Shoreline Solutions: Guiding Efficient Data Selection for Coastal Risk Modeling and the Design of Adaptation Interventions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Change Impacts in Jamaica
2.2. Study Area
2.3. Topographic and Environmental Data
2.3.1. Digital Elevation Maps
2.3.2. Bathymetry Data
2.3.3. Shoreline Data
2.4. Socioeconomic Data Availability
3. Results
3.1. Bathtub Sea Level Rise or Storm Surge Modeling
3.2. Complex Hydrodynamic Modeling
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mimura, N.; Nurse, L.; McLean, R.F.; Agard, J.; Briguglio, L.; Lefale, P.; Payet, R.; Sem, G. Small Islands. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 687–716. [Google Scholar]
- Mycoo, M.A. Beyond 1.5 °C: Vulnerabilities and Adaptation Strategies for Caribbean Small Island Developing States. Reg. Environ. Chang. 2018, 18, 2341–2353. [Google Scholar] [CrossRef] [Green Version]
- Climate Studies Group, Mona (CSGM). State of the Jamaican Climate 2015: Information for Resilience Building (Full Report); Planning Institute of Jamaica (PIOJ): Kingston, Jamaica, 2017; p. 208. [Google Scholar]
- Stennett-Brown, R.K.; Stephenson, T.S.; Taylor, M.A. Caribbean Climate Change Vulnerability: Lessons from an Aggregate Index Approach. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, D.; Hutfils, M.-L.; Winges, M. Global Climate Risk Index 2019 Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2017 and 1998 to 2017; Germanwatch e.V: Bonn, Germany, 2018; ISBN 978-3-943704-70-9. [Google Scholar]
- Eckstein, D.; Winges, M.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2020 Who Suffers Most from Extreme Weather Events? Wether-Related Loss Events in 2018 and 1999 to 2018; Germanwatch e.V: Bonn, Germany, 2019; ISBN 978-3-943704-77-8. [Google Scholar]
- Deopersad, C.; Persaud, C.; Chakalall, Y.; Bello, O.; Masson, M.; Perroni, A.; Carrera-Marquis, D.; Fontes de Meira, L.; Gonzales, C.; Peralta, L.; et al. Assessment of the Effects and Impacts of Hurricane Dorian in the Bahamas; Inter-American Development Bank; United Nations: Washington, DC, USA, 2020; p. 219. [Google Scholar]
- Jury, M.R. Puerto Rico Sea Level Trend in Regional Context. Ocean Coast. Manag. 2018, 163, 478–484. [Google Scholar] [CrossRef]
- International Federation of Red Cross and Red Crescent Societies. IFRC Framework for Community Resilience; International Federation of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2014; p. 24. [Google Scholar]
- Kafle, S.K. Measuring Disaster-Resilient Communities: A Case Study of Coastal Communities in Indonesia. J. Bus Contin. Emer. Plan 2012, 5, 316–326. [Google Scholar]
- Gowan, M.E.; Kirk, R.C.; Sloan, J.A. Building Resiliency: A Cross-Sectional Study Examining Relationships among Health-Related Quality of Life, Well-Being, and Disaster Preparedness. Health Qual. Life Outcomes 2014, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Matteo, G.; Nardi, P.; Grego, S.; Guidi, C. Bibliometric Analysis of Climate Change Vulnerability Assessment Research. Environ. Syst. Decis. 2018, 38, 508–516. [Google Scholar] [CrossRef]
- Weis, S.W.M.; Agostini, V.N.; Roth, L.M.; Gilmer, B.; Schill, S.R.; Knowles, J.E.; Blyther, R. Assessing Vulnerability: An Integrated Approach for Mapping Adaptive Capacity, Sensitivity, and Exposure. Clim. Chang. 2016, 136, 615–629. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.G.; Díaz-Simal, P.; Fernández, F. The Global Flood Protection Savings Provided by Coral Reefs. Nat. Commun. 2018, 9, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The Effectiveness of Coral Reefs for Coastal Hazard Risk Reduction and Adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef] [PubMed]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral Reefs for Coastal Protection: A New Methodological Approach and Engineering Case Study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Narayan, S.; Beck, M.W. The Global Flood Protection Benefits of Mangroves. Sci. Rep. 2020, 10, 4404. [Google Scholar] [CrossRef] [PubMed]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-Based Solutions for Climate Change Adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, P.; Losada, I.J.; Torres-Ortega, S.; Toimil, A.; Beck, M.W. Assessing the Effects of Using High-Quality Data and High-Resolution Models in Valuing Flood Protection Services of Mangroves. PLoS ONE 2019, 14, e0220941. [Google Scholar] [CrossRef] [PubMed]
- Spalding, M.D.; McIvor, A.L.; Beck, M.W.; Koch, E.W.; Möller, I.; Reed, D.J.; Rubinoff, P.; Spencer, T.; Tolhurst, T.J.; Wamsley, T.V.; et al. Coastal Ecosystems: A Critical Element of Risk Reduction. Conserv. Lett. 2014, 7, 293–301. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New Elevation Data Triple Estimates of Global Vulnerability to Sea-Level Rise and Coastal Flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Ikeshima, D.; Neal, J.C.; O’Loughlin, F.; Sampson, C.C.; Kanae, S.; Bates, P.D. MERIT DEM: A New High-Accuracy Global Digital Elevation Model and Its Merit to Global Hydrodynamic Modeling.; 2017; Volume 2017. Available online: https://ui.adsabs.harvard.edu/abs/2017AGUFM.H12C..04Y/abstract (accessed on 13 February 2021).
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Kulp, S.A.; Strauss, B.H. CoastalDEM: A Global Coastal Digital Elevation Model Improved from SRTM Using a Neural Network. Remote Sens. Environ. 2018, 206, 231–239. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. NASADEM Global Elevation Model: Methods and Progress. Isprs Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 125–128. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G. Accuracy Assessment of ALOS AW3D30 DSM and Comparison to ALOS PRISM DSM Created with Classical Photogrammetric Techniques. Eur. J. Remote Sens. 2020, 53, 39–52. [Google Scholar] [CrossRef]
- Moudrý, V.; Lecours, V.; Gdulová, K.; Gábor, L.; Moudrá, L.; Kropáček, J.; Wild, J. On the Use of Global DEMs in Ecological Modelling and the Accuracy of New Bare-Earth DEMs. Ecol. Model. 2018, 383, 3–9. [Google Scholar] [CrossRef]
- Game, E.T.; Kareiva, P.; Possingham, H.P. Six Common Mistakes in Conservation Priority Setting. Conserv. Biol. 2013, 27, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.W.; Narayan, S.; Losada, I.J.; Espejo, A.; Torres-Ortega, S. The Flood Protection Benefits and Restoration Costs for Mangroves in Jamaica. In Forces of Nature: Assessment and Economic Valuation of Coastal Protection Services Provided by Mangroves in Jamaica; Castaño-Isaza, J., Lee, S., Dani, S., Eds.; World Bank: Washington, DC, USA, 2019; p. 64. [Google Scholar]
- Burgess, C.; Johnson, C. Shoreline Change in Jamaica: Observations for the Period 1968 to 2010 and Projections to 2060. Available online: https://ceacsolutions.com/shoreline-change-in-jamaica/ (accessed on 1 February 2021).
- Burgess, C.P.; Taylor, M.A.; Stephenson, T.; Mandal, A.; Powell, L. A Macro-Scale Flood Risk Model for Jamaica with Impact of Climate Variability. Nat. Hazards 2015, 78, 231–256. [Google Scholar] [CrossRef]
- Fontes de Meira, L.; Phillips, W. An Economic Analysis of Flooding in the Caribbean: The Case of Jamaica and Trinidad and Tobago; ECLAC: Santiago, Chile, 2019. [Google Scholar]
- Spencer, N.; Strobl, E. Poverty and Hurricane Risk Exposure in Jamaica. Available online: https://www.stjohns.edu/sites/default/files/uploads/Poverty%20and%20Hurricane%20Risk%20Exposure%20in%20Jamaica.pdf (accessed on 11 January 2021).
- Global Facility for Disaster Reduction and; Recovery (GFDRR). Damage, Loss and Needs Assessment Guidance Notes; World Bank: Washington, DC, USA, 2010; p. 86. [Google Scholar]
- Office of Disaster Preparedness and Emergency Management (ODPEM). Community Disaster Risk Management Plan for Old Harbour Bay Community; The Canadian International Development Agency: Kingston, Jamaica, 2012; p. 134. [Google Scholar]
- Climate Studies Group, Mona (CSGM). Climate Change Risk Assessment Report: Portland Bight Protected Area; University of West Indies: Kingston, Jamaica, 2013; p. 110. [Google Scholar]
- Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K. Numerical Modeling of the Impact of Sea-Level Rise on Fringing Coral Reef Hydrodynamics and Sediment Transport. Coral Reefs 2011, 30, 83–96. [Google Scholar] [CrossRef] [Green Version]
- King, N. Jamaica Fisheries Sector Gets World Bank Aid - Caribbean Life News. Available online: https://www.caribbeanlifenews.com/jamaica-fisheries-sector-gets-world-bank-aid/ (accessed on 12 February 2021).
- Williams, L.L.; Lück-Vogel, M. Comparative Assessment of the GIS Based Bathtub Model and an Enhanced Bathtub Model for Coastal Inundation. J. Coast. Conserv. 2020, 24, 23. [Google Scholar] [CrossRef]
- Didier, D.; Baudry, J.; Bernatchez, P.; Dumont, D.; Sadegh, M.; Bismuth, E.; Bandet, M.; Dugas, S.; Sévigny, C. Multihazard Simulation for Coastal Flood Mapping: Bathtub versus Numerical Modelling in an Open Estuary, Eastern Canada. J. Flood Risk Manag. 2018. [Google Scholar] [CrossRef]
- Lichter, M.; Vafeidis, A.; Nicholls, R.; Kaiser, G. Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the “Low-Elevation Coastal Zone” (LECZ). J. Coast. Res. 2011, 757–768. [Google Scholar] [CrossRef]
- Bove, G.; Becker, A.; Sweeney, B.; Vousdoukas, M.; Kulp, S. A Method for Regional Estimation of Climate Change Exposure of Coastal Infrastructure: Case of USVI and the Influence of Digital Elevation Models on Assessments. Sci. Total Environ. 2020, 710, 136162. [Google Scholar] [CrossRef]
- Eakins, B.W.; Grothe, P.R. Challenges in Building Coastal Digital Elevation Models. J. Coast. Res. 2014, 30, 942–953. [Google Scholar] [CrossRef]
- Van de Sande, B.; Lansen, J.; Hoyng, C. Sensitivity of Coastal Flood Risk Assessments to Digital Elevation Models. Water 2012, 4, 568–579. [Google Scholar] [CrossRef]
- Small, C.; Sohn, R. Correlation Scales of Digital Elevation Models in Developed Coastal Environments. Remote Sens. Environ. 2015, 159, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Leon, J.X.; Heuvelink, G.B.M.; Phinn, S.R. Incorporating DEM Uncertainty in Coastal Inundation Mapping. PLoS ONE 2014, 9, 1–12. [Google Scholar] [CrossRef]
- Renslow, M.; Greenfield, P.; Guay, T. Evaluation of Multi-Return LIDAR for Forestry Applications; US Department of Agriculture Forest Service–Engineering. 2000, p. 19. Available online: https://www.fs.fed.us/eng/techdev/IM/rsac_reports/lidar_report.pdf (accessed on 13 February 2021).
- Weatherall, P.; Marks, K.M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J.E.; Rovere, M.; Chayes, D.; Ferrini, V.; Wigley, R. A New Digital Bathymetric Model of the World’s Oceans. Earth Space Sci. 2015, 2, 331–345. [Google Scholar] [CrossRef]
- Li, J.; Knapp, D.E.; Schill, S.R.; Roelfsema, C.; Phinn, S.; Silman, M.; Mascaro, J.; Asner, G.P. Adaptive Bathymetry Estimation for Shallow Coastal Waters Using Planet Dove Satellites. Remote Sens. Environ. 2019, 232, 111302. [Google Scholar] [CrossRef]
- Pepe, M.; Parente, C. Bathymetry from Worldview-3 Satellite Using Radiometric Band Ratio. Acta Polytech. 2018, 58. [Google Scholar] [CrossRef] [Green Version]
- Sayre, R.; Noble, S.; Hamann, S.; Smith, R.; Wright, D.; Breyer, S.; Butler, K.; Van Graafeiland, K.; Frye, C.; Karagulle, D.; et al. A New 30 Meter Resolution Global Shoreline Vector and Associated Global Islands Database for the Development of Standardized Ecological Coastal Units. Null 2019, 12, S47–S56. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Smith, W. A Global, Self-Consistent, Hierarchical, High-Resolution Shoreline Database. J. Geophys. Res. 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Carlotto, M.; Nebrich, M.; DeMichele, D. Enhancing Vector Shoreline Data Using a Data Fusion Approach. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXVI, Anaheim, CA, USA, 2 May 2017; Volume 10200, p. 1020010. [Google Scholar]
- Dai, C.; Howat, I.M.; Larour, E.; Husby, E. Coastline Extraction from Repeat High Resolution Satellite Imagery. Remote Sens. Environ. 2019, 229, 260–270. [Google Scholar] [CrossRef]
- UNEP-WCMC; WorldFish Centre; WRI. TNC Global Distribution of Warm-Water Coral Reefs, Compiled from Multiple Sources Including the Millennium Coral Reef Mapping Project. Version 4.0. Includes Contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. 2001. Available online: http://data.unep-wcmc.org/datasets/1 (accessed on 1 February 2021).
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Knapp, D.E.; Fabina, N.S.; Kennedy, E.V.; Larsen, K.; Lyons, M.B.; Murray, N.J.; Phinn, S.R.; Roelfsema, C.M.; Asner, G.P. A Global Coral Reef Probability Map Generated Using Convolutional Neural Networks. Coral Reefs 2020, 39, 1805–1815. [Google Scholar] [CrossRef]
- Bright, E.A.; Rose, A.N.; Urban, M.L.; McKee, J. LandScan 2017 High-Resolution Global Population Data Set; Oak Ridge National Laboratory: Oak Ridge, TN, UAS, 2018. [Google Scholar]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Tatem, A.J. WorldPop, Open Data for Spatial Demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef]
- Statistical Institute of Jamaica. Jamaica Population Census 2011. Statistical Institute of Jamaica (STATIN): Kingston, Jamaica, 2011; p. 170. [Google Scholar]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; de Vries, J.v.T.; McCall, R.; Lescinski, J. Modelling Storm Impacts on Beaches, Dunes and Barrier Islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Whitworth, M.; Baily, B. A Review of the Current Status of Flood Modelling for Urban Flood Risk Management in the Developing Countries. Sci. Afr. 2020, 7, e00269. [Google Scholar] [CrossRef]
- US Geological Survey 3D Elevation Program (3DEP). Available online: https://www.usgs.gov/core-science-systems/ngp/3dep/what-is-3dep?qt-science_support_page_related_con=0#qt-science_support_page_related_con. (accessed on 8 January 2021).
- Kabite, G. LiDAR DEM Data for Flood Mapping and Assessment; Opportunities and Challenges: A Review. J. Remote Sens. Gis 2017, 6. [Google Scholar] [CrossRef]
- Preston, B.L.; Mustelin, J.; Maloney, M.C. Climate Adaptation Heuristics and the Science/Policy Divide. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 467–497. [Google Scholar] [CrossRef]
- Adger, W.N.; Dessai, S.; Goulden, M.; Hulme, M.; Lorenzoni, I.; Nelson, D.R.; Naess, L.O.; Wolf, J.; Wreford, A. Are There Social Limits to Adaptation to Climate Change? Clim. Chang. 2009, 93, 335–354. [Google Scholar] [CrossRef]
- Dessai, S.; Hulme, M.; Lempert, R.; Pielke, R. Climate prediction: A limit to adaptation? In Adapting to Climate Change: Thresholds, Values, Governance; Lorenzoni, I., O’Brien, K.L., Adger, W.N., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 64–78. ISBN 978-0-521-76485-8. [Google Scholar]
- Jones, R.N. An Environmental Risk Assessment/Management Framework for Climate Change Impact Assessments. Nat. Hazards 2001, 23, 197–230. [Google Scholar] [CrossRef]
- Dessai, S.; Adger, W.N.; Hulme, M.; Turnpenny, J.; Köhler, J.; Warren, R. Defining and Experiencing Dangerous Climate Change. Clim. Chang. 2004, 64, 11–25. [Google Scholar] [CrossRef]
- Yuen, E.; Jovicich, S.S.; Preston, B.L. Climate Change Vulnerability Assessments as Catalysts for Social Learning: Four Case Studies in South-Eastern Australia. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 567–590. [Google Scholar] [CrossRef]
- Preston, B.L.; Brooke, C.; Measham, T.G.; Smith, T.F.; Gorddard, R. Igniting Change in Local Government: Lessons Learned from a Bushfire Vulnerability Assessment. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 251–283. [Google Scholar] [CrossRef]
Source of DEM | Elevation Dataset | Spatial Resolution (m) | Vertical Accuracy (m) * | Product | Cost |
---|---|---|---|---|---|
Space-based Radar | MERIT DEM | 90 | 12 | DSM | Free |
SRTM DEM v3 | 30 | 9–17 | DSM | Free | |
NASADEM | 30 | N/A | DSM | Free | |
AW3D30 | 30 | 3–12 m | DSM | Free | |
CoastalDEM | 30 | <2 | DTM | Contact Climate Central | |
WorldDEM | 12 | 1–4, depending on product | DSM/DTM | $12 per km2 | |
AW3D Standard | 2.5, 5 | 5–7 | DSM/DTM | $3–17 per km2 (min area 400 km2) | |
Space-based Photogrammetry | ASTER GDEM v3 | 30 | 8–17 | DSM | Free |
AW3D Enhanced | 0.5, 1, 2 | 1–2 | DSM | $95–190 per km2 (min area 25 km2) | |
Custom satellite-derived DEMs (e.g., Maxar, AirBus) | 0.5, 1,2.5, 4, 8 | 2–10, depending on product | DSM/DTM | $50–190 per km2 (min area 100 km2) | |
Jamaica National DSM (IKONOS stereo-pair) | 6 | unclear | DSM | N/A | |
Airborne UAV Photogrammetry | UAV-derived elevation model | 0.03 m | <1 m when calibrated | DSM | Depends on UAV sensor and software used |
Dataset | Temporal Resolution | Spatial Resolution (m) | Cost |
---|---|---|---|
LandScan | 2018 | 1000 | Free for U.S. Federal Government agencies and for those within the educational community for non-commercial use |
Global Human Settlement | 2014 | 250 | Free |
World Pop | 2020 | 100 | Free |
Satellite or UAV-derived population estimates | 2019 | 0.03 | Variable |
Elevation Dataset | People Flooded | Infrastructure Flooded (USD) | Old Harbour Bay UAV Imagery Flooded to 3 m SLR/Storm Surge (Bathtub Model) |
---|---|---|---|
Multi-Error-Removed Improved-Terrain (MERIT) (90 m) | 2896 people | US$40.0 million | |
NASADEM (30 m) | 4458 people | US$85.5 million | |
Climate Central CoastalDEM (30 m, vertically corrected) | 6054 people | US$101.2 million | |
Jamaica National DSM (6 m) | 5341 people | US$78.8 million | |
UAV-derived Elevation Model (The Nature Conservancy, 3.8 cm) | 9619 people | US$172.5 million |
Data Type | Source | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Digital Elevation Model | Government of Jamaica national DSM (derived IKONOS stereo-paired mages) | 6 m | 2004 |
Bathymetry | A blend of (1) Landsat-derived bathymetry from IHC (0–25 m depth); (2) Navionics nautical charts-interpolated bathymetry (25–100 m depth); and (3) ETOPO1 (>500 m depth) | 10 m nearshore, 1 km deep ocean | -- |
Shoreline | OpenStreetMap global coastline shapefile | 10 m | -- |
Mangroves | Baseline: Government of Jamaica | -- | 2005 |
Current: The Nature Conservancy | 1–2 m | 2013 | |
Population | JRC-EU Global Human Settlement Layer | 250 m | 2015 |
Economic Exposure (stock/property) | GAR17 (UNISDR)—Total, Residential, Industrial Stock | 1 km downscaled to 250 m using GHS population layer | 2017 |
National Assessment | ||
---|---|---|
People Protected | Avoided damages to assets | |
1-in-100 years storm | 858 people | $29 million USD |
1-in-500 years storm | 4958 people | $45 million USD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Morel, M.; McNulty, V.P.; Lummen, N.; Schill, S.R.; Beck, M.W. Shoreline Solutions: Guiding Efficient Data Selection for Coastal Risk Modeling and the Design of Adaptation Interventions. Water 2021, 13, 875. https://doi.org/10.3390/w13060875
Acosta-Morel M, McNulty VP, Lummen N, Schill SR, Beck MW. Shoreline Solutions: Guiding Efficient Data Selection for Coastal Risk Modeling and the Design of Adaptation Interventions. Water. 2021; 13(6):875. https://doi.org/10.3390/w13060875
Chicago/Turabian StyleAcosta-Morel, Montserrat, Valerie Pietsch McNulty, Natainia Lummen, Steven R. Schill, and Michael W. Beck. 2021. "Shoreline Solutions: Guiding Efficient Data Selection for Coastal Risk Modeling and the Design of Adaptation Interventions" Water 13, no. 6: 875. https://doi.org/10.3390/w13060875
APA StyleAcosta-Morel, M., McNulty, V. P., Lummen, N., Schill, S. R., & Beck, M. W. (2021). Shoreline Solutions: Guiding Efficient Data Selection for Coastal Risk Modeling and the Design of Adaptation Interventions. Water, 13(6), 875. https://doi.org/10.3390/w13060875