have an annual average tem-
perature below 18 ◦C, and a threshold that depends on both precipitation and temperature
is used to define a region as an arid cold climate [38]. Three of the study sites are located in
the Chilean Altiplano, two in Australia, and five in the United States. Figure 1 presents
the location of the study sites, and Table 1 shows their main characteristics. Chilean sites
are classified as desert cold climates, while the other sites are cold steppe. Additionally,
the Chilean sites are located above 4000 m ASL, whereas the sites in Australia and United
States are located between 125 and 1530 m ASL. The study sites represent different ecosys-
tems of arid cold environments, which include grasslands, savannah, and shrubland (see
Appendix A for a general description of the sites).
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Table 1. Site name, location (latitude and longitude), elevation, International Geosphere-Biosphere Programme (IGBP) land
cover classification, and mean annual precipitation and temperature of the study sites. The country of each site is coded as
follows: Chile (CH), Australia (AU), and the United States (US).

Site

Location
Elevation
(m ASL)

IGBP Land Cover
ClassificationLatitude (◦) Longitude (◦)

Mean Annual
Precipitation

(mm)

Mean Annual
Temperature

(◦C)

CH-AT1 22.02 S 68.05 W 4182 Barren or sparsely
vegetated 78 5.8

CH-AT2 22.01 S 68.05 W 4330 Barren or sparsely
vegetated 78 5.8

CH-AT3 22.52 S 68.02 W 4255 Barren or sparsely
vegetated 106 1.7

AU-Cpr 34.00 S 140.59 E 166 Open shrubland 250 18
AU-Ync 34.99 S 146.29 E 125 Grassland 419 17.3

US-Cop 38.09 N 109.39 W 1520 Grassland 216 12
US-SRG 31.79 N 110.83 W 1290 Grassland 377 19
US-SRM 31.82 N 110.87 W 1116 Open shrubland 377 19
US-Whs 31.74 N 110.05 W 1370 Grassland 285 17.6
US-Wkg 31.74 N 109.94 W 1530 Grassland 294 17.3

2.2. ETa Fluxes and Meteorological Data

Actual evapotranspiration data in the Chilean sites were obtained from three eddy
covariance systems (IRGASON, Campbell Sci., Utah, United States), each one having a
meteorological station that allowed measuring net radiation (Rn) (CNR4, Kipp & Zonen,
The Netherlands), soil heat flux (G) (HFP01SC, Hukseflux, The Netherlands), precipitation
(PPT) (TE525, Campbell Sci., Logan, UT, USA), atmospheric pressure (P) (PTB110, Vaisala,
Helsinki, Finland), air temperature (T) and relative humidity (RH) (CS215, Campbell Sci.,
Logan, UT, USA), soil temperature (Ts) (TCAV, Campbell Sci., Logan, UT, USA), and soil’s
volumetric water content (VWC) (CS655, Campbell Sci., Logan, UT, USA). Vapor pressure
deficit (VPD) was estimated using the previous meteorological data, and the wind speed
(WS) in these sites was calculated using the measurements of the eddy covariance sonic
anemometer. On the other hand, the data from Australia and the United States were
obtained from the FLUXNET 2015 dataset [5,39–45]. The sampling frequency of the data
was 30 min in all sites, which was then integrated into hourly, daily, and monthly timescales.
The processing/correction methods of the eddy covariance data of all the sites are described
in detail in [5,30,46–50]. Briefly, the following data filtering methods were applied: (i) only
high-quality infilled data were chosen; (ii) ETa data samples collected in rainy periods were
removed; and (iii) daytime data were utilized to avoid stable boundary layer conditions.
Moreover, ETo was estimated in each site with the Penman–Monteith equation [7]. Table 2
presents the period where the data were collected in each site as well as the height at which
the ETa measurements were performed.
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Figure 1. (a) Location of study sites, where red stars correspond to the sites used to validate actual
evapotranspiration (ETa) estimates. The bottom of the figure shows pictures of the environment of
the study sites; (b) CH-AT1 [51], (c) CH-AT2 [51], (d) CH-AT3 [51], (e) AU-Cpr [48], (f) AU-Ync [49],
(g) US-Cop [40], (h) US-SRG [42,52], (i) US-SRM [43,53], (j) US-Whs [44,54] , and (k) US-Wkg [45].
The latitude, longitude, and elevation of each study site are presented in Table 1.

Table 2. Period of measurements, sensor height, dominant vegetation type, and approximate vegetation height of each
site [39–45,51]. The country of each site is coded as follows: Chile (CH), Australia (AU), and the United States (US).

Site
Time Period

Sensor Height (m) Dominant Vegetation Type Vegetation
Height (m)Start Date End Date

CH-AT1 18-01-2018 29-05-2019 2.11 Oxychloe andina and grass Deyeuxia sp. 0.7
CH-AT2 22-02-2018 25-04-2019 2.11 Festuca genera 0.2

CH-AT3 19-04-2018 28-05-2019 2.49 Oxychloe andina, Festuca and Deyeuxia
genera grass 0.2

AU-Cpr 01-01-2010 31-12-2014 20 Several species of Eucalyptus 4.0
AU-Ync 01-01-2012 31-12-2014 8 perennial tussock grasses 0.3

US-Cop 01-01-2001 31-12-2007 1.85
Hilaria jamesii, Stipa hymenoides
bunchgrasses and Coleogyne
ramosissima shrub

0.3

US-SRG 01-01-2008 31-12-2014 14
South African warm-season
bunchgrass, Eragrostis lehmanniana, and
Prosopis velutina

0.3

US-SRM 01-01-2004 31-12-2014 8
Prosopis velutina and native and
nonnative perennial grasses, subshrubs,
and scattered succulents

1.5

US-Whs 01-01-2007 31-12-2014 5 Parthenium incanum, Acacia constricta,
Larrea tridentata, and Flourensia cernua 4.3

US-Wkg 01-01-2004 31-12-2014 5 Eragrostis lehmanniana, Bouteloua eripoda,
and Aristida spp. 0.3
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To incorporate the remote sensing data, as described below, it is important to esti-
mate the footprint of the ETa measurements. Here, we approximated the footprint to a
circle whose radius corresponds to the position of the footprint peak, xmax, following the
Schuepp et al. [55] approach:

xmax =
u
u∗

(z − d)
2κ

(1)

where u is the average wind speed (m/s), u∗ is the average friction velocity (m/s), z is
the measuring height (m), d is the displacement height (m), and k is the von Kármán
constant [56]. The footprint in each site was calculated using the sampling frequency of
the data, i.e., 30 min, and then aggregating the footprint at a monthly level [57]. This
approximation was chosen instead of a more complex approach, such as the Kljun et al. [57]
model, for one principal reason: the required information for more complex footprint
models is not available in the FLUXNET dataset, e.g., the crosswind distance standard
deviation (σy) [57]. The performance of the Schuepp et al. [55] approximation was assessed
by comparing the area and VI values obtained with this model and with the 80% flux
footprint calculated with the Kljun et al. [57] approach in the Chilean sites, where all
the required information was available (Figure 2). Note that this approach has recently
been used to investigate landscape transformation processes in urban areas located in arid
regions [58].

Water 2021, 13, x FOR PEER REVIEW 6 of 23 
 

 

one principal reason: the required information for more complex footprint models is not 
available in the FLUXNET dataset, e.g., the crosswind distance standard deviation (σy) 
[57]. The performance of the Schuepp et al. [55] approximation was assessed by compar-
ing the area and VI values obtained with this model and with the 80% flux footprint cal-
culated with the Kljun et al. [57] approach in the Chilean sites, where all the required 
information was available (Figure 2). Note that this approach has recently been used to 
investigate landscape transformation processes in urban areas located in arid regions [58]. 

 
Figure 2. (a) Example of footprint calculation with the Schuepp et al. [55] and the Kljun et al. [57] approaches. The monthly 
footprint was calculated at CH-AT3 in November 2019. The Kljun et al. [57] approach results in a series of consistent 
footprints throughout the year. The Schuepp et al. [55] approach estimate the monthly footprint as a circle. (b) Wind rose 
for November 2019 at CH-AT3, which determines the trend of the Kljun et al. [57] footprint. 

2.3. Remote Sensing and Vegetation Indices 
Reflectance images were obtained from the Level-2 science products of the Landsat 

7 satellite mission and then analyzed via Google Earth Engine [59] to estimate different 
VIs to be incorporated into the ETa estimates. Every selected image corresponded to the 
less cloudy image of each month. 

For every selected image, the following VIs were calculated: the NDVI, the Soil Ad-
justed Vegetation Index (SAVI), the Enhanced Vegetation Index (EVI), the NDWI, and the 
Normalized Difference Greenness Index (NDGI). Then, the average of each VI was ob-
tained in the footprint area approximated by the Schuepp et al. [55] approach described 
above. These VIs were selected as they are easy to implement, and they correctly represent 
the vegetation state over time periods of weeks, months, and years [60]. The main disad-
vantages of these VIs are that (i) they have shown errors when used in bare soils; (ii) they 
do not have a physical meaning, which complicates a direct comparison between VI 
among different sites; and (iii) they are not good at representing stress effects on vegeta-
tion in the short term (hours to days) [27,60]. 

2.3.1. Normalized Difference Vegetation Index (NDVI) 
The NDVI is the most utilized VI because it is strongly correlated with several bio-

physical characteristics and physiological processes of plants, including ETa [22]. The 
NDVI ranges between −1 and 1, where negative values correspond to water pixels, posi-
tives values but near 0 correspond to bare soil, and values near 1 are related to dense 
canopy. The NDVI is calculated as [12,22]. 

Figure 2. (a) Example of footprint calculation with the Schuepp et al. [55] and the Kljun et al. [57] approaches. The monthly
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footprints throughout the year. The Schuepp et al. [55] approach estimate the monthly footprint as a circle. (b) Wind rose
for November 2019 at CH-AT3, which determines the trend of the Kljun et al. [57] footprint.

2.3. Remote Sensing and Vegetation Indices

Reflectance images were obtained from the Level-2 science products of the Landsat 7
satellite mission and then analyzed via Google Earth Engine [59] to estimate different VIs
to be incorporated into the ETa estimates. Every selected image corresponded to the less
cloudy image of each month.

For every selected image, the following VIs were calculated: the NDVI, the Soil Ad-
justed Vegetation Index (SAVI), the Enhanced Vegetation Index (EVI), the NDWI, and
the Normalized Difference Greenness Index (NDGI). Then, the average of each VI was
obtained in the footprint area approximated by the Schuepp et al. [55] approach described
above. These VIs were selected as they are easy to implement, and they correctly repre-
sent the vegetation state over time periods of weeks, months, and years [60]. The main
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disadvantages of these VIs are that (i) they have shown errors when used in bare soils; (ii)
they do not have a physical meaning, which complicates a direct comparison between VI
among different sites; and (iii) they are not good at representing stress effects on vegetation
in the short term (hours to days) [27,60].

2.3.1. Normalized Difference Vegetation Index (NDVI)

The NDVI is the most utilized VI because it is strongly correlated with several biophys-
ical characteristics and physiological processes of plants, including ETa [22]. The NDVI
ranges between −1 and 1, where negative values correspond to water pixels, positives
values but near 0 correspond to bare soil, and values near 1 are related to dense canopy.
The NDVI is calculated as [12,22].

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(2)

where ρNIR corresponds to the reflectance of the NIR band (0.77–0.90 µm) and ρRED
(0.63–0.69 µm) is the reflectance of the visible red band. As the flux footprint areas are
located at latitudes lower than 40◦ and have steepness lower than 5◦, topographic illumina-
tion bias in the NDVI is expected to be negligible [61].

2.3.2. Soil-Adjusted Vegetation Index (SAVI)

The SAVI is a VI derived from the NDVI that includes a correction factor L, which
minimizes the variations produced by the soil presence in heterogeneous surfaces. This
index is calculated as [22].

SAVI =
ρNIR − ρRED

ρNIR + ρRED + L
(1 + L) (3)

The optimal value of L decreases as vegetation cover increases, i.e., L = 1 when the
density is low, L = 0.5 for intermediate vegetation cover, and L = 0.25 for high density. For
this investigation, L = 0.5 was used, because this value has shown good performance in
reducing the noise produced by the presence of bare soil in a great range of vegetation
cover densities [62].

2.3.3. Enhance Vegetation Index (EVI)

The EVI was developed to improve the sensitivity of the signal in high-biomass
regions and to reduce the atmosphere influence. The EVI responds better than the NDVI
to structural changes in plants and extends the range over which the NDVI responds to
increases in foliage density [12,20]. The EVI is calculated as

EVI = G f
ρNIR − ρRED

ρNIR + C1ρRED + C2ρBLUE + Lc
(4)

where C1 and C2 are area correction coefficients used to account for aerosol resistance, using
the blue band to correct the influence of the aerosol in the red band. ρBLUE (0.45–0.52 µm)
is the reflectance of the blue band, Gf is the gain factor (set as 2.5 [22]), and Lc is the canopy
background adjustment (set to 1 [22]). C1 and C2 were set as 6 and −7.5, respectively [22].

2.3.4. Normalized Difference Water Index (NDWI)

The NDWI, unlike the others VIs, focuses on identifying trends in the humidity of the
studied surface, combining the water content of bare soil and vegetation. The NDWI is
defined as [63].

NDWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(5)

where ρSWIR is the reflectance of the short-wave infrared (SWIR) band (1.55–1.75 µm).
Ji et al. [23] suggested naming this index the Normalized Difference Infrared Index (NDII),
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because the NDWI was first used in MODIS, whose SWIR band is between 1.23 and
1.25 µm. However, in this study, we prefer to call it the NDWI.

2.3.5. Normalized Difference Greenness Index (NDGI)

The NDGI is a VI developed to minimize variations between background reflectance of
different surfaces and to maximize the contrast between vegetation and other background
components in order to prevent the effects of snow in phenology estimation [64]. The
NDGI is calculated as follows [64]:

NDGI =
ερGREEN + (1 − ε)ρNIR − ρRED

ερGREEN + (1 − ε)ρNIR + ρRED
(6)

where ρGREEN is the reflectance of the green band (0.52–0.60 µm) and ε is a coefficient that
depends on the satellite (ε = 0.63 for Landsat 7).

2.4. Determination of Main Variables and ETa Estimates Using Machine Learning

The general procedure to generate ETa estimates is shown in Figure 3. Remote sensing,
meteorological, and flux data were used as an input in the exhaustive feature selection (EFS)
algorithm [65] to determine the main variables that control ETa. The EFS algorithm selects
the subset of the original features or variables that better achieves an objective, usually
finding the high value of a performance metric given by an arbitrary linear regressor or
classifier [65]. The EFS algorithm is the most computationally expensive feature selection
method because it needs to evaluate all possible combinations of the original factors
considering that only a certain amount of these should be selected [66]. However, the
EFS is the optimal feature selection method as the size of the dataset and the number of
required features allow this method to be computationally feasible [65]. In this research,
a subset of four features was selected, and a maximum of 18 features that are typically
used in ET studies were evaluated (Table 3). It was decided to use subsets of four factors
because, in preliminary tests, no significant improvement in formulae performance was
achieved when more factors were added.
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Table 3. Variables analyzed in this study and their respective symbols and units.

Variable Symbol Units Variable Symbol Units

Available energy Rn − G MJ m−2 d−1 Volumetric water content WVC cm3 cm−3

Precipitation PPT mm Water vapor deficit VPD kPa
Mean temperature T ◦C Wind speed WS m s−1

Minimum temperature Tmin
◦C Reference evapotranspiration ETo mm

Maximum temperature Tmax
◦C Normalized difference vegetation index NDVI -

Soil temperature Ts ◦C Soil-adjusted vegetation index SAVI -
Minimum soil
temperature Tsmin

◦C Enhanced vegetation index EVI -

Maximum soil
temperature Tsmax

◦C Normalized difference water index NDWI

Relative humidity RH - Normalized difference greenness index NDGI -

A linear equation to estimate ETa was constructed using the four main variables found
with the EFS algorithm:

ETa = a0 +
4

∑
i=1

aiVari (7)

where Vari is the main variables that explain ETa, which are found using the EFS algorithm;
ai represents the regression coefficients of the linear equation. The regression coefficients
were found with ordinary least squares (OLS) [67]. To identify the main variables and the
regression coefficients, the input data were normalized; i.e., each one of the Vari ranged
between 0 and 1. This normalization ensured that the EFS chose the main variables for
their contribution to the ETa variability and not because of their magnitude. The coefficient
of determination (R2) of the linear regression was chosen as the performance metric. The
combination of EFS and OLS was chosen to create the ETa estimation equations instead of
non-linear machine learning models like tree-base models, because linear equations allow
a deeper interpretation of the results.

Data were separated into two groups: the training data (CH-AT2, CH-AT3, AU-Cpr,
US-Cop, US-SRG, US-SRM, and US-Wkg) and the validation data (CH-AT1, AU-Ync, and
US-Wkg). The training data were used to generate a global estimation that could fit all
of the sites. The performance of this equation was evaluated with the validation data.
Furthermore, site-specific formulae were constructed with the data of each site with the
aim of determining the most important factors minimizing the influence of the amount
of data that each of the sites has on the results. Global and site-specific equations were
found for daily and monthly time scales, both with ETa expressed as mm/day, with only
meteorological data. Then, VIs were incorporated in monthly estimations to evaluate the
relevance of incorporating remote sensing data into estimations that consider places with
different cover types but the same climate.

3. Results
3.1. Remote Sensing Information

For all the Chilean sites, a high correlation was found (coefficient of determination, R2

> 0.84 and root mean square error, RMSE < 0.17) between VI values calculated with both
footprint approaches, despite the difference in the footprint areas (Table 4 and Figure 4).
Moreover, when increasing xmax in more than one order of magnitude, the high correla-
tion between VI values calculated with the Schuepp et al. [55] and the Kljun et al. [57]
approaches was maintained and only decreased when the footprint reached a surface that
had different characteristics. Hence, although the Schuepp et al. [55] approach may not pre-
cisely represent the footprint, it allows the estimation of VIs that agree with those calculated
with a more sophisticated footprint method, such as the Kljun et al. [57] approach.
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Table 4. Comparison between vegetation index (VI) values obtained with the footprints calculated with the Kljun et al. [57]
and the Schuepp et al. [55] approaches. The mean values of each VI calculated with both approaches in the study period are
presented. In addition, the coefficient of determination (R2) and root mean square error (RMSE) between the results of the
Kljun et al. [57] and the Schuepp et al. [55] approaches are shown.

Site Footprint Model, R2 and RMSE NDVI SAVI EVI NDWI NDGI

CH-AT1

Kljun mean 0.09 0.14 0.20 −0.03 −0.04
Schuepp mean 0.08 0.12 0.19 −0.03 −0.04

R2 0.91 0.92 0.94 0.88 0.84
RMSE 0.01 0.02 0.03 0.03 0.01

CH-AT2

Kljun mean 0.04 0.07 0.08 0.00 −0.06
Schuepp mean 0.05 0.07 0.09 0.01 −0.06

R2 0.96 0.96 0.95 0.99 0.93
RMSE 0.00 0.01 0.01 0.01 0.00

CH-AT3

Kljun mean 0.15 0.22 0.27 0.16 0.00
Schuepp mean 0.22 0.33 0.41 0.25 0.05

R2 0.99 0.99 0.99 0.87 0.99
RMSE 0.09 0.14 0.17 0.10 0.06
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The temporal evolution of ETa, precipitation, and VIs on the validation sites is shown
in Figures 5–7. At the US-Wkg validation site, ETa responded to water availability deter-
mined by the amount of precipitation (Figure 5). Additionally, the VIs responded in the
same way as ETa, except for the SAVI and NDVI, whose values decreased drastically in the
presence of precipitation events. This behavior is not common for all the sites. For example,
at the AU-Ync validation site (Figure 6), the relationship between precipitation and ETa
is weak. However, it seems that ETa responded to water availability, represented as the
NDWI. Furthermore, the EVI explains some of the ETa peaks. In the CH-AT1 validation
site, no relationship between the Vis and ETa was found (Figure 7), most likely because
groundwater is shallow in this site. Hence, there is water available for evapotranspiration
throughout the year.
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Figure 7. Temporal evolution of monthly precipitation (a), monthly ETa (b), and monthly VIs (c) in
CH-AT1.

3.2. ETa Estimation Formulae

The global and the site-specific ETa estimation formulae are presented in Table 5. The
daily global equation developed with the seven sites of the training data reached an R2 of
0.60 and an RMSE of 0.64 mm/day (Figure 8a). On monthly timescales and only considering
meteorological information, the global equation developed with the training sites reaches
an R2 of 0.70 and an RMSE of 0.47 mm/day (Figure 8b). The monthly global equation that
does include VIs reached an R2 of 0.67 and an RMSE of 0.49 mm/day (Figure 8c). In all
cases, monthly estimations were more accurate than daily estimations, especially because
monthly averages can mask outliers. In general, the monthly global equation that only
considers meteorological information performed better than the equation that includes VIs.
However, in general, the site-specific equations that include VIs resulted in better outcomes
(Table 5).
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and VIs. Each panel includes the main variable selected for the construction of each formula, the RMSE, and the R2. The
blue band corresponds to the 95% confidence interval.
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Table 5. Global and site-specific ETa estimate formulae obtained with the training data set, and their respective coefficient
of determination. ETa is expressed in mm/day in all cases.

Site ETa Estimate Formula R2 Notes

Global
ETa = −2.86 × ETo + 10.25 × (Rn − G) + 5.17 × Tmin − 4.18 × Tsmax − 3.31 0.60 Daily

ETa = 4.26 × (Rn − G)− 3.46 × ETo + 3.21 × Tmin − 2.26 × Tsmax − 0.07 0.70 Monthly
ETa = 1.17 × (Rn − G) + 2.36 × PPT + 2.41 × NDGI + 1.95 × NDWI − 2.14 0.67 Monthly with VI

CH-AT1
ETa = −4.19 × (Rn − G)− 1.18 × T + 2.05 × Ts + 5.72 × ETo + 1.39 0.90 Daily

ETa = 0.81 × ETo − 0.36 × Tmax + 0.89 × Ts + 0.15 × Tsmax + 1.14 0.99 Monthly
ETa = 0.41 × PPT + 1.43 × Ts − 0.62 × RH + 0.02 × NDWI + 1.28 0.97 Monthly with VI

CH-AT2
ETa = −0.43 × Tsmax + 0.45 × RH + 0.21 × VWC + 0.49 × ETo + 0.08 0.25 Daily

ETa = 0.13 × PPT + 0.6 × RH − 0.03 × VPD + 0.09 × WS + 0.07 0.83 Monthly
ETa = 0.12 × PPT + 0.62 × RH + 0.09 × WS − 0.04 × NDWI + 0.06 0.83 Monthly with VI

CH-AT3
ETa = −1.19 × T + 3.81 × Ts − 0.88 × VWC + 1.73 × ETo + 0.73 0.82 Daily

ETa = −2.02 × PPT − 1.24 × Tmin + 1.97 × Ts + 2.83 × Tsmin + 0.77 0.98 Monthly
ETa = −1.75 × PPT + 4.49 × Ts − 1.4 × Tsmax + 0.85 × NDWI + 0.59 0.99 Monthly with VI

AU-Cpr
ETa = 3.09 × (Rn − G) + 3.49 × T − 2.83 × Tsmax − 1.86 × ETo − 0.34 0.58 Daily

ETa = 1.31 × (Rn − G) + 3.15 × T − 3.08 × Ts − 0.67 × WS + 0.31 0.45 Monthly
ETa = 3.54 × (Rn − G)− 2.76 × ETo + 0.25 × VPD − 0.01 × NDGI − 0.1 0.34 Monthly with VI

AU-Ync
ETa = 2.0 × (Rn − G)− 2.45 × Ts + 1.37 × VPD + 0.56 × WS + 0.32 0.30 Daily
ETa = 1.62 × (Rn − G)− 3.14 × Ts + 1.4 × VPD + 0.26 × WS + 0.7 0.55 Monthly

ETa = 1.55 × (Rn − G)− 2.46 × Ts + 1.26 × VPD + 0.32 × NDWI + 0.43 0.67 Monthly with VI

US-Cop
ETa = 1.81 × (Rn − G) + 2.71 × T − 1.15 × Tmax − 2.22 × VPD − 0.43 0.33 Daily

ETa = 1.23 × (Rn − G) + 0.64 × PPT + 0.22 × Tmin − 0.59 × VPD − 0.03 0.55 Monthly
ETa = 0.37 × PPT + 0.97 × T − 0.6 × VPD − 0.06 × NDWI + 0.33 0.21 Monthly with VI

US-SRG
ETa = 6.5 × (Rn − G) + 5.56 × Tmin − 4.6 × Tsmax + 1.69 × VWC − 3.39 0.78 Daily

ETa = 2.97 × (Rn − G) + 3.59 × T − 4.5 × Ts + 1.89 × RH − 0.6 0.89 Monthly
ETa = 4.28 × (Rn − G)− 4.49 × ETo + 1.57 × Tmin + 0.87 × NDWI + 0.25 0.85 Monthly with VI

US-SRM
ETa = 1.98 × (Rn − G) + 5.01 × T − 3.16 × VPD + 2.44 × VWC − 2.76 0.76 Daily
ETa = 3.24 × (Rn − G)− 4.86 × ETo + 2.76 × T + 0.89 × VWC − 0.12 0.89 Monthly
ETa = 4.19 × T − 3.05 × VPD + 1.54 × VWC + 0.43 × NDWI − 0.63 0.90 Monthly with VI

US-Whs
ETa = 2.08 × (Rn − G) + 1.27 × Tsmin + 3.12 × VWC − 1.61 × ETo − 0.65 0.77 Daily

ETa = 2.62 × (Rn − G)− 3.37 × ETo + 1.85 × T + 0.91 × VWC − 0.05 0.91 Monthly
ETa = 2.61 × T − 2.5 × VPD + 1.23 × VWC + 0.44 × NDWI − 0.27 0.90 Monthly with VI

US-Wkg
ETa = 5.86 × (Rn − G) + 2.43 × Tmin + 1.92 × VWC − 3.17 × ETo − 1.91 0.71 Daily

ETa = 4.09 × (Rn − G)− 3.78 × ETo + 5.36 × T − 4.35 × Ts − 0.2 0.90 Monthly
ETa = 3.34 × (Rn − G)− 4.36 × ETo + 1.96 × T + 1.37 × NDGI − 0.78 0.89 Monthly with VI

As shown in Figure 9, in the validation sites, the best results were obtained at US-
Wkg, whereas the results at CH-AT1 and AU-Ync were not satisfactory. As most of the
training data came from a site located near US-Wkg, these results imply that accurate ETa
estimations are obtained when the training and validation sites have similar characteristics.
Figure 9 shows the R2 and RMSE values for the three validation sites. Daily estimations
were usually less accurate than monthly estimates, excluding that for the AU-Ync site.
Moreover, estimations that included a VI performed better than those that only considered
meteorological information. The case with the best performance corresponds to the monthly
estimate that includes a VI in US-Wkg (R2 of 0.82 and RMSE of 0.42 mm/day).

In the validation sites, only acceptable results were obtained for the US-Wkg cases,
most likely because a large amount of the training data came from a site located near
US-Wkg. Figure 9 shows the R2 and RMSE values for the three validation sites. Daily
estimations were usually less accurate than monthly estimates, excluding that for the AU-
Ync site. Additionally, estimations that include a VI performed better than those that only
considered meteorological information. The case with the best performance corresponds to
the monthly estimate that includes a VI in US-Wkg (R2 of 0.82 and RMSE of 0.42 mm/day).
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3.3. Variables Controlling ETa

For both the daily and monthly global equations, the main variables that influence
ETa, obtained as a result of applying the EFS algorithm, are Rn − G, ETo, Tmin, and Tsmax
(Table 5). In both cases Rn − G is the variable that has the highest regression coefficients
and, hence, is the variable that can represent better temporal evolution of ETa. Note that
although ETo is among the variables that are typically used to determine ETa [10], and
that it includes Rn − G, RH, VPD, and WS, it is not always among the best ranked main
variables. This is most likely due to limited water availability in many of the selected study
sites; hence, other variables, such as volumetric water content, could be controlling ETa. In
the case where remote sensing information is used, the main variables are Rn − G, PPT, the
NDGI, and the NDWI. The variable with the greatest contribution to this equation is the
NDGI and that with the lowest was the Rn − G.

Table 6 shows the occurrence of the main variables found for all the sites for the
site-specific equations. For the daily estimates, the most important variables are Rn − G,
VWC, and ETo, which show that daily ETa depends on both energy and water availability.
In the case of the monthly estimations, the main variables are Rn − G, T, and Ts. The
monthly estimates that include VIs have VPD and the NDWI as the principal variables.
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When only meteorological information is considered, the available energy is the principal
variable that explains ETa in both daily and monthly scales. In the case when remote
sensing information is incorporated the main variable is NDWI, however, the available
energy is still equally important as other variables that represent the availability of water,
such as PPT and VPD.

Table 6. Number of times that every variable is selected in a site-specific equation for daily, monthly,
and monthly with VI estimates.

Variable Daily Monthly Monthly
with VI Variable Daily Monthly Monthly

with VI

Rn − G 8 7 4 Tsmax 3 1 1
VPD 3 3 5 PPT 0 3 4
VWC 6 2 2 ETo 6 4 3
RH 1 2 2 WS 1 3 1
T 5 5 4 NDVI - - 0

Tmin 2 2 1 NDWI - - 8
Tmax 1 1 0 SAVI - - 0

Ts 3 6 3 EVI - - 0
Tsmin 1 1 0 NDGI - - 2

4. Discussion

A comparison of ETa estimation formulae between studies is difficult due to the many
differences between them: (1) calibration and validation procedures; (2) data selection and
processing; (3) temporal scale of estimates; (4) number and characteristic of the variables
used; and (5) number and location of field sites considered [20]. However, in this section,
the results obtained in other studies that have used regression formulae or machine learn-
ing algorithms to estimate ETa are discussed and compared to our results. Carter and
Liang [4] evaluated seven regression algorithms for daily ETa estimations with meteorolog-
ical and/or remote sensing data of different cover types, reaching R2 between 0.43 to 0.52
for all sites. The performance obtained by Carter and Liang [4] in the sites with climate
different than arid cold desert is slightly lower than that obtained in this study for daily
estimations considering the training data (R2 = 0.6). The algorithms evaluated by Carter
and Liang [4] correspond to simple linear equations, such as the Yebra et al. [20] formula,
and to more complex equations, such as that developed in [68] Granata [28] fitted three
daily ETa estimations models that include different meteorological data with four different
machine learning algorithms in a subtropical humid site located in Florida. All of them
reached R2 values of over 0.92, because only one site was considered and the availability of
water is not limited, as opposed to what occur in arid cold regions. However, better results
were obtained in the model with a greater number of variables.

Studies in natural arid zones landscapes are scarce compared to studies performed in
agricultural lands located in mesic environments. Investigations performed in the western
of the U.S. have provided the basis for improved estimation of ETa in arid and semi-arid
environments [2,3,27,60,69]. Bunting et al. [3] evaluated three regression equations that
estimates ETa in a period of 16 days in riparian and upland sites in California. One of the
equations is a multiple linear regression that includes the MODIS EVI and precipitation data
(R2 = 0.74). Nagler et al. [2,27] developed two different regression equations that require
meteorological and MODIS EVI information to estimate ETa in riparian environments of
the Colorado, Rio Grande, and San Pedro rivers in Colorado, U.S. Both equations are based
on the relationship between the leaf area index (LAI) and light absorption by the canopy,
and the linear relationship between the EVI and LAI. Both equations have good predictive
capability (R2 = 0.73 and 0.74, respectively). Performances of the best results obtained in
this research are comparable to the studies reviewed.

In our work, different arid cold climate sites were used to generate linear regression
formulae to estimate ETa. Although other works show better results in sites that only have
the same vegetation cover [20], we obtained very different performances in daily, monthly,
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and monthly with VIs estimations in the validation sites with similar vegetation cover,
such as in the case of AU-Ync and US-Wkg (R2 = 0.03, 0.00, 0.16 and R2 = 0.69, 0.78, 0.82,
respectively). In regard to this, note that the linear formulation of the regression formulae
should not be an important source of error, as Carter and Liang [4] demonstrated that
different regression formulae, with different theoretical bases and the same input data,
have similar performance.

According to Allen et al. [7], the main meteorological variables affecting ETa are radia-
tion, air temperature, air humidity, and wind speed. Several investigations have studied
the relative importance of these variables in ETa processes in arid regions. However, these
studies generally focus on the behavior of ETo instead of ETa, so they do not consider
the effects of water stress. For example, Adnan et al. [70] and Eslamian et al. [71] stud-
ied the influence of meteorological variables on ETo estimations in semi-arid, arid, and
hyper-arid climates (Pakistan and Iran) using the Penman–Monteith formulation. Both
studies concluded that air temperature and humidity are the most important meteoro-
logical variables affecting ETo. One of the few studies that analyze the sensitivity of ETa
estimations to variations in meteorological and remote sensing data in a semi-arid region is
that conducted by Mokhtari et al. [72]. They analyzed the sensitivity of METRIC (mapping
evapotranspiration at high resolution with internalized calibration) and concluded that
it is highly sensitive to surface temperature, net radiation, and air temperature, and it is
less sensitive to the LAI, SAVI, and WS (except for WS at low level of vegetation cover).
Our results indicate that available energy is the main variable that controls ETa, which
agrees with previous studies that investigated ETa components in as many climate and
vegetation cover types as possible [4,73–75]. For example, Wang et al. [73] correlated ETa
measurements with radiation, air, and land surface temperature, the EVI and NDVI, and
soil moisture. They concluded that correlation coefficients between Rn and ETa are the
highest, followed by Ts and VIs.

In this research, of the four most important meteorological variables, only wind speed
was not decisive in estimating ETa in all of the cases studied. This fact agrees with the
findings of Granata [28], who proved that it is possible to generate accurate and precise
estimates of daily ETa through machine learning algorithms only with mean temperature,
net solar radiation, and relative humidity data, pointing out that the incorporation of
wind speed does not improve the ETa estimations compared to the case when it is not
accounted for. However, he analyzed ETa in a subtropical humid climate, where the
number of sunshine hours is considered to be the more dominant variable as opposed to
arid climates, where wind speed is an important variable [46]. Irmak et al. [76] compared
11 ETa models in a crop field in Nebraska, USA, to study their complexity on hourly, daily,
and seasonal scales. They concluded that wind speed, and other meteorological variables
such as temperature, gained importance in daily and hourly calculations, while on seasonal
scales, radiation was the dominant variable. As shown in these studies, it was expected
that wind speed would be an important variable in daily ETa estimations. However, the
method and the number of variables chosen in this research could mask its effects: EFS
selects the most important meteorological variable or variables that explain ETa, in this
case Rn − G and the NDWI, accompanied by variables whose unique objective is to make
the equation work numerically; furthermore, the WS influence could be well represented
in ETo, so Rn − G, VWC, and Ts are variables that provide more information about ETa
variability than WS itself. In arid regions, WS plays an important role when advection of
dry air enhances evaporation and affects the energy balance by horizontal transport of
latent heat [46,77].

Our findings support that regardless of the climate type, atmospheric demand and
available energy determine ETa when water supply is sufficient, whereas soil moisture
becomes an important factor controlling ETa when soil water supply is deficient [75].
Bunting et al. [3] proved that ETa estimations in semi-arid upland sites using multiple
linear regression improve with the incorporation of a moisture input. However, variables
such as precipitation and soil moisture are not usually used as the moisture input for several
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reasons: (1) surface precipitation and soil moisture measurements are point measurements,
limiting the possibilities for upscaling; (2) a lag effect must be considered with precipitation;
and (3) soil moisture remote sensing products are difficult to process, and their resolution
is of several kilometers [4]. In this context, we expected that few of the ETa estimation
formulae presented in Table 5 would incorporate PPT and VWC in the four most important
variables found by the EFS algorithm. However, a novel and non-expected result that we
found when remote sensing information was added, is the appearance of the NDWI as
the main variable that explains the moisture input (see ETa estimation formulae shown
in Table 5). Moreover, in studies performed in climates different than arid cold deserts,
NDVI and EVI are the remote sensing VIs that are typically used to determine ETa because
they represent the vegetation activity [4,26,75,78]. Unlike other VIs, NDWI is capable of
indicating trends in soil and vegetation wetness [25,79], so it is a valid water availability
input that does not have the same disadvantages of PPT and VWC, as mentioned above.
Hence, NDWI is a VI that improves the estimation of ETa in arid cold regions, and that has
not received too much attention in studies conducted in other climates.

The use of remote sensing information is fundamental in estimating ETa for regional-
scale and heterogeneous landscapes [12]. This research proved that the incorporation of VIs
helps to extrapolate global equations to each one of the sites. However, it has been proven
that VIs are not sufficient to accurately estimate ETa [20]. Carter and Liang [4] noted that,
at minimum, ETa estimates with Vis require the inclusion of radiation data. However, it
is recommended to increase the number of input variables. Our results demonstrate that
acceptable results were achieved with four variables.

Although the contribution of the VIs to the improvement in ETa estimations at the
regional level is indisputable, there are several sources of error that must be addressed. One
of the most important is the influence of bare soil on the reflectance response, especially
in high-resolution satellites, such as Landsat. Jarchow et al. [69,80] compared Landsat
5 and Landsat 8 EVI values to the MODIS EVI in a riparian zone of the Colorado River,
Mexico, finding low correlations over bare soil and sparsely vegetated areas. Additionally,
they suggest being cautious when high-resolution Landsat EVI data are analyzed over
heterogeneous areas with low vegetation densities, such as those commonly encountered
in cold arid and semi-arid environments, because soil presence contributes to increased
variability in the response of the NIR and red bands.

The poor correlations obtained in this study between VIs and ETa could be explained
by several factors. Firstly, as mentioned before, the presence of bare soil can perturb
the calculation of VIs [80]. Secondly, in this research, only ETa outliers were extracted,
whereas other studies selected data that accomplished some characteristics. For exam-
ple, Yebra et al. [20] selected data of days where only transpiration was expected to be
dominant, and Scott et al. [81] excluded data from precipitation events and outliers of
meteorological variables. In the presence of important rainfall events, most of the VIs
considered in this study, except for the NDWI and EVI, have negative values. The values
of the VIs indicate that there should be a lower ETa rate when it rains, since they actually
increase. VI values obtained in this research are different to those reported in previous
studies [82–84]. However, they are different from each other, highlighting the importance
of satellite selection.

5. Conclusions

In this study, we generated linear regression formulae to estimate daily and monthly
ETa in arid cold sites. Different performances were obtained for every site, and the fol-
lowing trends were identified: (1) better results were obtained for monthly than for daily
estimates; (2) incorporation of remote sensing information allows one to extrapolate formu-
lae to other sites in order to obtain better results than estimations with only meteorological
data; (3) the available energy is the most important meteorological variable in ETa esti-
mations for the sites evaluated in this research; and (4) in arid regions, it is important to
incorporate estimations of water availability. As precipitation and soil moisture are point
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measurements that do not allow one to extrapolate estimations in wide areas, the NDWI
could be incorporated as a proxy for water availability in the heterogeneous landscapes
located in arid cold regions. Furthermore, more studies that analyze variables controlling
ETa in arid natural landscapes are needed, because ETa in drylands is exposed to different
factors than in more humid environments, such as water stress, advection, and vegetation
with adaptations to drought. Global ETo investigations cannot study the complexity of ETa
in arid cold regions in depth.
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Appendix A. Sites Description

Appendix A.1. CH-AT1

This site corresponds to a riparian wetland located in the Chilean Andean plateau
(22.02◦ S, 68.05◦ W, elevation: 4182 m ASL). The annual precipitation is concentrated
in summer months due to the effect of the South American monsoon and is ~78 mm
(2007–2016 time period), whereas the annual mean temperature is ~5.8 ◦C (1969–1987 time
period) [85]. The area is dominated by the presence of the reed Oxychloe andina and the
grass Deyeuxia sp. The Parastrephia sp. shrub and some hydrophytes, such as Lilaeopsis
macloviana and Myriophyllum quitense, are also present.

Appendix A.2. CH-AT2

This site is located 1500 m north of CH-AT1 (22.01◦ S, 68.05◦ W, elevation: 4330 m
ASL). Unlike the riparian wetland (CH-AT1), only grass and some shrubs are present at
this site, where the dominant species is the grass Festuca genera. Because CH-AT1 and
CH-AT2 are near to each other, the climate characterization of CH-AT2 is the same as in the
riparian wetland.

Appendix A.3. CH-AT3

This site is in the Putana wetland, which is located in the Altiplano of the Antofagasta
Region, Chile (22.52◦ S, 68.02◦ W, elevation: 4255 m ASL). The annual precipitation is
~106 mm (2008–2017 time period), also concentrated in the summer months, and the mean
annual temperature is ~1.7 ◦C (2013–2016 time period) [85]. The presence of water in the
wetland is due to contributions of the Putana River and groundwater upwelling. The
vegetation in the study site is classified as perennial grassland dominated by Oxychloe
andina and some grass of the Festuca and Deyeuxia genera. There are also some hydrophytes,
such as Ranunculus uniflorus and Azolla filiculoides.

http://dx.doi.org/10.17632/vkkzxkwwjk.2
http://dx.doi.org/10.17632/vkkzxkwwjk.2
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Appendix A.4. AU-Cpr

This study site is located 25 km north of Renmark in South Australia at Calperum
Station (34.00◦ S, 140.59◦ E, elevation: ~166 m ASL). The mean annual precipitation is
approximately 250 mm. More rainfall is generally expected in the cooler winter and spring
periods, but occasional summer rainfall events occur. The mean annual temperature is
18 ◦C, ranging between −3 and 45 ◦C. The vegetation is dominated by several species of
Eucalyptus, but also it is possible to find mid-story species belonging to Eremophila, Hakea,
Olearia, Senna, and Melaleuca genera [41,83].

Appendix A.5. AU-Ync

This site is located in the Yanco study area (34.99◦ S, 146.29◦ E, elevation: ~125 m ASL),
which is situated within the western plains of the Murrumbidgee River catchment, in New
South Wales, Australia. Precipitation is distributed evenly across all months, reaching 419
mm per year. Daily mean temperatures vary significantly from 34 ◦C in January to 14.2 ◦C
in July. The site consists of a homogeneous flat grassland that is used for the grazing of
livestock. The grassland is dominated by perennial tussock grasses, such as kangaroo and
wallaby grasses [86].

Appendix A.6. US-Cop

This site, named Corral Pocket, is a semiarid grassland located in southeast Utah, USA
(38.09◦ N, 109.39◦ W, elevation: 1520 m ASL). Mean annual precipitation and temperature
are 216 mm and 12 ◦C, respectively. About 33% of the precipitation occurs during summer.
The vegetation is dominated by the perennial Hilaria jamesii and Stipa hymenoides bunch-
grasses and the Coleogyne ramosissima shrub, with other grasses and annuals making up a
small percentage of total plant cover [40].

Appendix A.7. US-SRG

This site corresponds to Santa Rita Grassland, which is located in the Santa Rita
Experimental Range, 45 km south of Tucson, Arizona, USA (31.79◦ N, 110.83◦ W, elevation:
1290 m ASL). Mean annual precipitation is 377 mm. Because of the North American
monsoon, about 50% of rainfall occurs during summer. The mean air temperature is 19 ◦C,
with winter freezes in November and daytime maxima that exceed 35◦ in June [42,81].
This site is dominated by the South African warm season bunchgrass, Lehmann Lovegrass
(Eragrostis lehmanniana), and it has a 11% cover of mesquite (Prosopis velutina) [42].

Appendix A.8. US-SRM

This site corresponds to the Santa Rita mesquite savanna site, which is also located in
the Santa Rita Experimental Range, USA, 5 km from the Santa Rita Mesquite site (31.82◦ N,
110.87◦ W, elevation: 1116 m ASL). The site vegetation consists of the leguminous tree
Prosopis velutina (35% of the vegetation cover) growing in a matrix of native and nonnative
perennial grasses, subshrubs, and scattered succulents [81].

Appendix A.9. UC-Whs

This site corresponds to the Lucky Hills Shrubland, in the U.S. Department of Agricul-
ture Agricultural Research Service (USDA-ARS) Walnut Gulch Experimental Watershed.
It is located 80 km east of Santa Rita sites (31.74◦ N, 110.05◦ W, elevation: 1370 m ASL).
Annual precipitation is lower than that in the Santa Rita sites, reaching 285 mm. The
mean air temperature is also quite lower, reaching 17.6 ◦C. This site has a large diversity of
shrubs that are typically found throughout the Sonoran and Chihuahuan Deserts, such as
Parthenium incanum, Acacia constricta, Larrea tridentata, and Flourensia cernua [44].
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Appendix A.10. US-Wkg

This site corresponds to the Walnut Gulch Kendall Grasslands, which is located 10 km
apart of US-Whs, also in the USDA-ARS Walnut Gulch Experimental Watershed (31.74◦ N,
109.94◦ W, elevation: 1530 m ASL). In the period of 2005–2014 a mean annual temperature
of 17.3 ◦C and an annual precipitation of 294 mm have been reported. The dominant species
are Eragrostis lehmanniana, Bouteloua eripoda, and Aristida spp., all of them belonging to the
Poaceae family. It is also possible to see woody species as Ephedra viridis and Artemisia
filifolia [45].
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