Nexus Thinking at River Basin Scale: Food, Water and Welfare
Abstract
:1. Introduction
Literature Review on Nexus Concepts, Components, and Methods
2. Materials and Methods
2.1. Study Area
2.2. Model Specification
2.3. Data and Simulation Scenarios
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M. Impacts of 1.5 °C Global Warming on natural and human systems. In Global Warming of 1.5 °C; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; p. 138. [Google Scholar]
- Goonetilleke, A.; Vithanage, M. Water resources management: Innovation and challenges in a changing world. Water 2017, 9, 281. [Google Scholar] [CrossRef]
- Wang, X.-J.; Zhang, J.-Y.; Shahid, S.; Guan, E.-H.; Wu, Y.-X.; Gao, J.; He, R.-M. Adaptation to climate change impacts on water demand. Mitig. Adapt. Strat. Glob. Chang. 2016, 21, 81–99. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Parandvash, G.H.; Chang, H. Analysis of long-term climate change on per capita water demand in urban versus suburban areas in the Portland metropolitan area, USA. J. Hydrol. 2016, 538, 574–586. [Google Scholar] [CrossRef]
- Ashoori, N.; Dzombak, D.A.; Small, M.J. Modeling the effects of conservation, demographics, price, and climate on urban water demand in Los Angeles, California. Water Resour. Manag. 2016, 30, 5247–5262. [Google Scholar] [CrossRef]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food Security and Food Production Systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability.Part A: Global and Sectoral Aspects; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 485–533. [Google Scholar]
- Schleussner, C.-F.; Lissner, T.K.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. 2016, 7, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, A.; Britz, W.; Willy, D.K.; van Oel, P. Simulating the viability of water institutions under volatile rainfall conditions—The case of the Lake Naivasha Basin. Environ. Model. Softw. 2016, 75, 373–387. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water-food-energy Nexus—Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Embid, A.; Martín, L. El Nexo Entre el Agua, la Energía y la Alimentación en América Latina y el Caribe Planificación, Marco Normativo e Identificación de Interconexiones Prioritarias. 2017. Available online: https://repositorio.cepal.org/bitstream/handle/11362/41069/S1700077_es.pdf?sequence=1&isAllowed=y (accessed on 2 April 2021).
- Zhang, P.; Zhang, L.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.; Yang, Z.; Wang, C. Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resour. Conserv. Recycl. 2019, 142, 215–224. [Google Scholar] [CrossRef]
- Torres, C.J.F.; De Lima, C.H.P.; Goodwin, B.S.D.A.; Junior, T.R.D.A.; Fontes, A.S.; Ribeiro, D.V.; Da Silva, R.S.X.; Medeiros, Y.D.P. A literature review to propose a systematic procedure to develop ‘nexus thinking’ considering the water-energy-food nexus. Sustainability 2019, 11, 7205. [Google Scholar] [CrossRef] [Green Version]
- Romero-Lankao, P.; Gnatz, D.M. Conceptualizing urban water security in an urbanizing world. Curr. Opin. Environ. Sustain. 2016, 21, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, R.; Hofkes, M. Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecol. Econ. 2008, 66, 16–22. [Google Scholar] [CrossRef]
- Cai, X.; McKinney, D.C.; Lasdon, L.S. Integrated Hydrologic-Agronomic-Economic Model for River Basin Management. J. Water Resour. Plan. Manag. 2003, 129, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Hurd, B.H. Concepts and methods for assessing economic impacts from climate change on water resources. In Handbook of Water Economics; Edward Elgar Publishing Ltd.: Northampton, MA, USA, 2015; pp. 56–68. [Google Scholar]
- Bekchanov, M.; Sood, A.; Pinto, A.; Jeuland, M. Systematic Review of Water-Economy Modeling Applications. J. Water Resour. Plan. Manag. 2017, 143, 04017037. [Google Scholar] [CrossRef]
- Expósito, A.; Beier, F.; Berbel, J. Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review. Water 2020, 12, 1559. [Google Scholar] [CrossRef]
- Vinca, A.; Parkinson, S.; Riahi, K.; Byers, E.; Siddiqi, A.; Muhammad, A.; Ilyas, A.; Yogeswaran, N.; Willaarts, B.; Magnuszewski, P.; et al. Transboundary cooperation a potential route to sustainable development in the Indus basin. Nat. Sustain. 2020, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Wi, S.; Ray, P.A.; Brown, C.M.; Khalil, A.F. The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories. Global Environ. Chang. 2016, 37, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Al-Riffai, P.; Breisinger, C.; Mondal, H.A.; Ringler, C.; Wiebelt, M.; Zhu, T. Linking the Economics of Water, Energy, and Food: A Nexus Modeling Approach. 2017. Available online: http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/131154/filename/131365.pdf (accessed on 2 December 2020).
- Do, P.; Tian, F.; Zhu, T.; Zohidov, B.; Ni, G.; Lu, H. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Sci. Total. Environ. 2020, 728, 137996. [Google Scholar] [CrossRef]
- Albrecht, T.R.; Crootof, A.; A Scott, C. The water-energy-food nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Webber, M. Thirst for Power: Energy, Water, and Human Survival; Yale University Press: London, UK, 2016. [Google Scholar]
- Baleta, J.; Mikulčić, H.; Klemeš, J.J.; Urbaniec, K.; Duić, N. Integration of energy, water and environmental systems for a sustainable development. J. Clean. Prod. 2019, 215, 1424–1436. [Google Scholar] [CrossRef]
- Bekchanov, M.; Lamers, J.P.A. The effect of energy constraints on water allocation decisions: The elaboration and application of a system-wide economic-water-energy model (SEWEM). Water 2016, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Li, G.; Yao, Y.; Zhang, L.; Yu, C. Quantifying the water-energy-food nexus: Current status and trends. Energies 2016, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Cairns, R.; Krzywoszynska, A. Anatomy of a buzzword: The emergence of ‘the water-energy-food nexus’ in UK natural resource debates. Environ. Sci. Policy 2016, 64, 164–170. [Google Scholar] [CrossRef]
- Wang, S.; Fath, B.; Chen, B. Energy–water nexus under energy mix scenarios using input–output and ecological network analyses. Appl. Energy 2019, 233-234, 827–839. [Google Scholar] [CrossRef]
- Xie, X.; Jia, B.; Han, G.; Wu, S.; Dai, J.; Weinberg, J. A historical data analysis of water-energy nexus in the past 30 years urbanization of Wuxi city, China. Environ. Prog. Sustain. Energy 2017, 37, 46–55. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, J.; Zhao, Y.; Shang, Y.; Gao, X.; Li, H.; Wang, Q.; Zhu, Y. Sustainability of water resources for agriculture considering grain production, trade and consumption in China from 2004 to 2013. J. Clean. Prod. 2017, 149, 1210–1218. [Google Scholar] [CrossRef] [Green Version]
- Basheer, M.; Elagib, N.A. Sensitivity of water-energy nexus to dam operation: A water-energy productivity concept. Sci. Total. Environ. 2018, 616-617, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Miralles-Wilhelm, F. Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda. J. Environ. Stud. Sci. 2016, 6, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Salmoral, G.; Yan, X. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resour. Conserv. Recycl. 2018, 133, 320–330. [Google Scholar] [CrossRef]
- Venghaus, S.; Hake, J.-F. Nexus thinking in current EU policies—The interdependencies among food, energy and water resources. Environ. Sci. Policy 2018, 90, 183–192. [Google Scholar] [CrossRef]
- Dale, L.L.; Karali, N.; E Millstein, D.; Carnall, M.; Vicuña, S.; Borchers, N.; Bustos, E.; O’Hagan, J.; Purkey, D.; Heaps, C.; et al. An integrated assessment of water-energy and climate change in Sacramento, California: How strong is the nexus? Clim. Chang. 2015, 132, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Chen, Y.; Zou, S.; Nover, D. Managing the water-climate-food nexus for sustainable development in Turkmenistan. J. Clean. Prod. 2019, 220, 212–224. [Google Scholar] [CrossRef]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and southern Africa’s water-energy-food nexus. Nat. Clim. Chang. 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, B.; Zheng, Y.; Zhang, C. Nexus of water, energy and ecosystems in the upper Mekong River: A system analysis of phosphorus transport through cascade reservoirs. Sci. Total. Environ. 2019, 671, 1179–1191. [Google Scholar] [CrossRef]
- Karlberg, L.; Hoff, H.; Amsalu, T.; Andersson, K.; Binnington, T.; Flores-López, F.; de Bruin, A.; Gebrehiwot, S.G.; Gedif, A.B.; zur Heide, F.; et al. Tackling complexity: Understanding the food-energy-environment nexus in Ethiopia’s Lake Tana sub-basin. Water Altern. 2015, 8, 710–734. Available online: www.water-alternatives.org (accessed on 20 December 2020).
- Calderón, A.J.; Guerra, O.J.; Papageorgiou, L.G.; Reklaitis, G.V. Disclosing water-energy-economics nexus in shale gas development. Appl. Energy 2018, 225, 710–731. [Google Scholar] [CrossRef]
- Sušnik, J.; Chew, C.; Domingo, X.; Mereu, S.; Trabucco, A.; Evans, B.; Vamvakeridou-Lyroudia, L.; Savić, D.A.; Laspidou, C.; Brouwer, F. Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach. Water 2018, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Engström, R.E.; Destouni, G.; Howells, M.; Ramaswamy, V.; Rogner, H.; Bazilian, M. Cross-scale water and land impacts of local climate and energy policy—A local swedish analysis of selected SDG interactions. Sustainability 2019, 11, 1847. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, A.A.; Crenna, E.; Sala, S.; Udias, A. A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. J. Clean. Prod. 2018, 172, 3874–3889. [Google Scholar] [CrossRef]
- Namany, S.; Al-Ansari, T.; Govindan, R. Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. J. Clean. Prod. 2019, 225, 610–626. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q. Water-energy nexus: A review of methods and tools for macro-assessment. Appl. Energy 2018, 210, 393–408. [Google Scholar] [CrossRef]
- Ringler, C.; Willenbockel, D.; Perez, N.; Rosegrant, M.; Zhu, T.; Matthews, N. Global linkages among energy, food and water: An economic assessment. Journal of Environmental Studies and Sciences. 2016, 6, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerstrom, R.E.; Alfstad, T.; Gielen, D.; Rogner, H.H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Daher, B.T.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Mayor, B.; López-Gunn, E.; Villarroya, F.I.; Montero, E. Application of a water–energy–food nexus framework for the Duero river basin in Spain. Water Int. 2015, 40, 791–808. [Google Scholar] [CrossRef]
- Meza, F.J.; Vicuna, S.; Gironás, J.; Poblete, D.; Suarez, F.; Oertel, M. Water–food–energy nexus in Chile: The challenges due to global change in different regional contexts. Water Int. 2015, 40, 839–855. [Google Scholar] [CrossRef]
- Guan, X.; Mascaro, G.; Sampson, D.; Maciejewski, R. A metropolitan scale water management analysis of the food-energy-water nexus. Sci. Total. Environ. 2020, 701, 134478. [Google Scholar] [CrossRef] [PubMed]
- Braat, L.C.; Van Lierop, W.F. Economic-ecological modeling: An introduction to methods and applications. Ecol. Model. 1986, 31, 33–44. [Google Scholar] [CrossRef]
- Ponce, R.D.; Fernández, F.; Stehr, A.; Vásquez-Lavín, F.; Godoy-Faúndez, A. Distributional impacts of climate change on basin communities: An integrated modeling approach. Reg. Environ. Chang. 2017, 17, 1811–1821. [Google Scholar] [CrossRef]
- Ponce, R.D.; Arias, E.; Fernández, F.J.; Vásquez-Lavin, F.; Stehr, A. Water use and climate stressors in a multiuser river basin setting; Who benefits from adaptation? Water Resour. Manag. 2021, 35, 897–915. [Google Scholar] [CrossRef]
- Hewitt, J.A.; Hanemann, W.M. A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing. Land Econ. 1995, 71, 173. [Google Scholar] [CrossRef]
- Olmstead, S.M.; Hanemann, W.M.; Stavins, R.N. Water demand under alternative price structures. J. Environ. Econ. Manag. 2007, 54, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Lavín, F.A.V.; Hernandez, J.I.; Ponce, R.D.; Orrego, S.A. Functional forms and price elasticities in a discrete continuous choice model of the residential water demand. Water Resour. Res. 2017, 53, 6296–6311. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009. 2011. Available online: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/128050/TR-406_SoilandWaterAssessmentToolTheoreticalDocumentation.pdf?sequence=1 (accessed on 15 October 2020).
- Stehr, A.; Debels, P.; Arumi, J.L.; Alcayaga, H.; Romero, F. Modelación de la respuesta hidrológica al cambio climático: Experiencias de dos cuencas de la zona centro-sur de Chile. Tecnol. Cienc. Agua 2010, 1, 37–58. Available online: http://www.scielo.org.mx/scielo.php?pid=S2007-24222010000400002&script=sci_arttext (accessed on 2 March 2021).
- Stehr, A.; Debels, P.; Romero, F.; Alcayaga, H. Hydrological modelling with SWAT under conditions of limited data availability: Evaluation of results from a Chilean case study. Hydrol. Sci. J. 2008, 53, 588–601. [Google Scholar] [CrossRef]
- INDAP. Encuesta de Diagnostico PRODESAL—PDTI—SAT; Ministerio de Agricultura: Santiago, Chile, 2014. [Google Scholar]
- Fernández, F.J.; Ponce, R.D.; Blanco, M.; Rivera, D.; Vásquez, F. Water Variability and the economic impacts on small-scale farmers. A farm risk-based integrated modelling approach. Water Resour. Manag. 2016, 30, 1357–1373. [Google Scholar] [CrossRef]
- Blanco, M.; Cortignani, R.; Severini, S. Evaluating changes in cropping patterns due to the 2003 CAP reform. An Ex-post analysis of different PMP approaches considering new activities. AgEcon Search 2008, 15. [Google Scholar] [CrossRef]
- Howitt, R.E. Positive mathematical programming. Am. J. Agric. Econ. 1995, 77, 329–342. [Google Scholar] [CrossRef]
- Howitt, R.E.; Macewan, D.; Medellín-Azuara, J.; Lund, J.R. Economic Modeling of Agriculture and Water in California Using the Statewide Agricultural Production Model. 2010. Available online: http://swap.ucdavis.edu/ (accessed on 4 January 2021).
- Rivera-Bocanegra, F. Efectos del Nivel de Agregación de Datos Sociodemográficos en la Estimación de la Demanda de Agua Residencial del Gran Concepción-Chile. Enfoque del Modelo de Elección Discreto-Contínuo; Universidad de Concepción—Facultad de Ciencias Económicas y Administrativas: Concepción, Chile, 2016; Available online: http://152.74.17.92/jspui/bitstream/11594/2113/3/Tesis_Efectos_del_nivel_de_agregacion.Image.Marked.pdf (accessed on 10 September 2020).
- Nordin, J.A. A proposed modification of taylor’s demand analysis: Comment. Bell J. Econ. 1976, 7, 719. [Google Scholar] [CrossRef]
- Espey, M.; Espey, J.; Shaw, W.D. Price elasticity of residential demand for water: A meta-analysis. Water Resour. Res. 1997, 33, 1369–1374. [Google Scholar] [CrossRef]
- Sebri, M. A meta-analysis of residential water demand studies. Environ. Dev. Sustain. 2013, 16, 499–520. [Google Scholar] [CrossRef]
- INE. Censo Agropecuario; Instituto Nacional de Estadística: Santiago, Chile, 2007. [Google Scholar]
- ODEPA. Estimación del Impacto Socioeconómico del Cambio Climático en el Sector Silvoagropecuario de Chile. 2010. Available online: https://www.odepa.gob.cl/wp-content/uploads/2010/01/ImpactoCambioClimatico.pdf (accessed on 18 October 2020).
- ODEPA. Ficas de Costos; Oficina de Estudios y Políticas Agrarias: Santiago, Chile, 2018. [Google Scholar]
- ODEPA. Series de Precios; Oficina de Estudios y Políticas Agrarias: Santiago, Chile, 2018. [Google Scholar]
- Britz, W.; Witzke, P. CAPRI Model Documentation 2014. 2014. Available online: https://www.capri-model.org/docs/capri_documentation.pdf (accessed on 10 June 2020).
- Foster, W.; de Lérida, J.L.; Valdes, A. Impacto del nivel de distorsiones en el sector agrícola nacional. Ministerio de Agricultura: Santiago, Chile, 2011. [Google Scholar]
- Quiroz, J.; Laban, R.; Larraín, F. El sector agrícola y agroindustrial frente a nafta y Mercosur. Sociedad Nacional de Agricultura: Santiago, Chile, 1995. [Google Scholar]
- Cai, X.; Ringler, C.; Rosegrant, M. Modeling Water Resources Management at the Basin Level: Methodology and Application to the Maipo River Basin; International Food Policy Research Institute: Washington, DC, USA, 2006. [Google Scholar]
- SISS. Informe de Gestión del Sector Sanitario. 2018. Available online: https://www.siss.gob.cl/586/articles-17722_recurso_1.pdf (accessed on 10 October 2020).
- MMA. Tercera Comunicación Nacional de Chile ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. 2016. Available online: https://unfccc.int/files/national_reports/non-annex_i_natcom/application/pdf/nc3_chile_19_december_2016.pdf (accessed on 10 October 2020).
- Ministerio del Medio Ambiente. Plan de Adaptación al Cambio Climático del Sector Silvoagropecuario. 2013. Available online: https://mma.gob.cl/wp-content/uploads/2015/02/Plan_Adaptacion_CC_S_Silvoagropecuario.pdf (accessed on 10 October 2020).
- Santibáñez, F.; Santibáñez, P.; Cabrera, R.; Solis, L.; Quiroz, M.; Hernandez, J. Impactos productivos en el sector silvoagropecuario de Chile frente a escenarios de Cambio Climático, Análisis de vulnerabilidad del sector silvoagropecuario, recursos hídricos y edáficos de Chile frente a escenarios de Cambio Climático. Ministerio de Agricultura: Santiago, Chile, 2008. [Google Scholar]
- INE. Estimaciones y proyecciones de la población de Chile 1992-2050. 2018. Available online: https://www.ine.cl/estadisticas/sociales/demografia-y-vitales/proyecciones-de-poblacion (accessed on 18 October 2020).
- Fernández, F.J.; Blanco, M.; Ponce, R.D.; Vásquez-Lavín, F.; Roco, L. Implications of climate change for semi-arid dualistic agriculture: A case study in Central Chile. Reg. Environ. Chang. 2019, 19, 89–100. [Google Scholar] [CrossRef]
- Peña-Cortés, F.; Escalona, M.; Soria-Lara, J.A.; Pincheira-Ulbrich, J.; Salinas-Silva, C.; Alarcón, F. Translating sociocultural transformations into historical maps on land use changes: The case of Lafkenmapu (Araucanía, Chile). J. Maps 2020, 16, 163–171. [Google Scholar] [CrossRef]
- Ossa-Moreno, J.; McIntyre, N.; Ali, S.; Smart, J.C.; Rivera, D.; Lall, U.; Keir, G. The hydro-economics of mining. Ecol. Econ. 2018, 145, 368–379. [Google Scholar] [CrossRef]
- Berardy, A.; Chester, M.V. Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environ. Res. Lett. 2017, 12, 035004. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Hayati, D.; Hochrainer-Stigler, S.; Zamani, G.H. Understanding farmers’ intention and behavior regarding water conservation in the Middle-East and North Africa: A case study in Iran. J. Environ. Manag. 2014, 135, 63–72. [Google Scholar] [CrossRef]
- Vergara, A.; Rivera, D. Legal and institutional framework of water resources. In Water Policy in Chile; Springer: Cham, Switzerland, 2018; pp. 67–85. [Google Scholar]
- Melo, O.; Retamal, M. The water users organizations in Chile. In Chile: Environmental, Political and Social Issues; Rivera, D., Ed.; Nova Science Pub Inc.: Hauppauge, NY, USA, 2012; pp. 1–32. [Google Scholar]
Water Availability Scenarios | |||||||||
---|---|---|---|---|---|---|---|---|---|
Commune | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 |
Ercilla | −21.4% | −21.5% | −21.8% | −31.2% | −31.98 | −31.5% | −40.6% | −40.7% | −40.8% |
Mulchén | −24.9% | −25.1% | −25.3% | −36.0% | −30.71 | −36.3% | −46.2% | −46.4% | −46.5% |
Curacautín | −24.6% | −24.8% | −25.2% | −35.7% | −33.16 | −36.3% | −46.2% | −46.4% | −46.6% |
Traiguén | −21.8% | −22.0% | −22.2% | −31.8% | −35.51 | −32.1% | −41.3% | −41.5% | −41.6% |
Collipulli | −23.6% | −24.1% | −24.1% | −34.7% | −32.96 | −35.4% | −45.2% | −45.7% | −46.0% |
Nacimiento | −23.3% | −23.7% | −23.6% | −34.3% | −35.09 | −34.8% | −44.7% | −45.1% | −45.3% |
Los Sauces | −24.2% | −24.5% | −24.8% | −35.3% | −31.23 | −35.9% | −45.7% | −45.9% | −46.4% |
Negrete | −20.8% | −21.1% | −21.3% | −30.4% | −34.62 | −30.9% | −39.6% | −39.8% | −40.1% |
Renaico | −22.3% | −22.8% | −23.2% | −32.6% | −35.43 | −33.4% | −42.5% | −42.8% | −43.2% |
Angol | −22.2% | −22.9% | −23.6% | −32.6% | −35.86 | −33.7% | −42.8% | −43.4% | −44.0% |
Scenarios | Stressors Considered and Impacts Modeled |
---|---|
Scenario 1 | Climatic Stressors A decrease in water availability A decrease in crop yields Increase in temperature |
Scenario 2 | Climatic Stressors A decrease in water availability A decrease in crop yields Increase in temperature Demographic stressors Population growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce Oliva, R.D.; Fernández, F.J.; Vasquez-Lavín, F.; Arias Montevechio, E.; Julio, N.; Stehr, A. Nexus Thinking at River Basin Scale: Food, Water and Welfare. Water 2021, 13, 1000. https://doi.org/10.3390/w13071000
Ponce Oliva RD, Fernández FJ, Vasquez-Lavín F, Arias Montevechio E, Julio N, Stehr A. Nexus Thinking at River Basin Scale: Food, Water and Welfare. Water. 2021; 13(7):1000. https://doi.org/10.3390/w13071000
Chicago/Turabian StylePonce Oliva, Roberto D., Francisco J. Fernández, Felipe Vasquez-Lavín, Esteban Arias Montevechio, Natalia Julio, and Alejandra Stehr. 2021. "Nexus Thinking at River Basin Scale: Food, Water and Welfare" Water 13, no. 7: 1000. https://doi.org/10.3390/w13071000
APA StylePonce Oliva, R. D., Fernández, F. J., Vasquez-Lavín, F., Arias Montevechio, E., Julio, N., & Stehr, A. (2021). Nexus Thinking at River Basin Scale: Food, Water and Welfare. Water, 13(7), 1000. https://doi.org/10.3390/w13071000